
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

Image Restoration Methods for a New TVL2 Regularization Model∗

Hyo Jin Lim1, Kyoum Sun Kim1, and Jae Heon Yun†2

1Department of Mathematics, Chungbuk National University, Cheongju, Korea 28644.
2Department of Mathematics, College of Natural Sciences, Chungbuk National University, Cheongju, Korea 28644.

ORCID: 0000-0001-6841-8137

Abstract
In this paper, we first propose a new TVL2 regularization
model for image restoration, and then we propose a
fixed-point-like method and a split Bregman method for
solving the new image restoration model. We next provide
convergence analysis for both the fixed-point-like method and
the split Bregman method. Finally, we provide numerical
experiments for several test problems in order to evaluate the
effectiveness of two iterative methods for the new proposed
image restoration model.

Keywords: Total variation, fixed-point-like method, image
restoration, proximal operator, split Bregman method.

1991 Mathematics Subject Classification. 94A08, 54E05,
49Q20, 35M85.

1. INTRODUCTION

Image restoration which recovers a true image from a blurry
and noisy image is one of the most challenging tasks in image
processing. Let us assume that the original image u has an
N ×N array. For convenience, the image u is represented by
a long vector u of size m = N2. In this paper, we consider the
problem of finding the unknown original image u ∈ Rm from
an observed degraded image f ∈ Rm which is defined by

f = Au+ η, (1.1)

where A ∈ Rm×m is a blurring matrix and η ∈ Rm
is a Gaussian noise. The amplitude of the Gaussian noise
distribution can be expressed as

η(x) =
1√
2πσ

e
(x−µ)2

2σ2

where σ and µ represent standard derivation and mean value
of the noise distribution η, respectively. More specifically, our
goal is to approximate the original image u as well as possible
from an observed image f degraded by a Gaussian noise.

The model based on the total variation (TV) has made a lot
of impact in image processing despite its weaknesses. In
last decades, many TV-based models have been developed

in the literature. One of the most popular model is the
Rudin-Osher-Fatemi (ROF) model [15]. This model produces
a deblurred image given by the following minimization
problem:

min
u∈Rm

{
1

2
‖Au− f‖22 + βTV (u)

}
, (1.2)

where u ∈ Rm and f ∈ Rm represent the original and
observed images respectively, TV (u) stands for a discrete total
variation of u, β > 0 is a regularization parameter,A ∈ Rm×m
is a blurring matrix, and ‖·‖2 denotes the L2-norm. The first
term of ‖Au − f‖22 is called the data-fitting term, and the
second term TV(u) is called the regularization (or penalty)
term. In the last few decades, many approaches have been
proposed to approximate the true image u from the ROF model
(1.2). For example, the split Bregman method [3, 8], the lagged
diffusivity fixed-point method [4], proximal forward-backward
splitting method [6], proximity method [11], Newton-like
method [13], and time-marching PDE method [15] have been
proposed by many researchers.

In 2012, Chen et al. [5] proposed a fixed-point method for
solving the following TVL2 regularization model

min
u∈Rm

{
1

2
‖Au− f‖22 +

α

2
‖u‖22 + βTV (u)

}
, (1.3)

where α and β are positive regularization parameters.
Recently, Kim and Yun [10] proposed a fixed-point-like
method for solving the following TVL2 regularization model

min
u∈Rm

{
1

2
‖Au− f‖22 + α‖u‖2 + βTV (u)

}
, (1.4)

where α and β are positive regularization parameters. It was
shown in [10] that the fixed-point-like method for the TVL2
model (1.4) performs better than the fixed-point method for
the TVL2 model (1.3). This observation gives us an idea of
proposing a new TVL2 regularization model

min
u∈Rm

{
1

2
‖Au− f‖22 + α‖Du‖p + βTV (u)

}
(p = 1 or 2),

(1.5)
where α and β are positive regularization parameters, D =
−∆ and ∆ denotes a discrete Laplacian operator.

∗This work was supported by the National Research Foundation of Korea(NRF) funded by the Korea government(MSIT) (No. 2019R1F1A1060718)
†Corresponding author.

2674

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

There are two cases of TV (u) (discrete total variation of u)
in the literature. One case is the anisotropic total variation
defined by

TV (u) =

m∑
i=1

|(∇u)xi)|+ |(∇u)yi)| ,

and the other case is the isotropic total variation defined by

TV (u) =

m∑
i=1

√
|(5u)xi |

2
+ |(5u)yi |

2
=

m∑
i=1

∥∥ (∇u)i
∥∥
2
,

where the discrete gradient operator ∇ : Rm → R2m is
defined by

(∇u)i =

(
(∇u)xi
(∇u)yi

)
, i = 1, 2, ...,m

with

(∇u)xi =

{
0 if i mod N = 1,

ui − ui−1 if i mod N 6= 1,

and (∇u)yi =

{
0 if i ≤ N,
ui − ui−N if i > N.

In this paper, we only consider the isotropic total variation of
u ∈ Rm, and we assume that the reflexive boundary condition
is used for blurred images.

The purpose of this paper is to propose two iterative methods
which are a fixed-point-like method and a split Bregman
method for solving the new proposed TVL2 regularization
model (1.5). This paper is organized as follows. In Section
2, we provide some definitions and important properties that
are used in this paper. In Section 3, we simply provide the
fixed-point-like method and the split Bregman method for
solving the TVL2 problem (1.4) proposed by Kim and Yun
[10] for the purpose of comparison with those methods to
be proposed in this paper. In Section 4, we first propose a
fixed-point-like method for solving the new TVL2 problem
(1.5), and then we provide convergence analysis for the
fixed-point-like method. In Section 5, we first provide a split
Bregman method for solving the new TVL2 problem (1.5), and
then we study convergence of the split Bregman method. In
Section 6, we provide numerical experiments for several test
problems in order to evaluate the effectiveness of the proposed
two iterative methods for the TVL2 problem (1.5). This can be
done by comparing their performances with the corresponding
two iterative methods for the TVL2 problem (1.4). Lastly,
some conclusion are drawn.

2. PRELIMINARIES

In this section, we will introduce several definitions and
notations as well as some useful properties that are used in
this paper.

Definition 2.1 ([12]). Let ψ: Rm → (−∞,∞] be a proper,
convex and lower semi-continuous function. The proximal
operator of ψ at x ∈ Rm is defined by

proxψ(x) = argmin
u

{
1

2
‖u− x‖22 + ψ(u) : u ∈ Rm

}
. (2.1)

Definition 2.2. Let ψ: Rm → (−∞,∞] be a proper function,
and let dom(ψ) denote the domain of ψ, that is, dom(ψ) =
{x ∈ Rm : ψ(x) < ∞}. For an x ∈ dom(ψ), the
subdifferential of ψ at x ∈ Rm is defined by

∂ψ(x) = {y ∈ Rm : ψ(z) ≥ ψ(x) + 〈y, z − x〉,∀z ∈ Rm}.
(2.2)

For a nonlinear operator H : Rm → Rm, H is called
non-expansive if for any x, y ∈ Rm

‖ H(x)−H(y) ‖2 ≤ ‖ x− y ‖2, (2.3)

and H is called firmly non-expansive if for any x, y ∈ Rm

‖ H(x)−H(y) ‖22 ≤ 〈x− y,H(x)−H(y)〉. (2.4)

By the application of the Cauchy-Schwarz inequality, it is
easy to show that a firmly non-expansive operator is also
non-expansive.

Let S : Rm → Rm be an operator and κ ∈ (0, 1). Then the
Picard iteration of S is defined by

xk+1 = Sxk for k = 0, 1, 2, . . . (2.5)

for a given vector x0 ∈ Rm, and the κ-averaged operator Sk
of S is defined by

Sk = κI + (1− κ)S (2.6)

where I denotes an identity operator.

Proposition 2.3 ([2]). Let ψ : Rm → (−∞,∞] be a proper
convex function. Then

x∗ ∈ argmin
{
ψ(x) : x ∈ Rm

}
if and only if 0 ∈ ∂ψ(x∗).

The following result illustrates the relationship between the
proximal operator and the subdifferential of a convex function
which is a basic tool of developing iterative algorithms for the
regularization models (1.3) to (1.5).

Proposition 2.4 ([11, 15]). Let ψ : Rm → R be a convex
function. Then for x, y ∈ Rm, the following holds

y ∈ ∂ψ(x) ⇔ x = proxψ(x+ y). (2.7)

Let D ∈ Rm×m be a finite difference matrix corresponding
to the negative Laplacian −(uxx + uyy) of the image
u ∈ Rm, where uxx and uyy denote the second order
partial derivatives in the vertical direction and the horizontal
direction, respectively. Then the matrix D ∈ Rm×m can be
expressed as

D = (IN ⊗D1 +D1 ⊗ IN) ∈ Rm×m,

where IN is the identity matrix of order N , ⊗ denotes the
Kronecker product, and D1 is an m × m singular matrix
obtained by finite difference approximations to the second

2675

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

order partial derivatives−uxx or−uyy [9]. That is,D1 is given
by

D1 =



1 −1 0 0
−1 2 −1 0

0 −1 2 −1
. . .

...
...

.
... 0

0 −1 2 −1
0 0 −1 1


.

Let B be a 2m ×m matrix that represents a discrete gradient
operator∇withm = N2. Then, the matrix B can be expressed
as

B =

(
IN ⊗D2

D2 ⊗ IN

)
∈ R2m×m, (2.8)

where D2 is the first order finite difference singular matrix of
order N

D2 =



0 0 0 0
−1 1 0 0

0 −1 1
...

...
.

... 0
0 −1 1 0
0 0 −1 1


.

Let ϕ : R2m → R be a convex function defined by

ϕ(d) =

m∑
i=1

‖(di, dm+i)
T ‖2 for each d = (di) ∈ R2m, (2.9)

where di denotes the ith component of the vector d. Then the
isotropic TV of u ∈ Rm can be expressed as

TV (u) = (ϕ ◦B)(u) = ϕ(Bu). (2.10)

3. IMAGE RESTORATION METHODS FOR THE
TVL2 PROBLEM (1.4)

In this section, we just provide the fixed-point-like method
and split Bregman method proposed in [10] for solving the
TVL2 problem (1.4) for the purpose of comparison with those
methods for solving the new proposed TVL2 problem (1.5).
The fixed-point-like method, called Algorithm 1, and the split
Bregman method, called Algorithm 2, for the TVL2 problem
(1.4) are described below (see [10] for detailed description of
algorithms).

Algorithm 1 Fixed-point-like method for the TVL2
problem (1.4)

1: Given : observed image f , positive parameters α, β, γ, λ
and κ ∈ (0, 1)

2: Initialization : a0 = 0, b0 = 0 and u0 = f

3: for k = 0 to maxit do
4: ak+

1
2 = ak − prox 1

γ ‖·‖2
(
uk + ak

)
5: b̂k+1 =

(
I − prox β

λϕ

) (
Buk + bk

)
6: bk+1 = κbk + (1− κ)b̂k+1

7: Solve (ATA + αγI)uk+1 = AT f − αγak+
1
2 −

λBT bk+1 for uk+1

8: âk+1 = uk+1 + ak+
1
2

9: ak+1 = κak + (1− κ)âk+1

10: if ‖u
k+1−uk‖2
‖uk+1‖2 < tol then

11: Stop
12: end if
13: end for

Algorithm 2 Split Bregman method for the TVL2 problem
(1.4)

1: Given : observed image f , positive parameters α, β, λ, γ

2: Initialization : a0 = b0 = 0, c0 = d0 = 0 and u0 = f

3: for k = 0 to maxit do
4: Solve (ATA + γI + λBTB)uk+1 = AT f + γ(ak −
bk) + λBT (dk − ck) for uk+1

5: ak+1 = proxα
γ ‖·‖2

(
uk+1 + bk)

6: dk+1 = prox β
λϕ

(
Buk+1 + ck)

7: bk+1 = bk + uk+1 − ak+1

8: ck+1 = ck +Buk+1 − dk+1

9: if ‖u
k+1−uk‖2
‖uk+1‖2 < tol then

10: Stop
11: end if
12: end for

In this paper, the linear system in line 7 of Algorithm 1 and the
linear system in line 4 of Algorithm 2 are approximately solved
using the CGLS (Conjugate Gradient Least Squares method
[1]) with a tolerance value instead of using the CG (Conjugate
Gradient method [7]).

4. FIXED-POINT-LIKE METHOD FOR THE TVL2
PROBLEM (1.5)

In this section, we first propose a fixed-point-like method for
solving the new TVL2 problem (1.5), and then we provide a
convergence analysis for the fixed-point-like method. Using

2676

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

(2.10), the TVL2 problem (1.5) can be expressed as

min
u∈Rm

{
1

2
‖Au− f‖22 + α‖Du‖p + β(ϕ ◦B)(u)

}
(p = 1 or 2).

(4.1)
Using Propositions 2.3 and 2.4, we can obtain the following
property for a solution to the TVL2 problem (4.1).

Theorem 4.1. If u ∈ Rm is a solution of the problem (4.1),
then for any γ, λ > 0, there exist vectors a ∈ Rm and
b ∈ R2m such that

a = (I − prox 1
γ ‖·‖p

)(Du+ a), (4.2)

b = (I − prox β
λϕ

)(Bu+ b), (4.3)

(ATA)u = AT f − αγDTa− λBT b. (4.4)

Conversely, if there exist γ, λ > 0, a ∈ Rm, b ∈ R2m and
u ∈ Rm satisfying (4.2)-(4.4), then u is a solution of the
problem (4.1).

Proof. Suppose that u ∈ Rm is a solution of the problem (4.1).
Using Proposition 2.3 and the chain rule of subdifferential, we
can obtain

0 ∈ AT (Au− f) + αDT (∂‖·‖p)(Du) + βBT ◦ (∂ϕ) ◦ (Bu)

= AT (Au− f) + αDT (∂‖·‖p)(Du) +BT∂(βϕ)(Bu).

(4.5)

From relation (4.5), for any γ, λ > 0 we can choose two
vectors a ∈ Rm and b ∈ R2m such that

a ∈ ∂(
1

γ
‖·‖p)(Du), b ∈ ∂(

β

λ
ϕ)(Bu) (4.6)

and
0 = AT (Au− f) + αγDTa+ λBT b. (4.7)

Using Proposition 2.4, the inclusions (4.6) reduce to

Du = prox 1
γ ‖·‖p

(Du+ a) and Bu = prox β
λϕ

(Bu+ b).

(4.8)
From (4.7) and (4.8), one obtains (4.2), (4.3) and (4.4).

Conversely, assume that (4.2)-(4.4) are satisfied for some
γ, λ > 0, a ∈ Rm, b ∈ R2m and u ∈ Rm. From (4.2) and
(4.3), we have

a ∈ ∂(
1

γ
‖·‖p)(Du) =

1

γ
(∂‖·‖p)(Du)

and b ∈ ∂(
β

λ
ϕ)(Bu) =

β

λ
(∂ϕ)(Bu).

(4.9)

Using (4.4) and (4.9), we can obtain

0 ∈ AT (Au− f) + αDT (∂‖·‖p)(Du) + βBT∂ϕ(Bu).

Consequently (4.5) holds. Hence, u is a solution of the
problem (4.1).

From (4.2)-(4.4) in Theorem 4.1, we can develop a fixed-point
algorithm which converges to a solution to the TVL2 problem
(1.5). We now describe how to develop the fixed-point

algorithm. Let u be an approximate solution to the
ill-condition linear system (4.4) in Theorem 4.1. Then u can
be expressed as

u = M(AT f − αγDTa− λBT b), (4.10)

where M is a symmetric positive semi-definite matrix
approximating a solution of the linear system (4.4). For
example, we can choose M = (ATA)†r, which is a truncated
psedoinverse of ATA using the r largest positive singular
values ofATA. Substituting (4.10) into (4.2) and (4.3), we can
obtain

a = (I − prox 1
γ ‖·‖p

)((Im − αγMDDT)a

− λMBT b+MDAT f),
(4.11)

b = (I − prox β
λϕ

)(−αγMDTBa

+ (I2m − λBMBT)b+ λBMAT f).
(4.12)

(4.11) and (4.12) can be rewritten as a unified fixed-point
equation(

a
b

)
=

(
I − prox 1

γ
‖·‖p

0

0 I − prox β
λ
ϕ

)

×

[(
Im − αγMDDT −λDMBT

−αγMDTB I2m − λBMBT

)(
a
b

)

+

(
MDAT f
MBAT f

)]
.

(4.13)

We now formulate some nonlinear operators on R3m. Let us
define an operator P : R3m → R3m at a vector

(
x
y

)
∈ R3m

with x ∈ Rm and y ∈ R2m by

P
(
x
y

)
=

(
I − prox 1

γ ‖·‖p
0

0 I − prox β
λϕ

)(
x
y

)
(4.14)

=

(
(I − prox 1

γ ‖·‖p
)(x)

(I − prox β
λϕ

)(y)

)
,

an affine transformation Q : R3m → R3m at a vector
(
a
b

)
∈

R3m with a ∈ Rm and b ∈ R2m by

Q
(
a
b

)
=

(
Im − αγMDDT −λDMBT

−αγMDTB I2m − λBMBT

)(
a
b

)
(4.15)

+

(
MDAT f
MBAT f

)
,

and an operator G : R3m → R3m by

G = P ◦ Q. (4.16)

Let ω = (a, b)T . Then (4.13) can be expressed as

ω = Gω. (4.17)

That is, ω is a fixed point of the operator G.
Since the TVL2 problem (4.1) has been transformed to the
fixed point problem of (4.17), some useful results in fixed
point theory are studied below in order to develop a convergent
algorithm for solving the problem (4.1).

2677

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

Proposition 4.2. The operator G defined by (4.16) has a fixed
point.

Proof. Since a solution u of the TVL2 problem (4.1) exists,
from (4.17) and the first part of the proof of Theorem 4.1 G
has a fixed point.

Let c =

(
MDAT f
MBAT f

)
∈ R3m, P =

(
D
B

)
, and

R =

(
αγIm 0

0 λI2m

)
. Then (4) can be expressed as

Qw = (I3m − PMPTR)w + c, (4.18)

where ω = (a, b)T

Theorem 4.3. Let M , P and R be defined as above. If
‖I3m−PMPTR‖2 ≤ 1, then the operator G defined by (4.16)
is non-expansive.

Proof. Since I − prox 1
γ ‖·‖p

and I − prox β
λϕ

are firmly
non-expansive [6], the operator P defined by (4) is
non-expansive [10]. For all v1, v2 ∈ R3m, we have

‖G(v1)− G(v2)‖2 = ‖P(Q(v1))− P(Q(v2))‖2
≤ ‖Q(v1)−Q(v2)‖2.

From (4.18) and the assumption ‖I3m − PMPTR‖2 ≤ 1, we
have

‖Q(v1)−Q(v2)‖2 = ‖(I3m − PMPTR)(v1 − v2)‖2
≤ ‖(I3m − PMPTR)‖2 · ‖v1 − v2‖2
≤ ‖v1 − v2‖2.

Hence, the operator G is non-expansive.

The following proposition provides a convergence result for
the Picard iteration of a κ-averaged operator.

Proposition 4.4 ([14]). Let C ⊂ R3m be a closed convex set
and S : C → C be a non-expansive mapping with at least
one fixed point. Then for any ω0 ∈ C and any κ ∈ (0, 1), the
Picard iteration of Sκ converges to a fixed point of S.

Theorem 4.5. Let M , P , R and G be defined as in Theorem
4.3. If ‖I3m − PMPTR‖2 ≤ 1, then for any κ ∈ (0, 1) the
Picard iteration of Gκ converges to a fixed point of G.

Proof. From Proposition 4.2 and Theorem 4.3, the operator G
has a fixed point and G is non-expansive. Hence, Proposition
4.4 ensures that for any vector w0 ∈ R3m and κ ∈ (0, 1), the
Picard iteration of Gk converges to a fixed point of G.

Lemma 4.6. LetM , P ,R and G be defined as in Theorem 4.3.
If we choose positive parameters α, γ and λ such that

0 < λ = αγ <
2

ρ(PMPT)
,

then ‖I3m − PMPTR‖2 ≤ 1 and the operator G is
non-expansive.

Proof. The proof of this lemma is skipped since it can be done
in a similar way to the proof of Lemma 2 in [10].

Theorem 4.7. If the assumptions of Lemma 4.6 hold, then for
any κ ∈ (0, 1) the Picard iteration of Gκ converges to a fixed
point of G.

Proof. From Lemma 4.6 and Theorem 4.5, this theorem
clearly hold.

From Theorem 4.5 and the Picard iteration of the κ-averaged
operator Gκ = κI+(1−κ)G of G, we can obtain a fixed-point
method, called Algorithm 3, which converges to a solution
to the TVL2 problem (1.5) for some appropriately chosen
positive parameters α, γ, λ.

Algorithm 3 Fixed-point algorithm for the TVL2 problem
(1.5)

1: Given : observed image f , positive parameters α, β, γ, λ
and κ ∈ (0, 1)

2: Initialization : a0 = 0, b0 = 0 and u0 = f

3: for k = 0 to maxit do
4: âk+1 =

(
I − prox 1

γ ‖·‖p

)(
Duk + ak

)
5: ak+1 = κak + (1− k)âk+1

6: b̂k+1 =
(
I − prox β

λϕ

)(
Buk + bk

)
7: bk+1 = κbk + (1− k)b̂k+1

8: Solve ATAuk+1 = AT f − αγDTak+1 − λBT bk+1

for uk+1

9: if ‖u
k+1−uk‖2
‖uk+1‖2 < tol then

10: Stop
11: end if
12: end for

The linear system in line 8 of Algorithm 3 is highly
ill-conditioned, so we need to consider how to find an
approximate solution to the ill-conditioned linear system. A
typical method for finding an approximate solution to the linear
system is

uk+1 = M(AT f − αγDTak+1 − λBT bk+1),

where M = (ATA)†r. However, computation of (ATA)†r
is very time-consuming when A is large, and choosing an
optimal number of r is also difficult. So we need to develop
more efficient method than Algorithm 3. For this reason,
we propose a fixed-point-like method for solving the new
TVL2L1D problem (1.5) which can be obtained by modifying
Algorithm 3. Notice that Algorithm 3 computes âk+1, ak+1,
b̂k+1 and bk+1 before the solution step of finding uk+1.
However, the fixed-point-like method to be proposed in this
section computes âk+1, ak+1, b̂k+1 and bk+1 after the solution
step of finding uk+1. Below we describe how to develop
the fixed-point-like method in detail. We first split line 4 of
Algorithm 3 into

âk+1 = Duk + ak+
1
2 . (4.19)

where ak+
1
2 = ak − prox 1

γ ‖·‖p
(Duk + ak). Next, split line 6

of Algorithm 3 into

b̂k+1 = Buk + bk+
1
2 . (4.20)

2678

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

where bk+
1
2 = bk − prox β

λϕ
(Buk + bk). Replacing the old value uk of (4.19) and (4.20) with the new updated value uk+1, one

can obtain

ãk+1 = Duk+1 + ak+
1
2 , (4.21)

and
b̃k+1 = Buk+1 + bk+

1
2 . (4.22)

Then the solution step (i.e line 8 of Algorithm 3) is changed to

ATAuk+1 = AT f − αγDT ãk+1 − λBT b̃k+1. (4.23)

Note that ãk+1 is computed using (4.21) instead of using (4.19), and b̃k+1 is computed using (4.22) instead of using (4.20).

Substituting (4.21) and (4.22) into (4.23), one obtains

(ATA+ αγDTD + λBTB)uk+1 = AT f − αγDTak+
1
2 − λBT bk+ 1

2 . (4.24)

After finding uk+1 form (4.24), we compute ãk+1 using (4.21) and b̃k+1 using (4.22), and then we compute ak+1 = κak + (1 −
κ)ãk+1 and bk+1 = κbk + (1 − κ)b̃k+1. By incorporating the above ideas into Algorithm 3, we can obtain a fixed-point-like
method, called Algorithm 4, for solving the TVL2 problem (1.5).

Algorithm 4 Fixed-point-like method for the TVL2 problem (1.5)

1: Given : observed image f , positive parameters α, β, γ, λ and κ ∈ (0, 1)

2: Initialization : a0 = 0, b0 = 0 and u0 = f

3: for k = 0 to maxit do
4: ak+

1
2 = ak − prox 1

γ ‖·‖p
(Duk + ak)

5: bk+
1
2 = bk − prox β

λϕ
(Buk + bk)

6: Solve (ATA+ αγDTD + λBTB)uk+1 = AT f − αγDT ak+
1
2 − λBT bk+

1
2 for uk+1

7: ãk+1 = Duk+1 + ak+
1
2

8: ak+1 = κak + (1− k)ãk+1

9: b̃k+1 = Buk+1 + bk+
1
2

10: bk+1 = κbk + (1− k)b̃k+1

11: if ‖u
k+1−uk‖2
‖uk+1‖2 < tol then

12: Stop
13: end if
14: end for

Notice that the linear system in line 6 of Algorithm 4 is equivalent to solving the following least squares problem

min
u

∥∥∥∥∥∥
 A√

αγD√
λB

u−

 f

−√αγak+ 1
2

−
√
λbk+

1
2

∥∥∥∥∥∥
2

2

. (4.25)

Hence, the linear system in line 6 of Algorithm 4 is approximately solved by applying the CGLS with a tolerance value to the
problem (4.25).

5. SPLIT BREGMAN METHOD FOR THE TVL2 PROBLEM (1.5)

In this section, we study an application of the alternating split Bregman method proposed in [8] to the TVL2 problem (1.5). The
problem (1.5), or equivalently (4.1), can be considered as a constrained minimization problem

min
u, d, w

{
1

2
‖Au− f‖22 + α‖w‖p + βϕ(d)

}
such that d = Bu and ω = Du, (5.1)

2679

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

where d ∈ R2m, B ∈ R2m×m, w ∈ Rm and D ∈ Rm×m. Rather than considering (5.1), we will consider the following
unconstrained minimization problem with a penalty parameters λ, γ > 0

min
u,d,w

{
1

2
‖Au− f‖22 + α‖w‖p + βϕ(d) +

λ

2
‖w −Du− b‖22 +

γ

2
‖d−Bu− c‖22

}
. (5.2)

Minimizing (5.2) alternatingly with respect to u, w and d, one can obtain the following alternating split Bregman method using
auxiliary vectors b and c for solving the problem (1.5):

Given u0 = f and ω0 = d0 = b0 = c0 = 0, the sequence {uk+1, wk+1, dk+1} is generated by the following iteration step



uk+1 =argmin
u

{1

2
‖Au− f‖22 +

λ

2
‖wk −Du− bk‖22 +

γ

2
‖dk −Bu− ck‖22

}
,

wk+1 =argmin
w

{
α‖w‖p +

λ

2
‖w −Duk+1 − bk‖22

}
,

dk+1 =argmin
d

{
βϕ(d) +

γ

2
‖d−Buk+1 − ck‖22

}
,

bk+1 =bk +Duk+1 − wk+1,

ck+1 =ck +Buk+1 − dk+1.

(5.3)

The convergence of the split Bregman method (5.3) is provided in the following theorem.

Theorem 5.1. Assume that u∗ is a solution of the problem (1.5) and α, β > 0. Then we have the following property for the split
Bregman method (5.3)

lim
k→∞

{
1

2
‖Auk − f‖22 + α‖Duk‖p + βϕ(Buk)

}
=

1

2
‖Au∗ − f‖22 + α‖Du∗‖p + βϕ(Bu∗).

Proof. We skip the proof of this theorem which can be done in a similar way to the convergence proof in [3].

The first equation of (5.3) is equivalent to solving the following linear system for uk+1 ∈ Rm

(ATA+ λDTD + γBTB)uk+1 = AT f + λDT (wk − bk) + γBT (dk − ck), (5.4)

and the second equation of (5.3) is equivalent to the following nonlinear equation for the proximal operator of α
λ‖·‖p at

(Duk+1 + bk)

ωk+1 = proxα
λ ‖·‖p

(Duk+1 + bk). (5.5)

From the third equation of (5.3), dk+1 ∈ R2m can be obtained by using the following generalized shrinkage formula [8]:

For each i = 1, 2, ...,m, compute

(
(dk+1)i

(dk+1)m+i

)
= max

{∥∥∥∥∥
(

(Buk+1 + ck)i
(Buk+1 + ck)m+i

)∥∥∥∥∥
2

− β

γ
, 0

}
·

(
(Buk+1 + ck)i

(Buk+1 + ck)m+i

)
∥∥∥∥∥
(

(Buk+1 + ck)i
(Buk+1 + ck)m+i

)∥∥∥∥∥
2

. (5.6)

2680

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

Using (5.3), (5.4), (5.5) and (5.6), we can obtain a split Bregman method, called Algorithm 5, for solving the TVL2 problem (1.5).

Algorithm 5 Split Bregman method for the TVL2 problem (1.5)

1: Given : observed image f , positive parameters α, β, γ, λ
2: Initialization : w0 = 0, b0 = 0, c0 = 0, d0 = 0 and u0 = f

3: for k = 0 to maxit do
4: Solve (ATA+ λDTD + γBTB)uk+1 = AT f + λDT (wk − bk) + γBT (dk − ck) for uk+1

5: wk+1 = proxα
λ ‖·‖p

(Duk+1 + bk)

6: for i = 1, 2, · · · ,m do

7:
(

(dk+1)i
(dk+1)m+i

)
= max

{∥∥∥∥((Buk+1 + ck)i
(Buk+1 + ck)m+i

)∥∥∥∥
2

− β
γ
, 0

}
·

(
(Buk+1 + ck)i

(Buk+1 + ck)m+i

)
∥∥∥∥∥
(

(Buk+1 + ck)i
(Buk+1 + ck)m+i

)∥∥∥∥∥
2

8: end for
9: bk+1 = (bk +Duk+1)− wk+1

10: ck+1 = (ck +Buk+1)− dk+1

11: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then

12: Stop

13: end if
14: end for

Note that the liner system in line 4 of Algorithm 5 is
approximately solved using the CGLS with a tolerance value
as was done in line 6 of Algorithm 4.

6. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments for several
test problems to estimate the efficiency of the fixed-point-like
method (Algorithm 4) and split Bregman method (Algorithm
5) for solving the new proposed TVL2 problem (1.5).
Performances of these algorithms are evaluated by comparing
their numerical results with those of Algorithms 1 and 2 for the
TVL2 problem (1.4) proposed in [10].

All the experiments are implemented under Matlab R2016a
running on a notebook computer with Intel(R) Core(TM)
i5-3337U CPU and 8.00GB RAM Memory. In our
experiments, we have used five test images which are the
“Cameraman (Cam)”, “Lena”, “House”, “Boat” and “Caribou”
images. The pixel size of five test images is 256×256. In these
experiments, we have used 3 types of point spread functions
(PSFs) which are Gaussian blur, Average blur and Motion blur
of size 9×9. The PSF arrays P for Gaussian blur, Average blur
and Motion blur are generated by the built-in Matlab functions

fspecial(‘gaussian’, [9.9], 9), fspecial(‘average’, 9),

and

P = zero(9); P (4 : 6, :) = fspecial(‘motion’, 9, 1),

respectively. The blurred and noisy image f is generated by

f = A ·X(:) + η(:),

where A stands for the blurring matrix which can be generated
by the original PSF array P according to the reflexive
boundary condition, X represents the true image, and η is the
Gaussian noise with mean 0 and standard derivation 3 which

can be generated using the Matlab function randn. That is,
η = 3 × randn(m,n), where (m,n) denotes the size of the
true image X .

All algorithms tested in numerical experiments are terminated
when the following stopping criterion was satisfied:

‖uk+1 − uk‖2
‖uk+1‖2

≤ tol,

where tol denotes a prescribed tolerance value. We set tol =
1×10−3 for Algorithms 1 and 4, tol = 5×10−4 for Algorithm
2, and tol = 2×10−4 for Algorithm 5. For all test problems, an
initial image was set to the blurred and noisy image f , we set
κ = 1× 10−6 and maxit = 150. For the CGLS, the maximum
number of iterations is set to 60, and the tolerance number is
set to 1 × 10−3 for Algorithms 1 and 4, and 5 × 10−2 for
Algorithms 2 and 5.

To evaluate the quality of the restored image, we use the PSNR
(Peak Singal to Noise Ratio) value between the restored image
and original image which is defined by

PSNR = log10

(
L ·N ·maxi,j |uij |2

‖U − Ũ‖2F

)
,

where ‖·‖F represents the Frobenius norm, Ũ denotes the
restored image of size L × N , and uij stands for the value
of the original image U at a pixel point (i, j) for 1 ≤ i ≤ L
and 1 ≤ j ≤ N . In Tables 1 and 2, “Alg.” represents the
algorithm number to be used, 4(k) and 5(k) under the “Alg.”
column denote Algorithm 4 with p = k and Algorithm 5 with
p = k respectively, “PSNR0” represents the PSNR value for
the blurred and noisy images, “Iter” denotes the number of
iterations required for Algorithms 1, 2, 4 and 5, “α, β, γ,
λ” denote parameters which are chosen as the best one by
numerical tries, and “Time” denotes the elapsed CPU time in
seconds.

2681

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

Table 1: Numerical results for Fixed-point-like methods (i.e., Algorithms 1 and 4)

Image PSF PSNR0 Alg. α β γ λ PSNR Iter Time

Cam

Gaussian 20.85
1 1.1500 0.135 0.050 0.0100 25.51 132 39.1

4(2) 0.0200 0.133 0.065 0.0050 25.53 19 20.7
4(1) 0.0060 0.125 0.008 0.0080 25.54 16 16.0

Average 20.76
1 0.7500 0.140 0.095 0.0095 25.59 120 33.9

4(2) 0.0200 0.140 0.065 0.0050 25.61 19 22.3
4(1) 0.0070 0.130 0.008 0.0070 25.62 15 16.1

Motion 21.85
1 0.8500 0.230 0.085 0.0020 28.57 67 10.4

4(2) 0.0003 0.230 0.010 0.0055 28.56 12 7.25
4(1) 0.0120 0.200 0.010 0.0050 28.56 12 5.63

Lena

Gaussian 22.55
1 1.9000 0.170 0.085 0.0100 26.22 92 21.4

4(2) 0.0900 0.165 0.145 0.0070 26.32 26 16.2
4(1) 0.0160 0.150 0.100 0.0050 26.39 15 17.1

Average 22.44
1 1.9000 0.180 0.075 0.0095 26.27 107 25.4

4(2) 0.0900 0.175 0.150 0.0065 26.36 27 17.6
4(1) 0.0190 0.150 0.080 0.0050 26.43 15 17.2

Motion 23.06
1 1.1000 0.260 0.075 0.0075 28.45 46 6.95

4(2) 0.0480 0.260 0.135 0.0088 28.47 19 6.86
4(1) 0.0300 0.210 0.010 0.0100 28.59 11 5.08

House

Gaussian 24.19
1 3.2000 0.200 0.075 0.0200 30.30 82 18.1

4(2) 0.0400 0.210 0.180 0.0250 30.56 15 7.64
4(1) 0.0230 0.180 0.100 0.0070 30.57 12 12.3

Average 24.05
1 3.1000 0.190 0.070 0.0095 30.24 117 25.2

4(2) 0.0500 0.210 0.260 0.0160 30.56 18 9.88
4(1) 0.0210 0.180 0.400 0.0090 30.57 14 9.79

Motion 27.01
1 1.5000 0.550 0.045 0.0100 33.32 82 13.1

4(2) 2.6500 0.450 0.007 0.0300 33.65 13 3.51
4(1) 0.0950 0.400 0.002 0.0220 33.68 11 3.67

Boat

Gaussian 21.28
1 2.5000 0.130 0.070 0.0090 25.17 58 17.6

4(2) 0.0160 0.125 0.750 0.0150 25.35 20 13.4
4(1) 0.0160 0.110 0.500 0.0100 25.37 16 12.6

Average 21.19
1 2.4000 0.135 0.075 0.0080 25.24 62 15.9

4(2) 0.0160 0.125 0.850 0.0150 25.42 21 14.0
4(1) 0.0140 0.110 0.600 0.0100 25.44 17 13.7

Motion 23.32
1 0.6000 0.265 0.090 0.0200 27.87 34 6.54

4(2) 0.0180 0.240 0.850 0.0170 27.99 18 5.76
4(1) 0.0280 0.200 0.400 0.0080 28.03 16 6.39

Caribou

Gaussian 23.69
1 3.5000 0.175 0.050 0.0250 27.00 42 10.8

4(2) 0.0380 0.120 0.900 0.0250 27.33 17 13.2
4(1) 0.0310 0.090 0.900 0.0100 27.37 15 12.1

Average 23.57
1 3.3000 0.170 0.050 0.0230 27.00 42 11.0

4(2) 0.0530 0.125 0.900 0.0150 27.35 17 15.5
4(1) 0.0330 0.095 1.100 0.0080 27.38 15 13.2

Motion 25.64
1 9.3000 0.340 0.009 0.0060 29.62 44 7.19

4(2) 0.0800 0.200 0.900 0.0200 30.13 16 7.31
4(1) 0.0650 0.150 0.820 0.0040 30.20 15 7.29

2682

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

Table 2: Numerical results for Split Bregman methods (i.e., Algorithms 2 and 5)

Image PSF PSNR0 Alg. α β γ λ PSNR Iter Time

Cam

Gaussian 20.85
2 0.1500 0.140 0.005000 0.0080 25.52 28 11.7

5(2) 0.0800 0.132 0.007000 0.0045 25.55 64 25.0
5(1) 0.0060 0.125 0.000050 0.0080 25.55 39 19.3

Average 20.76
2 0.0100 0.140 0.002000 0.0090 25.61 27 12.0

5(2) 0.0200 0.140 0.007000 0.0050 25.63 64 24.4
5(1) 0.0074 0.124 0.000100 0.0058 25.63 35 20.1

Motion 21.85
2 0.0100 0.240 0.030000 0.0030 28.59 37 5.84

5(2) 0.0010 0.235 0.000600 0.0050 28.56 32 8.93
5(1) 0.0100 0.210 0.001000 0.0080 28.57 26 6.03

Lena

Gaussian 22.55
2 0.0100 0.175 0.000090 0.0400 26.29 28 8.14

5(2) 0.0100 0.165 0.040000 0.0200 26.33 67 23.9
5(1) 0.0200 0.140 0.000100 0.0090 26.40 40 19.2

Average 22.44
2 0.0100 0.180 0.000100 0.0400 26.33 28 8.33

5(2) 0.0400 0.175 0.040000 0.0200 26.37 68 23.4
5(1) 0.0200 0.150 0.000200 0.0100 26.44 34 16.3

Motion 23.06
2 0.0100 0.265 0.000200 0.0250 28.46 18 2.88

5(2) 0.0100 0.255 0.030000 0.0200 28.48 57 8.76
5(1) 0.0300 0.210 0.002000 0.0100 28.58 25 5.30

House

Gaussian 24.19
2 0.0100 0.210 0.000100 0.0550 30.52 24 6.76

5(2) 0.0100 0.200 0.060000 0.0150 30.60 61 24.4
5(1) 0.0200 0.180 0.010000 0.0150 30.61 36 12.2

Average 24.05
2 0.0100 0.215 0.000100 0.0550 30.50 24 6.75

5(2) 0.0100 0.210 0.065000 0.0150 30.59 61 24.8
5(1) 0.0200 0.190 0.020000 0.0100 30.61 44 15.8

Motion 27.01
2 0.0100 0.520 0.002000 0.1000 33.52 18 2.29

5(2) 0.1000 0.450 0.180000 0.0200 33.70 56 11.3
5(1) 0.3000 0.430 0.000027 0.0370 33.70 61 9.44

Boat

Gaussian 21.28
2 0.1000 0.120 0.000300 0.7500 25.31 36 10.3

5(2) 0.1000 0.120 0.070000 0.0200 25.37 80 33.8
5(1) 0.0100 0.110 0.040000 0.0100 25.38 67 27.6

Average 21.19
2 0.0100 0.130 0.000100 0.0700 25.38 35 10.2

5(2) 0.1000 0.125 0.075000 0.0150 25.44 81 34.3
5(1) 0.0090 0.120 0.050000 0.0090 25.45 72 31.3

Motion 23.32
2 0.0100 0.255 0.000100 0.0500 27.91 22 3.25

5(2) 0.1000 0.230 0.080000 0.0100 28.02 74 13.6
5(1) 0.0300 0.210 0.040000 0.0070 28.03 55 9.96

Caribou

Gaussian 23.69
2 0.1000 0.115 0.000100 0.1900 27.28 33 9.02

5(2) 0.3000 0.100 0.400000 0.0010 27.43 74 49.0
5(1) 0.0200 0.090 0.220000 0.0009 27.43 61 37.9

Average 23.57
2 0.1000 0.115 0.000100 0.1900 27.28 33 9.04

5(2) 0.2000 0.100 0.400000 0.0010 27.44 75 49.9
5(1) 0.0190 0.090 0.260000 0.0005 27.44 71 46.0

Motion 25.64
2 0.0500 0.215 0.000100 0.3500 29.94 32 4.20

5(2) 0.3500 0.200 0.450000 0.0010 30.28 70 19.0
5(1) 0.0400 0.180 0.300000 0.0008 30.28 61 16.0

Table 1 contains numerical results for Algorithms 1 and 4
which are fixed-point-like methods corresponding to the TVL2
problems (1.4) and (1.5), and Table 2 contains numerical
results for Algorithms 2 and 5 which are split Bregman

methods corresponding to the TVL2 problems (1.4) and (1.5).
Figure 1 shows the true images, and Figure 2 shows the
restored images by Algorithms 1, 4 and 5 with p = 1.

2683

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

Cameraman image Lena image House image Boat image Caribou image

Figure 1: True images

Blurred and noisy image Restored image by Alg.1 Restored image by Alg.4 Restored image by Alg.5

Blurred and noisy image Restored image by Alg.1 Restored image by Alg.4 Restored image by Alg.5

Blurred and noisy image Restored image by Alg.1 Restored image by Alg.4 Restored image by Alg.5

Blurred and noisy image Restored image by Alg.1 Restored image by Alg.4 Restored image by Alg.5

Blurred and noisy image Restored image by Alg.1 Restored image by Alg.4 Restored image by Alg.5

Figure 2: Restored images by Algorithms 1, 4 and 5 with p = 1 (The first row images are Cameraman images for Motion blur,
the second row images are Lena images for Average blur, the third row images are House images for Motion blur and the fourth
row images are Boat images for Average blur and the last row images are Caribou images for Gaussian blur).

2684

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 10 (2020), pp. 2674-2685
c©International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.10.2020.2674-2685

By comparing the PSNR values in Tables 1 and 2, it can be
seen that Algorithms 4 and 5 restore the true image better
than Algorithms 1 and 2 respectively, and Algorithms 4 and
5 with p = 1 restore the true image as well as or a little
bit better than Algorithms 4 and 5 with p = 2 respectively.
By comparing the CPU times in Tables 1 and 2, it can be
seen that for the fixed-point-like methods Algorithm 4 takes
less CPU time than Algorithm 1, while for the split Bregman
methods Algorithm 5 takes more CPU time than Algorithm 2.
In addition, Algorithms 4 and 5 with p = 1 take less CPU time
than Algorithms 4 and 5 with p = 2 for most cases. Overall,
Algorithm 4 for the new proposed TVL2 model (1.5) performs
better in both PSNR value and CPU time than Algorithm 1
for the TVL2 model (1.4), and Algorithm 5 for the new TVL2
model (1.5) restores the true image better than Algorithm 2 for
the TVL2 model (1.4) at the expense of much increase in CPU
time. It can be also seen that Algorithms 4 and 5 with p = 1
perform a little bit better than Algorithms 4 and 5 with p = 2
respectively.

As can be seen in Tables 1 and 2, for the TVL2 model (1.4) the
fixed-point-like method restores the true image significantly
worse than the corresponding split Bregman method, but for
the TVL2 model (1.5) the fixed-point-like method restores the
true image as well as or a little bit worse than the corresponding
split Bregman method. In other words, as compared with
the split Bregman method, the fixed-point-like method for the
TVL2 model (1.5) works better than that for the TVL2 model
(1.4).

7. CONCLUSION

In this paper, we have proposed a new TVL2 regularization
model (1.5) for image restoration, and then we have developed
a fixed-point-like method, called Algorithm 4, and a split
Bregman method, called Algorithm 5, for solving the new
proposed TVL2 model (1.5).

Numerical experiments for serval test problems showed that
Algorithm 4 for the new TVL2 model (1.5) performs better
in both PSNR value and CPU time than Algorithm 1 for the
TVL2 model (1.4), and Algorithm 5 for the new TVL2 model
(1.5) restores the true image better than Algorithm 2 for the
TVL2 model (1.4) at the expense of much increase in CPU
time. It was also shown that Algorithms 4 and 5 with p = 1
perform a little bit better than Algorithms 4 and 5 with p = 2,
respectively. As compared with the split Bregman methods for
the TVL2 models (1.4) and (1.5), the fixed-point-like method
for the TVL2 model (1.5) works better than that for the TVL2
model (1.4). Hence, it can be concluded that the new TVL2
model (1.5) is preferred over the TVL2 model (1.4), and the
fixed-point-like method (Algorithm 4 with p = 1) and split
Bregman method (Algorithm 5 with p = 1) for the new TVL2
model (1.5) are recommended to use for image restoration.

Future work will study the problem of finding optimal or
nearly optimal parameters for the fixed-point-like method and

split Bregman method which is very challenging problem.

REFERENCES

[1] A. Bjorck, Numerical methods for least squares
problems, SIAM, Philadelphia 1996

[2] A. Beck, First-order methods in optimization, SIAM,
Philadelphia 2017

[3] J.F. Cai, S. Osher and Z. Shen, Split Bregman methods
and frame based image restoration, Multiscale Model.
Simul. 2009 (8), 337-369.

[4] T.F. Chan and P. Mulet, On the convergence of the lagged
diffusivity fixed point method in total variation image
restoration, SIAM J. Numer. Anal. 1999 (36), 354-367.

[5] D.Q. Chen, H. Zhang and L.Z. Cheng, A fast fixed
point algorithm for total variation deblurring and
segmentation, Journal of Math. Imaging Vis. 2012 (43),
167-179.

[6] P.L. Combettes and V.R. Wajs, Signal recovery by
proximal forward-backward splitting, Multiscale Model.
Simul. 2005 (4), 1168-1200.

[7] W. Gautschi Numerical analysis, Springer, Berlin 1997

[8] T. Goldstein and S. Osher, The split Bregman method for
L1-regularized problems, SIAM J. Imaging Sci. 2009 (2),
323-343.

[9] P.C. Hansen, J.G. Nagy and D.P. O’leary Deblurring
images: matrices, spectra, and filtering, SIAM,
Philadelphia 2006

[10] K.S. Kim and J.H. Yun, Image Restoration Using a
Fixed-Point Method for a TVL2 Regularization Problem,
Algorithms 2020 (13), Article No. 1 (15 pages).

[11] C.A. Micchelli, L. Shen and Y. Xu, Proximity algorithms
for image models: denoising, Inverse Problems 2011
(27), Article No. 045009 (25 pages).

[12] J.J. Moreau, Proximité et dualité dans un espace
hilbertien, Bull. Soc. Math. France. 1965 (93), 273-299.

[13] M.K. Ng, L. Qi, Y.F. Yang and Y.M. Huang,
On semismooth Newton’s methods for total variation
minimization, J. Math. Imaging Vis. 2007 (27), 265-276.

[14] Z. Opial, Weak convergence of the sequence of successive
approximations for nonexpansive mappings, Bull. Amer.
Math. Soc. 1967 (73), 591-597.

[15] L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total
variation based noise removal algorithms, Physica D
1992 (60), 259-268.

2685

