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Abstract
The TORA system (translational oscillator with rotational
actuator) is a benmarch subactuated mechanical system
who has attracted great attention of the non-linear control
scientific community. In this paper, beginning with the Port
Controlled Hamiltonian representation, founded in the total
energy of the system considered as kinetic plus potential
energy, and based in the use of the interconnection and
damping assignment methodology of control, a controller
is obtained that achieves the goal of to stabilize global
and asymptotically the equilibrium point, with an excellent
performance. Numerical simulations at the end of the work
confirm the theoretic results.

Keywords : Nonlinear control, subactuated mechanical
systems, passivity based control, IDA-PBC method, TORA
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1. INTRODUCTION

The control of underactuated systems is an open and
interesting problem in mechatronics and robotic systems, both
from the theoretical and practical aspects. Although there
are several special cases where underactuated systems have
been controlled, there are relatively few general principles and
exhaustive methods. Simultaneously, the less general problem
of stabilizing underactuated nonlinear systems has attracted
the attention of the control community for many years [1] and
[2].

The design method through interconnection and damping
allocation is a method based on the concept of passivity, hence
is usually summarized with the initials IDA-PBC, Ortega et al
[3]. This method involves nonlinear systems with degree of
subactuation one, and through its application the (asymptotic)
stabilization of mechanical systems is achieved, at the same
time that the Hamiltonian structure is assigned to the closed
loop system with respect to a desired energy function [4].

In this work the problem of asymptotic stabilization of the
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TORA system is considered. This system is one example of
these few underactuated systems than can be controlled, and
this is achieved by using different approaches, and recently,
many nonlinear controller design methods have been applied
to stabilize it. Starting from its introduction by [5] as a model
for feedback control, first developed examples constitute
the approachs of [6], [7] and [8], where cascade control
approaches and passivity-based approaches are proposed, with
which regulation and stabilization by feedback of the output of
the TORA system are obtained.

In our case, using a control law synthesized by applying the
interconnection and damping allocation allocation
methodology, which is usually summarized with the initials
IDA-PBC, through which the aforementioned paradigm is
inverted, so the molding of potential energy is first resorted
to, and the molding of kinetic energy is performed from the
result.

More recently, [9] designed self-tunnig fuzzy sliding mode
control using the decoupled method. In addition [10]
developed the model by applying the Euler-Lagrange
equations, and the design of sliding model control is presented.
In, [11], a full constructive procedure is presented, which
obvious the necessity of solving PDE to shape the energy for a
class of mechanical systems.

In our case, using a control law synthesized by applying the
IDA-PBC methodology, through which the aforementioned
paradigm is inverted, so the molding of potential energy is first
resorted to, and the molding of kinetic energy is performed
from the result. This methodology entails the resolution of
a set of PDE usually called matching equations. This step
remains the stumbling block for the wider application of the
different methods associated to the control of systems by using
the IDA-PBC approach. However, in the case of the TORA
system we have been able to apply a simplification procedure
that allowed us to solve satisfactorily that matching equations.

Section 2 summarizes the general aspects of the IDA-PBC
Method applied to subactuated mechanical systems developed
in [1], Section 3 describes the mathematical model of the
TORA system, and Section 4 presents the analysis and design
of the controller that manages to stabilize the system. Section 5
presents some numerical simulations that verify the eficiency
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of the designed controller, and finally, Section 6 presents the
conclusions of the work.

2. STABILIZATION OF MECHANICAL SYSTEMS
SUBACTUADOS BY IDA-PBC

2.1. Realization of the mechanical system in Hamiltonian
form controlled by ports

Consider a sub-actuated mechanical system with total energy
expressed as

H (q, p) =
1

2
pTM−1 (q) p+ V (q) (1)

where q ∈ Rn and p ∈ Rn represent the generalized position
and the generalized moment, M (q) = MT (q) > 0, is the
inertia matrix of the system, and V (q) is the potential energy.

[
q̇
ṗ

]
=

[
0 In
−In 0

] [
∇qH
∇pH

]
+

[
0

G (q)

]
u (2)

where In is the identity matrix n × n, ∇qH and ∇pH are
the vectors column gradient of H with respect to q and with
respect to q, and u ∈ Rm is the control function.

The matrix G ∈ Rn×m is determined by the way the control
u ∈ Rm enters the system, and is invertible in the event that
the system is fully operated, that is, m = n. This article
considers the case in which the system is subactuated, that is,
fewer controls than degrees of freedom, and we assume that
range (G) = m.

In the application of the IDA-PBC method, two basic stages
are followed (Ortega et al. [1], Mahindrakar et al. [4]): (1)
the stage of the molding of energy, in which the function
of total energy of the system, considered as the sum of
the kinetic energy plus the potential energy, to assign the
desired equilibrium state; and (2) the damping injection stage,
which enables asymptotic stability to be achieved. The
stabilization mechanism is interpreted in terms of the concept
of energy, for which it is necessary to obtain an embodiment
of the closed-loop system in the so-called Hamiltonian form
controlled by ports (Ortega et al. [3]).

The form of equation 1 motivates proposing the following form
for the desired energy of the closed loop system

H (q, p) =
1

2
pTM−1d (q) p+ Vd (q) (3)

whereMd = MT
d > 0 and Vd represent the closed-loop inertia

matrix and the desired potential energy function, respectively,
and which are to be defined. A basic requirement is that the
desired energy Vd has an isolated minimum in q∗, that is

q∗ = argminVd (q) (4)

In passive-based control theory (PBC) the control input is
usually broken down into two terms (see Olfati –Know [4])

u = ues (q, p) + udi (q, p) (5)

where the first term is designated to achieve energy molding,
while damping is introduced into the system through the
second term. In this case, the closed-loop dynamics takes the
Hamiltonian form controlled by the following ports.

[
q̇
ṗ

]
= [Jd (q, p) +Rd (q, p)]

[
∇qH
∇pH

]
(6)

where the terms

Jd =

[
0 MdM

−1

−MdM
−1 J2 (q, p)

]
and Rd =

[
0 0
0 GKvG

T

]
≥ 0

(7)

they represent the desired interconnection and buffer
structures. The antisymmetric matrix J 2 (and some elements
of the matrix Md) are introduced as free parameters, while
the presence of the term M−1Md is justified to preserve the
relationship q̇ = M−1p. On the other hand, as is well known,
the contribution of damping in passive systems is achieved via
negative feedback of the new passive output, which in this case
is given by GT∇pHd. This is the reason why the expression
of equation 5 will choose the expression

udi = −KvG
T∇pHd (8)

where Kv = KT
v > 0 is taken. This justifies the block (2,2) in

the definition of Rd.

2.2. Stability

For the required stability in closed loop the following
proposition applies.

Proposition 1. The system 2 with Hd given by 3 and q∗

given by 4 has a stable equilibrium point at. This balance is
asymptotically stable if it is locally detectable from the output.
Demostration: See [6]

2.3. Energy molding

To get the energy molding term ues in the controller, replace 5
and 7 in 2 and equate the result with 6, i.e.

[
0 In
−In 0

] [
∇qH
∇pH

]
+

[
0
G

]
ues

=

[
0 MdM

−1

−MdM
−1 J2 (q, p)

] [
∇qHd

∇pHd

]
(9)

where the Rd term of 6 has been canceled with the udi term
of 7.
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The first row of equation 8 produces an identity, while the
second row can be expressed as

Gues = ∇pH −MdM
−1∇qHd + J2M

−1
d p (10)

In the case at hand, the system is subactuated, so G is not
invertible, but at most a maximum column range, and therefore
the control ues only influences the terms in the image space of
operator G. This observation leads to the next set of constraint
equations, which must be satisfied for any choice of ues

G⊥
{
∇pH −MdM

−1∇qHd + J2M
−1
d p

}
= 0 (11)

where G⊥ is a left override of maximum range of G (i.e.,
G⊥G = 0).

Equation 11 is a set of nonlinear partial differential equations
(EDPs) with unknowns Md y Vd, and with J2 being a free
parameter, while p it is an independent coordinate. If a solution
to this equation can be obtained, the resulting control law ues
would be given by

ues =
(
G⊥G

)−1
G⊥

{
∇pH −MdM

−1∇qHd + J2M
−1
d p

}
(12)

The partial derivative equations 11 can naturally be separated
into terms that depend on p and terms that are independent of
p, that is, those that correspond to kinetic energy, and those
that correspond to potential energy, respectively. In this sense,
equation 11 is equivalent to the pair of equations

G⊥
{
∇q
(
pTM−1p

)
−MdM

−1∇q
(
pTM−1d p

)
+2J2M

−1
d p

}
= 0

(13)

G⊥ {∇qV −MdM−1∇qV } = 0 (14)

The first equation is a nonlinear partial differential equation
that must be solved for the unknown elements of the
closed-loop inertia matrix Md. Known this Md, equation
14 is a linear partial derivative equation, and therefore
easier to solve, so that the greatest difficulty is in solving
13. A simplification, which would considerably reduce the
difficulties, is to assume the existence of an inertia matrix
Md of constant terms, which would allow us to focus only on
finding the desired potential energy Vd.

3. MATHEMATICAL MODEL OF THE TORA
SYSTEM

The so-called translational oscillator with rotational actuator
(TORA) system was first introduced in Jankovic et al. [7].
Figure 1 illustrates the TORA system consisting of a mass
platform m1, which can oscillate without friction in the
horizontal plane. Located on the platform is an eccentric
rotating mass m1, it is actuated by a DC motor. Its movement
exerts a force on the platform that can be used to dampen
translational oscillations. The problem is of interest as a case
study in the design of nonlinear controls because the model

exhibits a nonlinear interaction between its translational and
rotational movements.

Figure 1: The TORA system

The inertia matrix of the system has the form

M =

[
m1 +m2 m2r cos (q2)
m2r cos (q2) m2r

2 + I

]
(15)

with potential energy given by

V (q1, q2) =
1

2
Kq21 +m2rg cos (q2) (16)

K being the stiffness constant of the spring.

Denoting c1 = m1 + m2, c2 = m2r, c3 = m2r
2 + I and

defining the generalized moment of inertia by p = Mq̇ the
inertia matrix M is written as

M (q2) =

[
c1 c2 cos (q2)

c2 cos (q2) c3

]
(17)

where, in order to obtain invertible M , it must be fulfilled

c1c3 − c22 > 0 (18)

and the total energy function of the system is expressed as

H (q, p) =
1

2
pTM−1 (q2) p+ V (q1, q2) (19)

Therefore, the Hamilton equations corresponding to the TORA
system are given by[

q̇
ṗ

]
=

[
0 In
−In 0

] [
∇qH
∇pH

]
+

[
0
G

]
u (20)

with G =
[

0 1
]T ∈ R2×1and u ∈ R, thus resulting in a

system with 2 degrees of freedom, with degree of subactuation
1, and with q2 as the actuated coordinate.

4. STABILIZATION OF THE TORA SYSTEM

4.1. Energy Shaping in the TORA System

For the shaping of energy, attention can be focused on the
resolution of the EDP 14. For this, the matrixMd is defined by

Md =

[
a1 a2
a2 a3

]
, a1 > 0 y a1a3 − a22 > 0 (21)
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Equation 14 for the system is expressed as[
a1c3 − a2c2 cos (q2)

a2c1 − a1c2 cos (q2)

]
∇q1Vd +∇q2Vd

=

[
δ

a2c1 − a1c2 cos (q2)

]
Kq1 (22)

Denote

γ1
γ2

=
a1c3 − a2c2 cos (q2)

a2c1 − a1c2 cos (q2)
=
b3 + b4 cos (q2)

b1 + b2 cos (q2)
(23)

where b1 = a2c1, b2 = −a1c2, b3 = a1c3 and b4 = −a2c2.
So,

γ1
γ2

=
b4
b2

+
b3b2 − b1b4

b2

1

b1 + b2 cos (q2)
(24)

In this way we obtain

γ1
γ2

=
a2
a1
⇐⇒ a2 = ±

√
c3
c1
a1 = αa1 (25)

Hereinafter, for simplicity, we will only take the positive value
of the constant over the set

{
(a1, a2, a3) ∈ R3/a1, a2 y a3
satisfy 25 and also a2 = αa1

}
(26)

equation 14 takes the form

α

qq
∇q1Vd +

1

q1
∇q2Vd =

K

a1
[
√
c1c3 + c2 cos (q2)] (27)

Applying the characteristics method to equation 27 leads to the
solution

Vd (q1, q2) = F (s) +
K

a1

√
c1c3

1

2α

[
q21 − (q1 − αq2)

2
]

+

K

a1
c2α cos (q2) +

K

a1
c2αq2 sin (q2)

+
K

a1
c2 (q1 − αq2) sin (q2)− K

a1
c2α (28)

where F (s) is an arbitrary function of the variable s =
q1 − αq2. To assign the equilibrium point at the origin to
the function Vd, the function F (s) can be chosen as F (s) =
1
2R (q1 − αq2)

2, which finally results in the desired potential
energy

Vd (q1, q2) =
1

2
R (q1 − αq2)

2

+
K

a1

√
c1c3

1

2α

[
q21 − (q1 − αq2)

2
]

+
K

a1
c2α cos (q2) +

K

a1
c2αq2 sin (q2)

+
K

a1
c2 (q1 − αq2) sin (q2)− K

a1
c2α (29)

donde se ha introducido R como un parámetro de diseño. The
function Vd (q1, q2) satisfies Vd (0, 0) = 0, and the system of
equations

∇qVd (q1, q2) = 0 (30)

own the pair of solutions

i (q1, q2) = (0, q∗2) con q∗2 satisfying: sin (q2) =
a1
Kc2

[
Rα− K

a1

√
c1c3

]
q2,y

ii (q1, q2) = (q∗∗1 , q∗∗2 ) con q∗∗2 = π − cos−1
(√

c1c3
c2

)
Option (ii) is discardable because, according to 21,

√
c1c3
c2

> 1,
so that only solution (i) is possible. The relation of (i) is
satisfied for at most three values of q∗2 , but it will only have
the solution q∗2 = 0 if the design parameter R is chosen so that
a1
Kc2

[
Rα− K

a1

√
c1c3

]
> 1. In conclusion,

∇qVd (q1, q2) = 0 ⇐⇒ (q1, q2) = (31)

(0, 0) si R >
K

αa1
[
√
c1c3 + c2] (32)

In such a way that, to have a minimum point for Vd (q1, q2),
it only remains to examine what happens with the Hessian of
Vd at (0, 0). For this purpose, the determinant of the Hessian
matrix of Vd at (0, 0) is calculated as

det (Hess Vd (0, 0)) =
K

a21

{
Rαa1

√
c1c3α+Rαa1c2α

−Kc1c3 − 2Kc2
√
c1c3 −Kc22

}
(33)

Therefore, to have a minimum at the origin, you must choose

i R > 0 y

ii R > K
αa1

[√
c1c3 + c2

]
these conditions exactly match 31.

4.2. Stability Analysis

The stability of the equilibrium point of the TORA system
follows from the application of Proposition 1. For asymptotic
stability we define the residual set

Ω =

{
(q1, q2, p1, p2)

∈ R4/Ḣd (q1 (t) , q2 (t) , p1 (t) , p2 (t)) = 0

}
(34)

By applying a series of observations on this set, it is concluded
that Ω = {(0, 0, 0, 0)}, and, by the Lasalle Principle of
Invariance, the origin is an asymptotically stable equilibrium
point.

4.3. Damping injection

According to 12 the control ues, and since J2 = 0, is given by

ues =
[

0 1
]{[ ∇q1H

∇q2H

]
−MdM

−1
[
∇q1Vd
∇q2Vd

]}
(35)

On the other hand, the expression for the controller udi term
is, according to 8

udi = Kv

[
0 1

] [ ∇p1Hd

∇p2Hd

]
= (36)

−Kv

[
0 1

]
M−1d p = −Kv

1

a1a3 − a22
[a1p2 − a2p1]

(37)
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To summarize this section we establish the following

Proposition 2. The TORA system 24, with the parameters c1,
c2 y c3 subject to the restriction (21), in closed loop with the
IDA-PBC u = ues + udi control function, with ues and udi
given by the expressions 35 and 36, has an equilibrium point
at the origin, which is globally asymptotically stable.

5. NUMERICAL SIMULATIONS

A typical closed-loop system response to the controller is
shown in Figures 2 and 3. As can be seen, the system
displays its response in the form of damped oscillations, and
stabilization occurs after 60 seconds.

Figure 2: Translational displacement and angular position.

Figure 3: Translational displacement and angular position.

6. CONCLUSIONS

In the present work, a control scheme based on IDA-PBC
has been developed for the TORA prototype system. The
main characteristic of this method is that it exploits the

physical structure of the system, in this case, it is exploited
that all the information on the dynamic behavior of the
mechanical system is contained in the energy and dissipation
functions. Consequently, the design of the controller is has
concentrated on the management and modification of these
variables. For the molding of the total energy, advantage was
taken of the possibility of obtaining a desired matrix with
constant terms, and for the synthesis of the desired potential
energy, a reduction of the set of possible parameters for the
desired matrix was obtained, which greatly facilitates the
resolution. of the partial differential equation characteristic
of the IDA-PBC method. In the end, numerical simulations
were performed that show the excellent behavior of the
designed controller, significantly reducing the oscillations of
the platform, and with a perfectly acceptable “settling time”.
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