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Abstract 

In this study, after applying the non-exponential family 

distributions (Pareto, Log-Logistic) which are widely used in 

the field of reliability to the finite failure NHPP software 

reliability model, we analyzed the reliability performance. For 

this, software failure time data was used, parametric 

estimation was applied to the maximum likelihood estimation 

method, and nonlinear equations were calculated using the 

bisection method. As a result, in the analysis of the intensity 

function, the log-logistic model was the most efficient in 

terms of reliability suitability because the strength function 

increased and decreased as the failure time passed and the 

mean square error (MSE) was also small. In the analysis of 

the mean value function, the Pareto model showed the biggest 

error estimation compared to the true value, but the Log-

Logistic model had a smaller margin of error than other 

models. As a result of evaluating the software reliability after 

putting the mission time in the future, the Pareto model was 

high and stable, but the Log-Logistic and Goel-Okumoto basic 

model showed a decreasing tendency. In conclusion, the Log-

Logistic model was the most efficient among the proposed 

models. In this study, we have newly analyzed and evaluated 

the reliability performance of non-exponential family 

distribution which have no previous research cases, and 

expect it to be used as a basic guideline for software 

developers to search for the optimal software reliability model.  
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1.  INTRODUCTION  

As software technology is widely applied in high-tech 

industries, there is a growing need for high-quality software 

that can reliably process a variety of data without failure. To 

solve this problem, software developers are doing a lot of 

research to explore ways to improve reliability. In particular, 

software reliability models using the Non-Homogeneous 

Poisson Process (NHPP) have been extensively studied to 

improve software quality. Many NHPP software reliability 

models using the intensity function and the mean value 

function have been proposed to estimate the reliability 

attributes such as the number of residual failures and the 

software failure rate in a controlled test environment [1]. In 

this process, Pham and Zhang [2] proposed a new model 

based on software reliability, while Gokhale and Trivedi [3] 

proposed an improved NHPP model. In particular, Kim [4] 

analyzed the properties of the finite failure NHPP software 

model based on the modified Landley type lifetime 

distribution, while Kim and Shin [5] analyzed the optimal 

software release time problem based on the exponential and 

non-exponential distribution models. Also, Yang [6] proposed 

a new performance analysis results of finite failure NHPP 

software reliability model with Logistic distribution property, 

Yang and Park [7] compared the attributes of the NHPP 

software reliability model based on the Weibull extension and 

the flexible Weibull extension distribution. 

Therefore, in this study, after applying the non-exponential 

family distributions which are widely accepted in the field of 

reliability to the finite failure NHPP software reliability model, 

we were newly evaluated the reliability performance of the 

proposed models and will present the optimal software 

reliability model through this research results. 

 

 

2. RELATED RESEARCH   

2.1 NHPP Software Reliability Model   

The NHPP model contains property about mean value m(t) 

and intensity pattern 𝜆(𝑡).  N(t) is the cumulative number of 

failures of the software detected up to time t, m(t) is a mean 

value function when λ(t) is expressed by an intensity function, 

the cumulative failure number N(t) follows a Poisson 

probability density function having a parameter m(t). The 

NHPP software reliability model is a model that measures the 

reliability using the mean failure rate function by the number 

of failures generated per unit time. That is 

 

 P{𝑁(𝑡) = 𝑛} =
[𝑚(𝑡)]𝑛 ∙  𝑒−𝑚(𝑡)

𝑛!
                                            (1) 

Note. 𝑛 = 0,1,2, ⋯  ∞.  

The mean value function m(t)  and the intensity function 

λ(t) of the NHPP model are as follows. 
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   m(t) = ∫ 𝜆(𝑠)𝑑𝑠                                                                      (2)
𝑡

0

  

  
 𝑑𝑚(𝑡)

𝑑(𝑡)
= 𝜆(𝑡)                                                                              (3) 

In terms of software reliability, the mean value function 

represents a software failure occurrence expected value, the 

intensity function is the failure rate function and means the 

failure occurrence rate per defect. Also, the time domain 

NHPP models are classified into a finite failure that the failure 

does not occur at the time of repairing the failure, and an 

infinite failure that the failure occurs at the time of repairing 

failure.  In this study, we will analyze the software reliability 

performance based on finite failure cases. That is, in the 

finite-failure NHPP model, if the expected value of the failure 

that can be found up to time [0, t] is θ, then the mean value 

function and the intensity function are as follows. 

 

  m(t|𝜃, b) = 𝜃𝐹(t)                                                                      (4)  

λ(t|𝜃, b) = 𝜃𝐹(t)′ = 𝜃𝑓(𝑡)                                                         (5) 

Considering Eq. 4 and Eq. 5, the likelihood function of the 

finite-failure NHPP model is derived as follows. 

 𝐿𝑁𝐻𝑃𝑃(Θ|𝑥) = (∏ 𝜆(𝑥𝑖)

𝑛

𝑖=1

) exp[−𝑚(𝑥𝑛)]                            (6) 

Note. 𝑥 = (𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛).    

 

2.2 Goel-Okumoto Basic Model 

The Goel-Okumoto model is a well-known basic model in the 

software reliability field.  Let f(t) and F(t) for the Goel-

Okumoto model be a probability density function and a 

cumulative density function, respectively.   Assuming that the 

expected value of the number of failures of the observation 

point [0, t] is θ, the finite failure strength function and the 

mean value function are as follows [8]. 

λ(t|𝜃, b) = 𝜃f(t) = 𝜃b𝑒−𝑏𝑡                                                         (7) 

 m(t|𝜃, b) = 𝜃𝐹(t) = 𝜃(1 − 𝑒−𝑏𝑡)                                           (8) 

  Note that θ > 0, b > 0. 

Using the Eq. 7 and Eq. 8, the likelihood function of the 

finite-failure NHPP model is derived as follows.      

𝐿𝑁𝐻𝑃𝑃(𝜃, b|𝑥) =                                                                            (9) 

(∏ 𝜃𝑏𝑒−𝑏𝑥𝑖

𝑛

𝑖=1

) 𝑒𝑥𝑝[−𝜃(1 − 𝑒−𝑏𝑥𝑛)]                                       

Note that 𝑥 = (0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛).  

The log-likelihood function, using the Eq. 9, is simplified to 

the following log conditional expression.  

 ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) =                                                                        (10) 

 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑏 − 𝑏 ∑ 𝑥𝑘

𝑛

𝑘=1

−  𝜃(1 − 𝑒−𝑏𝑥𝑛)                                 

When the Eq. 10 is partially differentiated concerning θ and b, 

the result is as follows. 

 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=

𝑛

�̂�
− 1 + 𝑒−�̂�𝑥𝑛 = 0                                  (11) 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
=

𝑛

�̂�
− ∑ 𝑥𝑛

𝑛

𝑖=1

− �̂�𝑥𝑛𝑒−�̂�𝑥𝑛 = 0                  (12) 

Therefore, the maximum likelihood estimator �̂�𝑀𝐿𝐸 and 

�̂�𝑀𝐿𝐸  can be calculated using the bisection method. 

 

2.3 NHPP Log-Logistic Distribution Model 

The Log-Logistic distribution is a non-exponential family 

distribution which is widely used in the field of reliability. 

That is, the Log-Logistic distribution has a property that 

increases and decreases in the form of failure occurring rate 

and thus is widely applied in the reliability field. The 

probability density function and the cumulative distribution 

function considering the shape parameter(k) are as follows [9]. 

 

f(t|𝜏, k) =
𝜏𝑘(𝜏𝑡)𝑘−1

[1 + (𝜏𝑡)𝑘]2
                                                             (13) 

F(t|𝜏, k) =
(𝜏𝑡)𝑘

[1 + (𝜏𝑡)𝑘]
                                                             (14) 

 Note that τ > 0, k > 0  

Therefore, the intensity function and the mean value function 

of the finite fault NHPP Log-Logistic model are as follows. 

 

λ(t|𝜃, τ, k) = 𝜃f(t) = 𝜃 
𝜏𝑘(𝜏𝑡)𝑘−1

[1 + (𝜏𝑡)𝑘]2
                                    (15) 

m(t|𝜃, τ, k) = 𝜃𝐹(t) = 𝜃 
(𝜏𝑡)𝑘

[1 + (𝜏𝑡)𝑘]
                                   (16) 

 Therefore, the log-likelihood function to maximum likelihood 

estimation by using Eq. 15 and Eq. 16 is derived as follows. 

 

ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) = 𝑛𝑙𝑛2 + 𝑛𝑙𝑛𝜃 + 2𝑛𝑙𝑛𝜏                                

+ ∑ 𝑥𝑖

𝑛

𝑖=1

− 2 ∑ 𝑙𝑛[1 + (𝜏𝑥𝑖)2] − 𝜃
(𝜏𝑥𝑛)2

[1 + (𝜏𝑥𝑛)2]

𝑛

𝑖=1

= 0     (17) 
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In this study, we apply the case where the shape parameter(k) 

that determines the shape of failure lifetime distribution is 2. 

And, if the Eq. 17 is partially differentiated concerning θ and 

𝜏,  the maximum likelihood estimator �̂�𝑀𝐿𝐸  and �̂�𝑀𝐿𝐸  can be 

calculated using the bisection method. 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=

𝑛

�̂�
−

(�̂�𝑥𝑛)2

[1 + (�̂�𝑥𝑛)2]
= 0                          (18) 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜏
=

2𝑛

�̂�
− 2�̂� ∑ 𝑥𝑖

2

𝑛

𝑖=1

 
1

𝑙𝑛[1 + (�̂�𝑥𝑖)
2]

                  

−�̂�   (
2�̂�𝑥𝑛

2(1 + �̂�2 𝑥𝑛 − �̂�2 𝑥𝑛
2

[1 + (�̂�𝑥𝑛)2]2
) = 0                              (19) 

Note that 𝑥 = (𝑥1, 𝑥2,, 𝑥3 ⋯ 𝑥𝑛). 

 

2.4 NHPP Pareto Distribution Model 

The Pareto distribution is a non-exponential family 

distribution applied in the field of reliability that reflects 

mathematical and observable phenomena such as scientific, 

and physics. The probability density function and the 

cumulative density function considering the shape parameter 

(a) and the scale parameter (b) are as follows [10]. 

 

f(𝑡) =
𝑎

𝑏
 [1 +

𝑡

𝑏
]

−(𝑎+1)

                                                             (20) 

F(𝑡) = 1 − [1 + (
𝑡

𝑏
)]

−𝑎

                                                           (21) 

 Note. a, b > 0,   𝑡 ∈ [0, ∞] 

Assuming that the expected value of the number of failures of 

the observation point [0, t] is θ , the finite failure strength 

function and the mean value function are as follows. 

λ(t|𝜃, b) = 𝜃f(t) = 𝜃 (
𝑎

𝑏
 [1 +

𝑡

𝑏
]

−(𝑎+1)

)                          (22) 

m(t|𝜃, b) = 𝜃𝐹(t) = 𝜃 (1 − [1 + (
𝑡

𝑏
)]

−𝑎

)                      (23) 

  

Therefore, the log-likelihood function to maximum likelihood 

estimation by using Eq. 22 and Eq. 23 is derived as follows. 

ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) = 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑎 − 𝑛𝑙𝑛𝑏                                

+ ∑ 𝑙𝑛 [1 +
𝑥𝑖

𝑏
]

−(𝑎+1)

− 𝜃 (1 − [1 + (
𝑥𝑛

𝑏
)]

−𝑎

)

𝑛

𝑖=1

           (24) 

In this study, we apply the case where the shape parameter(a) 

that determines the shape of failure lifetime distribution is 2. 

When the Eq. 24 is partially differentiated concerning θ and b, 

the result is as follows. 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=

𝑛

�̂�
− (1 − [1 + (

𝑥𝑛

�̂�
)]

−2

) = 0              (25) 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
= −

𝑛

�̂�
+  

2𝑥𝑛�̂�

𝑏2̂
 (1 +

𝑥𝑛

�̂�
)

−3

                             

+
3

4
 ∑ 𝑙𝑛 (1 +

𝑥𝑖

2
)

𝑛

𝑖=1

= 0                                                         (26) 

Note that 𝑥 = (𝑥1, 𝑥2,, 𝑥3 ⋯ 𝑥𝑛). 

Therefore, the maximum likelihood estimator �̂�𝑀𝐿𝐸 and �̂�𝑀𝐿𝐸  

can be calculated using the bisection method. 

 

3. RELIABILITY PERFORMANCE EVALUATION 

USING SOFTWARE FAILURE TIME   

We will compare and evaluate the performance of the 

proposed reliability models using the software failure time 

data [11] as shown in Table 1. This software failure time is the 

data that was occurred 30 times in 738.68 unit time. 

 

Table 1. Software Failure Time Data 

Failure  

 Number 

 Failure Time 

(hours)  

Failure  

 Number 

Failure Time 

(hours) 

1 30.02 16 151.78 

2 31.46 17 177.50 

3 53.93 18 180.29 

4 55.290 19 182.21 

5 58.720 20 186.34 

6 71.920 21 256.81 

7 77.070 22 273.88 

8 80.900 23 277.87 

  9 101.90 24 453.93 

10 114.87 25 535.00 

11 115.34 26 537.27 

12 121.57 27 552.90 

13 124.97 28 673.68 

14 134.07 29 704.49 

15 136.25 30 738.68 
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Laplace trend test was used to verify the reliability of the 

software failure time data as shown in Figure 1 [12]. 

 
 

Fig 1. Estimation Results of Laplace Trend Test 

   

In general, if the Laplace factor estimates are distributed 

between -2 and 2, the data are reliable because the extreme 

values do not exist and are stable. As a result of this test, the 

estimated value of the Laplace factor was distributed between 

0 and 2, as shown in Figure 1. Therefore, it is possible to 

apply this data because there is no extreme value.  

 

In this study, the maximum likelihood estimation (MLE) was 

used to perform parameter estimation. The calculation method 

of the nonlinear equations is solved by using the bisection 

method, and the results are shown in Table 2.  

 

Table 2. Parameter Estimation of Each Model 
 

Type Model MLE 

   Model 

Comparison 

MSE  𝑅2 

 

Basic 
Goel-

Okumoto           
�̂� = 𝟑𝟑. 𝟒𝟎𝟗 �̂� = 𝟎. 𝟑𝟎𝟗 𝟓. 𝟖𝟒𝟐 𝟎. 𝟗𝟖𝟏 

 

Non-

exponential 

Family 

Distribution 

Log- 

Logistic 
�̂� = 𝟑𝟐. 𝟐𝟒𝟏 �̂� = 𝟎. 𝟒𝟗𝟓 𝟖. 𝟗𝟕𝟑 𝟎. 𝟗𝟕𝟐 

 

Pareto 

 

�̂� = 𝟑𝟏. 𝟐𝟎𝟗 �̂� = 𝟏. 𝟖𝟏𝟎 𝟒𝟓. 𝟓𝟖𝟎 𝟎. 𝟖𝟓𝟓 

 

Explanatory notes.   MLE = Maximum Likelihood Estimation  

MSE = Mean Square Error,  𝑅2 = 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛.                               

 

As the basis for determining the efficient model, the mean 

square error is defined as follows. 

  𝑀𝑆𝐸 =

∑ (m(𝑥𝑖) − m̂(𝑥𝑖))
2n

i=1

𝑛 − 𝑘
                                         (27) 

Note that m(𝑥𝑖)  is the total accumulated number of errors 

observed within time is (0, 𝑥𝑖) , m̂(𝑥𝑖) is the estimated 

cumulative number of errors at time 𝑥𝑖 obtained from the 

fitting mean value function, n is the number of observations 

and k is the number of parameters to be estimated. When 

selecting an efficient model, the smaller the mean square 

error, the more efficient the model [13].   

The coefficient of determination (𝑅2) is a measuring value to 

the explanatory power of the difference between the target 

value and the observed value. When selecting an efficient 

model, the larger the value of the decision coefficient, the 

more efficient the model because the error is relatively small. 

It is defined as 

𝑅2 = 1 −

∑ (m(𝑥𝑖) − m̂(𝑥𝑖))
2n

i=1

∑ (m(𝑥𝑖) − ∑ 𝑚(𝑥𝑗
𝑛
𝑗=1 )/𝑛)

2n

i=1

                     (28) 

As shown in Table 2, we can see that the Log-Logistic model 

is more efficient than the Pareto model. Also, the Goel-

Okumoto basic model having the largest coefficient of 

determination and the smallest mean square error is more 

efficient than the other models.  

Figure 2 shows the transition of mean square error (MSE) 

according to each failure number. In this figure, the Log-

Logistic model shows an efficient performance in terms of 

fitness because the mean square error tends to be smaller than 

the Pareto model.  

 

 

 

 

Fig 2. Transition of Mean Square Error 
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Figure 3 shows trends in the strength function, which is the 

failure occurring rate per defect. The Log-Logistic model has 

a property that increases and decreases in the form of failure 

occurring rate as the failure time passes, showing that it is the 

most efficient model in terms of reliability suitability. 

 

 

 

 

Fig 3. Transition of  Intensity Function λ(t) 

 

Figure 4 shows the pattern trend for the mean value function, 

which is the failure occurring expected value. In this figure, 

all models show underestimated from the difference between 

the true values, but the Pareto model has the biggest error 

estimation. Therefore, the Log-Logistic model is more 

efficient than the Pareto model. 

 

 

 

Fig 4. Pattern of Mean Value Function  

 

Let analyze and evaluate the reliability performance of the 

proposed models for future mission time. Here, reliability is 

the probability that a software failure will occur when testing 

at 𝑥𝑛 = 738.68 × 10−2 = 7.3868 , and no software failure 

will occur between confidence intervals [𝑥𝑛 , 𝑥𝑛 + 𝜏] where τ 

is the future mission time. Therefore, the reliability of future 

mission time is as follows [14]. 

 

�̂�(𝜏|𝑥𝑛) = 𝑒
− ∫ 𝜆(𝜏)𝑑𝜏

𝑥𝑛+𝜏
𝑥𝑛                                                         

               = exp[−{𝑚(𝜏 + 𝑥𝑛) − 𝑚(𝑥𝑛)}]                          

                      = exp[−{𝑚(𝜏 + 7.3868) − 𝑚(7.3868)}]     (29) 

 

 

 

 

Fig 5. Transition of Reliability  

 

 

As shown in Figure 5, the Pareto model shows a higher 

reliability trend than the other models in which the reliability 

decreases with the mission time, but the Goel-Okumoto basic 

model showed the biggest decreasing trend. That is, the Pareto 

model is more efficient than the other models because of the 

highest value in terms of future reliability.   

 

4. CONCLUSION 

 

This study is based on the finite failure NHPP that no new 

defects occur during the removal or correction process of 

software defects. Also, the software reliability performance 

was evaluated by analyzing the reliability attributes 

factor(m(t), λ(t), R(t)) using non-exponential family 

distribution known as efficient distribution in the field of 

reliability. 

 

The results of this study can be summarized as follows. 

First, in the analysis of the strength function, the Log-Logistic 

model was the most efficient in terms of reliability suitability. 

This is because the failure occurring rate of the Log-Logistic 

distribution shows an increase and decreases as the failure 

time passes and the mean square error (MSE) is also small. 

 

Second, in the analysis of the mean value function, all the 

proposed models showed slightly underestimation patterns in 
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the error estimation for true values, but the Pareto model 

shows the biggest error estimation. Therefore, the Log-

Logistic model is more efficient than the Pareto model. 

 

Third, in the analysis of mission reliability, the Pareto model 

shows a higher reliability trend than the other models in which 

the reliability decreases with the mission time. That is, the 

Pareto model is more effective than other models because of 

its high reliability.   

 

 As a result, we have newly analyzed the software reliability 

attributes of non-exponential family distributions, which have 

no previous research cases, and expect it to be used as a basic 

guideline for software developers to search for the optimal 

software reliability model. Also, further research will be 

needed to find the optimal model through the reliability 

performance evaluation after applying the same type of 

software failure time data to various reliability models. 
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