Membrane Modeling and Simulation for a Small Scale Reverse Osmosis Desalination Plant

Randy Ncube¹ and Professor Freddie L. Inambao^{1*}

Department of Mechanical Engineering, University of Kwazulu-Natal, Durban, South Africa.

*Orcid:: https://orcid.org/0000-0001-9922-5434

Abstract

Reverse osmosis (RO) has proven to be the most effective and efficient desalination method in recent years. Modelling and optimization of RO desalination plants is ongoing in order to come up with sustainable and efficient RO plants, leading to several techniques being employed in relation to mathematical models of mass and heat transfer, salt rejection and membrane solute permeability. Membrane designs and specifications are factors that affect the efficiency of the RO desalination system. Membrane design tools and software such as ROSA and IMSDesign, which are provided by the membrane manufacturing companies, help in the selection and authentication of low energy consumption and high salt rejection membranes for the design of desalination units.

Keywords— desalination; reverse osmosis; modeling; simulation

I. Introduction

Reverse osmosis (RO) is a process that occurs when pressure that is greater than the osmotic pressure is applied to a high saline solution (concentrated) through a membrane. Water is pressurized to flow from the high saline side to the diluted side, and dissolved salts are retained by the membrane. Membrane technologies such as RO use high electrical and mechanical energies. Future supplies of conventional energy sources are uncertain. Therefore, for sustainable development purposes, it is imperative to optimize and reduce energy requirements of the existing processes [1]. Of late, substantial membrane technology advancement has resulted in improvements in the quality of filtering processes and reduction of costs [2].

In the current study two membrane software tools were used

and compared with each other in the prediction and selection of membranes to be used in the plant. The two software tools used were the Reverse Osmosis System Analysis (ROSA) for FILMTECTM membranes (DOW Water and Process Solutions) and Integrated Membrane Solutions Design (IMSDesign) (Hydranautics Nitto Group Company).

IMSDesign is described as a comprehensive membrane projection program that allows users to design an RO system based on hydranautics membranes [3]. ROSA on the other hand, is membrane simulation software that uses FILMTECTM thin film composite membranes and gives excellent performance for a wide variety of applications, including brackish water purification, low-pressure tap water use, seawater desalination, waste treatment and chemical processing [4].

II. Mathematical Modeling of a Reverse Osmosis System

There are two basic approaches in the mathematical modeling of any process. The first approach is the knowledge based approach, which involve theoretical or parametric models based on fundamental and essential knowledge (mechanisms) of the process and the second approach is the empirical or the non-parametric models, which do not involve the knowledge of the fundamental principles governing the process [5]. There are many approaches that have been used to model RO systems. Different scholars and researchers have come up with many models, some of which include the modeling of membranes [6, 7], modeling of RO plants using neural networks [8], and modeling of RO plants using different algorithms [9, 10]. Fig. 1 shows the schematic diagram of an RO plant with a pre-treatment mechanism, and Fig. 2 shows the RO desalination with ERD or pressure exchanger (PX), 1st pass and 2nd pass RO membranes.

Fig. 1. Schematic diagram of an RO plant with pre-treatment [2]

Fig. 2. RO desalination system with ERD/PX module [11]

A. RO System Monitoring

- Pressure and flow are measured at various points in the RO system to ensure proper function.
- Conductivity is used to monitor the removal of solute by the RO system. Conductivity describes the ability of the water to conduct electrical charge. If more dissolved solute is present, water will conduct electricity more readily.
- The conductivity of product water from the RO is monitored continuously during RO operation and often displayed as total dissolved solids or TDS.
- The percent rejection of an RO system describes the ability of the system to remove solute, thus reducing conductivity in the product water, and can be thought of as the percentage of solute that was removed from the water during reverse osmosis. The percent rejection is calculated using (1):

$$\% rejection = \frac{Feed water conductivity - Product water conductivity}{Feed water conductivity} * 100\%$$
(1)

Modern RO systems will monitor and display the percent rejection in real time during operation. There is no absolute value that is desirable for the percent rejection. Rather, the dialysis facility should use the percent rejection to monitor the efficiency of the RO over time. Percent recovery (also known as the water conversion factor) can be used to monitor the performance of the RO system. The percent recovery can be calculated using (2), where Q is the flow rate:

$$\%recovery = \frac{Q_{permeate}}{Q_{permeate} + Q_{reject}} * 100\%$$
(2)

The percent recovery does not inform water quality, but it is useful for trending the performance of the RO membrane. Membranes that become fouled over time will drop their percent recovery. Permeate flow rate can also vary due to changes in pressure and temperature. For example, a seasonal decrease in water temperature would be expected to decrease the percent recovery. The various measures of RO function pressure, flow, conductivity, % rejection, % recovery, etc. should be recorded in a daily treatment log for regular review and trending analysis.

Table I is a summary of the quality and typical characteristics of sea water found in different areas of South Africa [13, 14]. Table II shows the main constituents of standard seawater and their respective concentrations, and Table III shows the analysis of seawater near Cape Town, West Coast region.

 TABLE I.
 Average feed water temperature and Total

 Dissolved Solids (TDS) in Milligrams/Litre (Mg/L) for different
 Locations in South Africa

Location of raw water type	Feed water TDS (mg/l)	Feed water temperature (⁰ C)
West Coast	> 35 000	9 to 14
South Coast	35 000 to 35 400	16 to 21
East Coast	34 700 to 35 400	21 to 25

Where: East Coast stretches from East London up to the Mozambican boarder, South Coast stretches from East London to Cape Agulhas and the West Coast is a region that stretches from Cape Agulhas to the mouth of the Orange river [13]

TABLE II. STANDARD SEA WATER MAIN CONSTITUENTS AND THEIR RESPECTIVE CONCENTRATIONS [14]

Constituent	Concentration (mg/l)
Sodium Na ⁺	10 561
Magnesium, Mg ²⁺	1 272
Calcium, Ca ²⁺	400
Potassium, K ⁺	380
Chloride, Cl ⁻	18 980
Sulphate, SO ₄ ²⁻	2 649
Bicarbonate, HCO ₃ ²⁻	142
Bromide, Br-	65
Other solids	34
Density (20 °C)	1.0243 s.g.

 TABLE III.
 SEA WATER MAIN CONSTITUENTS OFF THE WEST COAST, NEAR CAPE TOWN [14]

Total Dissolved Solids (mg/litre)	35 644
Sodium (as Na mg/litre)	10 957
Magnesium (as Mg mg/litre)	1 312
Potassium (as K mg/litre)	393
Calcium (as Ca mg/litre)	406

Chloride (as Cl mg/litre)	19 677
Sulphate (as SO4 mg/litre)	2 757
Alkalinity (as CaCO3 mg/litre)	117
Fluoride (as F mg/litre)	1.1
Cyanide (as CN mg/litre)	< 0.05
Dissolved Organic Carbon (mg/litre)	< 1
Conductivity (µS/cm) @ 25 °C	51 000
pH (Lab)	8.1
Hardness (as CaCO3 mg/litre)	6 417
CATIONS (meq/litre)	614.87
ANIONS (meq/litre)	614.82
Suspended Solids (mg/litre) (No. 1 filter)	3.7
Suspended Solids (mg/litre) (0.45 µm)	1.5
Turbidity (NTU)	6.5

B. RO Model Equations

The following section is a summary of the RO model equations [15]:

Permeate flux, Jw:

$$J_w = A_w (\Delta P - \Delta \pi) \tag{3}$$

$$J_w = \frac{1}{A_{mem}} \tag{4}$$

Salt rejection, Rs:

$$R_{s} = \left[1 + \frac{B_{s}}{A_{w}(\Delta \rho - \Delta \pi)}\right]^{-1}$$
(5)

Also, salt rejection, Rs, can be calculated by [14]:

$$R_s = 1 - \frac{TDS_p}{TDS_f} \tag{6}$$

Osmotic pressure, $\Delta \pi$:

$$\Delta \pi = RT \sum_{v} \frac{n}{v} \tag{7}$$

Specific energy consumption, SEC:

$$EC = \frac{P_f Q_f (E_{pump})^{-1} - P_r Q_r E_{ERD}}{Q_p}$$
(8)

Recovery ratio, R:

$$R = \frac{Q_p}{Q_f} \tag{9}$$

Assuming no softening is done, the following calcium salts may typically limit recovery:

Calcium carbonate (calcite) at a feed pH of 7, R_{CaCO3}:

$$R_{caco_3} \approx 1 - \frac{\sqrt{Alk * C_{ca}}}{2000} \tag{10}$$

Calcium sulphate (gypsum), R_{CaSO4}:

$$R_{CaSO_4} \approx 1 - \frac{\sqrt{C_{SO_4} * C_{Ca}}}{2500}$$
(11)

Calcium fluoride, R_{CaF2}:

$$R_{CaF_2} \approx 1 - \frac{[(C_F)^2 * C_{Ca}]^{0.33}}{40}$$
(12)

- ---

Total mass balance:

$$Q_f C_f = Q_p C_p - Q_r C_r \tag{13}$$

Transmembrane pressure difference, ΔP :

$$\Delta P = \frac{P_f + P_r}{2} - P_p \tag{14}$$

Normalised specific energy, SEC*:

$$SEC^* = \frac{SEC}{\Lambda \pi}$$
(15)

Actual permeate hourly flow rate, Q_h, [14]:

$$Q_h = \frac{Q_d}{24 * \alpha} \tag{16}$$

Total membrane area, Amem:

$$A_{mem} \approx \left(\frac{1000 * Q_h}{\emptyset_1}\right) + z \left(\frac{1000 * Q_h}{\emptyset_2}\right)$$
(17)

Feed pressure at a given temperature, P_f:

$$P_f \approx \frac{0.00076 * TDS_f}{1-R} + \left(\frac{\emptyset}{\varepsilon} + 5\right) * 1.034^{25-T}$$
 (18)

Mass transfer coefficient, ki [11]:

$$k_{i} = 0.5510 \left(\frac{ud_{h}}{v}\right)^{0.4} \left(\frac{v}{D_{i}}\right)^{0.17} \left(\frac{c_{b,i}}{\rho}\right)^{-0.77}$$
(19)

Desalination energy, E_{desal} , other additional energy, E_{other} , and the total energy required for the entire RO process, ET [1, 14]:

$$E_{desal} = \left[\frac{Q_h * P_f}{36 * R * \eta_p}\right] - s \left[\frac{Q_h (P_f - 5)(1 - R)}{36 * R * \eta_r}\right]_{(20)}$$
$$E_{other} \approx \left[\frac{Q_h * P_f}{36 * \eta}\right] \tag{21}$$

$$E_T = E_{desal} + E_{ERD} + E_{other}$$
(22)

The specific energy required per volume of permeate water, $E_{\text{spec}}\text{:}$

$$E_{spec} = \frac{E_T}{Q_h} \tag{23}$$

Maximum possible TDS of reject, TDS_r:

$$TDS_r = \frac{TDS_f}{1-R}$$
(24)

The equations for the modeling of the UF unit are summarized below [16].

Normalized Temperature, TMP*:

$$TMP^* = TCF * TMP \tag{25}$$

Temperature correction factor (TCF), which is a factor that takes into consideration the effect of the temperature, T ($^{\circ}$ C) and its influence on the viscosity of water:

$$TCF = \frac{10^{\left(\frac{247.8}{25+273.16-140}\right)}}{10^{\left(\frac{247.8}{T+273.16-140}\right)}}$$
(26)

Different TMP values obtained at different temperatures can be compared and transported to the same reference temperature of 25 $^{\circ}$ C [17].

Efficiency of the UF process, which is defined as the net yield of the UF process:

$$Efficiency = Availability * Recovery$$
 (27)

Availability, which is the measure of the time the UF module is producing water:

Availability =
$$\frac{t_f}{t_t}$$
 (28)

Recovery, which is the measure of the net water produced:

$$Recovery = \frac{V_f - V_{CEB} - V_{BW}}{V_f}$$
(29)

Hourly feed capacity of the pre-treatment plant, Q_{h(in)} [14]:

$$Q_{h(in)} = \frac{Q_h}{R(1-\beta)} \tag{30}$$

C. Theoretical Values of RO Parameters

Specific energy consumption (SEC) is the amount of energy consumed per unit freshwater produced (kJ/kg) and recovery ratio, and r (%) is the volume of freshwater produced per unit volume of the seawater fed. Fig. 3 shows the graph of theoretical minimum energy consumed against the recovery ratio [1].

Fig. 3. Theoretical minimum energy consumed against the recovery ratio [1]

1) Energy Recovery Devices

There are four types of energy recovery devices (ERDs) that can be used in RO process. These are pelton turbines,

hydraulic turbochargers, pressure exchangers and work exchangers. Table IV shows the characteristics of three of these ERDs [1].

TABLE IV.	CHARACTERISTICS OF THREE TYPES O	F ERDs [11
	ern na le rende rice er rindee rireb e		÷.

Characteristic	Pelton turbine	Turbocharger	Isobaric energy recovery device (work exchanger)
Working principle	Centrifugal mode	Centrifugal mode	Positive displacement
Overall net energy trans- fer efficiency	Energy transfer from hydraulic to mechanical; 80% (70–80%)	Energy transfer from hydraulic to hydraulic; 83%	Energy transfer from hydraulic to hydraulic; 95%
Effect of devia- tion from design point	Wide operating range	Wide operating range	Moderate impact on performance
Discharge	Atmospheric	Pressurized	pressurized
Capital cost	Low	Moderate	Ĥigh (250% higher than Pelton turbine)
Pumping requirements	Connected directly to SWRO pump/motor, requires full sized SWRO pump/motor		Small size SWRO/pump motor required to pump permeate volume only, requires small booster pump/motor
Material of construction	Metallic construction	Metallic construction	Available in non-metallic construction for corrosion resistance
Specific energy consumption	2.44-4.35 (kWh/m ³)	2.42–4.29 (kWh/m ³)	1.93–2.85 (kWh/m ³)
Capacity	Multi MGD	< 2.5 MGD	<2.5 MGD
Foot print	Compact	Compact	Large

III. System Modeling

A. Design Modeling

Fig. 4 shows the design methodology used for the design of the single stage SWRO desalination unit.

Fig. 4. Flow diagram for SWRO desalination unit

B. Permeate Flow Rate and Actual Permeate Hourly Flow Rate (Q_h)

The desired permeate flow rate of the plant is 10 m3/d. The actual permeate hourly flow rate, assuming 8 % idle time or 92 % availability of the plant, is 0.45 m3/h.

C. Recovery Rate (R)

The typical recovery rate design guideline for the desalination of seawater is about 0.4 or 40 %, assuming no softening of feed water is performed.

D. Feed Flow rate (Q_f)

Assuming R=0.4 and $Q_p=10\ m^{3}/d,$ the design feed flow rate is 25 $m^{3}/d.$

E. Feed and Permeate Total Dissolved Salts Concentrations (TDSp and TDSf)

Total dissolved solids of feed water, TDS_f , is approximately 35 600 mg/l, the desired design total dissolved solids of permeate water; TDS_p is less than 500 mg/l.

F. Salt Rejection

Salt rejection, Rs, is calculated and found to be around 0.99 or 99 %.

G. Operating Temperature (T)

Water becomes less viscous at higher temperatures, hence the need for a generally high feed operating temperature. The proposed feed operating temperature is in the range of 25 °C to 30 °C. The design temperature for this system is 25 °C.

H. Energy Recovery Devices (ERD) and Power Exchangers (PX)

Research and design has shown that multi-stage systems, with modules connected to reject water with booster pumps, are able in principle to minimize electricity consumption. This system will have no energy recovery devices.

I. Maximum Possible TDS of reject, (TDS_r)

The calculated maximum possible TDS of reject is 59 406 mg/l.

Input parameters are shown in Table V.

IV. Computer Simulation of the RO Simulation

Computer simulations for the RO system were carried out using two different membrane design software tools to analyze the performance of the RO system and to ascertain the calculations above. ROSA and IMSDesign software tools were used. The results obtained from the two tools were compared and the software with the results that showed greatest similarities to the desired output was selected for further manipulation and optimization of the RO process. The software tools also helped in the selection of suitable membranes for the desired output.

A. Simulation Results

According to several simulation processes carried out for small scale SWRO desalination plants, a single stage RO system was discovered to be much more economical and energy efficient compared to a two-stage or multi-stage system. Capital costs and power requirements were slightly lower in a single stage than in a two-stage system for comparable permeate water quality. In this regard, a single stage SWRO desalination system was chosen and the above selected/assumed parameters were captured in the two simulation software tools and the following results were obtained.

B. IMSDesign Results

Seawater quality inputs tabulated in Table III and the selected/assumed parameters in Table V were fed into the IMSDesign software as shown in Fig. 5. A summary of the results is shown in Fig. 6 and the detailed report of the results of the simulations is shown in Appendix 1 at the end of this document.

TABLE V. SUMMARY OF THE CALCULATED, ASSUMED/SELECTED PARAMETERS TO BE SET AS INPUT PARAMETERS FOR THE PERFORMANCE ANALYSIS OF THE RO SYSTEM.

Parameter	Calculated value	Assumed/ Selected	Equation
pH (Lab)		8.1	Table 3
Permeate flow rate		10 m ³ /d	-
Recovery rate		0.4	-
Actual permeate hourly flow rate	0.45 m ³ /h		(16)
Salt rejection	0.99		(6)
Operating temperature		25 °C	-
Feed TDS		35 644 mg/l	Table 3
Permeate TDS		< 500 mg/l	-
Maximum possible TDS of reject	59 406 mg/l		(24)

Fig. 5. Input parameters on the IMSDesign software

😰 Flow Diagram			- 0
Project name : SWRO Desalination Calculated by : Randy Ncube	Temper Element	ature : 25 °C t age, P1 : 0 years	Date : 9/5/2020 Version : 2.228.86 °
	-1-2→ ()-3 (3)		
1 2 3	4 5 6	7	
Flow (m3/h) 1.12 1.17 1.17	0.720 0.050 0.670	0.450	
Pressure (bar) 0 0 49.6	49.3 0 0		

Pressure (bar)	0	0	49.6	49.3	0	0	0
TDS (mq/l)	35564	36568	36568	59047	59047	59047	324
pH	8.10	8.10	8.10	8.13	8.13	8.13	6.80
Econd (µs/cm)	55499	56974	56974	89596	89596	89596	704

Fig. 6. A systems configuration obtained after running the IMSDesign program

C. ROSA Results

Seawater quality inputs tabulated in Table III and the selected/assumed parameters in Table V were fed into the ROSA software as shown in Fig. 7. A summary of the results is shown in Fig. 8 and the detailed report of the results of the simulations is shown in Appendix 2 at the end of this document.

Water Type: Sea	water with Conventional pretrea	atment, SDI < 5			~	Open Wat	ter Profile Library
COL_MAT_ID	lons	mg/l	ppm CaCO3	meq/l	T	Specify Individual Solute	s
1	Ammonium (NH4+ + NH3)	0.000	0.000	0.000	0		
2	Potassium (K)	393.000	502.532	10.051	3	Total Dissolved Solids:	35588.4 (mg/l)
3	Sodium (Na)	10957.000	23829.930	476.599	1	5 JD .	
4	Magnesium (Mg)	1312.000	5396.512	107.930	1	Feed Parameters	Max Temp
5	Calcium (Ca)	406.000	1012.974	20.259	4	Temperature: 25.0	'C Max remp
6	Strontium (Sr)	0.000	0.000	0.000	0	Flow Rate: 1.13	m³/h
7	Barium (Ba)	0.000	0.000	0.000	0	0H 0.1	
8	Carbonate (CO3)	0.000	0.000	0.000	0	0.1	
9	Bicarbonate (HCO3)	0.000	0.000	0.000	0	Charma Ralance	
10	Nitrate (NO3)	0.000	0.000	0.000	0	Charge balance	AUCH
11	Chloride (CI)	19751.750	27856.250	557,125	1		Add Sodium
12	Fluoride (F)	1.104	2.906	0.058	1	Cations: 614.84	Add Calcium
13	Sulfate (SO4)	2767.474	2882.786	57.656	2	Anions: 614.84	Adjust Cations
14	Silica (SiO2)	0.000	n.a.	n.a.	0		
15	Boron (B)	0.000	n.a.	n.a.	n.a.	Balance: 0.00	Adjust Anions
							Adjust All Ions

V. Results Analysis

The following section is meant to analyze the results from the two membrane software tools to select the most feasible system for further analysis and optimization of the system.

A. Results Comparison

Table VI shows the results from the two software tools obtained after running the programs with the same inputs.

TABLE VI. RESULTS OF THE IMSDESIGN AND ROSA SOFTWARE

	IMSDesign	ROSA
Permeate TDS (mg/l)	324.5	633.3
Average flux rate (lmh)	15.1	14.42
Feed pressure (bars)	49.6	47.44
Average specific energy (kW/h)	5.12	3.66
Membrane type	SWC5-LD-4040	SW30-2540
Total number of elements	4	12

TABLE VII.	COMPARISON OF MEMBRANE CHARACTERISTICS
------------	--

	SWC5-LD-4040	SW30-2540			
Manufacturer	Hydranautics SWC membranes	Dow Filmtec			
Material	Composite polyamide	Polyamide thin- film composite			
Nominal Production (m^3/d)	6.62	2.6			
Salt Rejection (%)	99.7	99.4			
Size (m * m)	0.1 * 1	,,,,,			
Active Area (m ²)	2	2.6			
Max. Applied Pressure (bars)	82.7	69			
pH	2 to 11	2 to 11			
Max. Operating Temp. (°C)	45	45			
Price/membrane (USD)	269	244			
Total Number of membrane elements	4	12			
Total membrane costs (USD)	1076	2928			
Advantages	 -High productivity and salt rejection rates, optimized flow, low fouling and low energy consumption; -Optimum salt rejection and permeate flows at low operating pressures; -High energy efficiency at low costs, low treatment cost while offering extreme durability and consistent performance. 	-High flux reduces energy use or pressure required; -Good salt rejection results in good quality water.			

B. Selected Design Setup

Although both the IMSDesign and ROSA desalination design tools showed certain individual advantages, there are two factors that led to the selection of the design setup to be used for optimization. These factors include the permeate TDS and the capital (setup) costs (particularly the cost of membranes). The desired output for the permeate TDS in this design was < 500 mg/l according to WHO standards for potable water for human consumption [2]. From the number of membranes elements required to set up the plant, the setup costs could be calculated and determined. From the

above factors, the simulation conducted using the IMSDesign suited the design for this project.

VI. Conclusion

A clear analytical mathematical model and membrane simulations using ROSA and IMSDesign software tools was used for the performance predictions of the type of membrane module and consequently for the performance of the RO plant. The IMSDesign setup showed that the setup cost was lower than that of the ROSA software whereas the specific energy of the ROSA setup was lower than that of IMSDesign setup. The IMSDesign setup also showed that the required design output of less than 500 mg/l permeate TDS could be obtained. A pilot plant will be built based on the selected RO setup and will be used in the optimization of the complete system through experimentation so as to reduce specific energy, thereby reducing the running costs. Experiments on the effect of temperature and pressure variation on energy consumption of the pilot plant will be carried out and the optimum conditions will be employed. Optimization and simulation of the RO plant control system using Matlab Simulink will be performed so as to improve energy consumption without compromising the permeate water quality.

Nomenclature

A _{mem}	Total membrane area, m ²
$A_{\rm W}$ -	Permeability coefficient, m/s.Pa
B _s -	Solute transport parameter, m/s
Е-	Specific energy consumption, kWh/m ³
E _{ERD}	Turbine energy, kWh
E_{pump}	Pump energy consumption, kWh
$\begin{array}{c} E_{spec} \\ kWh/m^3 \end{array}$	The specific energy required per volume of permeate water,
J_{W} -	Permeate flux, m/s
ΔP -	Pressure difference across the membrane, Pa
P _f -	Feed water pressure, Pa
P _p -	Permeate pressure, Pa
P _r -	Rejected pressure, Pa
Q_{f} -	Feed flow rate, m3/d
Q _h -	Permeate hourly flow rate, m3/h
Q _p -	Permeate flow rate, m3/d
$Q_{p,\;el}$	Permeate flow rate per membrane element, m3/s
Q_p	Mass flow rate of permeate in one element, kg/s
Q _r -	Rejected flow rate, m ³ /d
Q _{bypass} required s	-Amount of water mixes with the permeate to achieve the alinity, $m^{3} $
R -	Gas constant, J/mol-k
R _s -	Salt rejection, %
s - installed, a	The selection parameter, $s = 1$ if an energy recovery unit is and $s = 0$ if no recovery unit is installed
Т-	Temperature, °C

 $V_{\rm w}$ - Water molar volume, m³

Ŵ - Work, kW

E_T - Total energy requirement, kW

Ein - Energy required to draw the feed water from the source, kW

 E_{pt} - $$Energy\ required for pre-treatment and post treatment (micro filtration and pumping), kW$

Ehp - Energy required by high pressure pump, kW

 $E_{\rm other}$ $\,$ Energy required by other accessories (chemical dosing, filter backwashing/cleaning and pumping the product water), kW

```
t_{\rm f}~ - ~ Filtration time, h
```

t_t - Total time, h

V_f - Volume of filtrate, m³

V_{CEB} Volume of chemically enhanced backwash, m³

V_{BW} Volume of backwash, m³

 $z\,$ - $\,$ Selection factor, one for a double pass system, or zero for a single-pass system $\,$

 $\Delta \pi$ - Osmotic pressure, Pa

α - Availability

 ϕ - Average flux (1/h.m²)

 ε - Membrane type and its flux per driving pressure

 $\beta\,$ - $\,$ Fraction feed water lost at the pre-treatment plant (typically between 3 % and 15 %, depending on the process)

 η_p - Pump efficiency (typically around 0.75)

 η_r - Efficiency of the energy recovery unit (if installed)

Acknowledgment

I would like to thank God for the gift of knowledge that he has bestowed in us. I would also like to pay my special regards to my supervisor and mentor, Prof. Freddie L. Inambao for his unwavering support. I would like to acknowledge Makhosi K. Mahlangu (M. Eng. Manufacturing Systems and Operations Management) for his assistance throughout the research. I wish to show my deepest gratitude to Dr. Richard Steele for his assistance in the editing of this document. To my wife and life partner, Nothando F. Ncube, thank you for your support and patience.

References

- V.G. Gude, "Energy consumption and recovery in reverse osmosis" Desalin. Water Treat., 36(1-3), pp. 239-260, 2011. DOI: https://doi.org/10.5004/dwt.2011.2534.
- [2] S. Syafiie, L. Palacin, C. De Prada, and F. Tadeo. "Membrane modeling for simulation and control of reverse osmosis in desalination plants." in Proceedings of the UKACC International Conference on Control, 2008.
- [3] Solution Design, IMSDesign, Inge "Watertechnologies wins another major contract in China, Membr. Technol., 2008 DOI: https://doi.org/10.1016/S0958-2118(08)70232-5.

- [4] DuPont Water Solutions, FilmtecTM Reverse Osmosis Membranes. Technical Manual, Form, (609-00071): 2020. Available: https://www.dupont.com/content/dam/dupont/amer/us/e n/water-solutions/public/documents/en/45-D01504en.pdf
- [5] M. Khayet, C. Cojocaru, and M. Essalhi, "Artificial neural network modeling and response surface methodology of desalination by reverse osmosis," J. Membr. Sci., 368(1-2), pp. 202-214, 2011. DOI: https://doi.org/10.1016/j.memsci.2010.11.030.
- [6] B. Gu, G.Y. Xu, and C.S. Adjiman, "A predictive model for spiral wound reverse osmosis membrane modules: The effect of winding geometry and accurate geometric details," Comput. Chem. Eng., 96, pp. 248-265, 2017. DOI: https://doi.org/10.1016/j.compchemeng.2016.07.029.
- J. Marriott, E. Sørensen, and I. Bogle, "Detailed mathematical modelling of membrane modules," Comput. Chem. Eng., 25(4-6), pp. 693-700, 2001. DOI: https://doi.org/10.1016/S0098-1354(01)00670-6.
- [8] A. Abbas, and N. Al-Bastaki, "Modeling of an RO water desalination unit using neural networks," Chem. Eng. J., 114(1-3), pp. 139-143, 2005. DOI: https://doi.org/10.1016/j.cej.2005.07.016.
- [9] A. Helal, A. El-Nashar, E. Al-Katheeri, and S. Al-Malek, "Optimal design of hybrid RO/MSF desalination plants Part I: Modeling and algorithms," Desalination, 154(1), pp. 43-66, 2003. DOI: https://doi.org/10.1016/S0011-9164(03)00207-8.
- [10] M.G. Marcovecchio, P.A. Aguirre, and N.J. Scenna, "Global optimal design of reverse osmosis networks for seawater desalination: modeling and algorithm. Desalination, 184(1-3), pp. 259-271, 2005. DOI: https://doi.org/10.1016/j.desal.2005.03.056.
- [11] J.-S. Choi, and J.-T. Kim, "Modeling of full-scale reverse osmosis desalination system: Influence of operational parameters" J. Ind. Eng. Chem., 21, pp. 261-268, 2015. DOI: https://doi.org/10.1016/j.jiec.2014.02.033.
- [12] S. Bieber, "Water treatment equipment for in-center hemodialysis" in Handbook of Dialysis Therapy. Amsterdam: Elsevier, 2017, pp. 123-143.
- [13] C. Swartz, J. Du Plessis, A. Burger, and G. Offringa, "A desalination guide for South African municipal engineers," Water SA, 32(5), 2006 DOI: https://doi.org/10.4314/wsa.v32i5.47845.
- [14] J. Du Plessis, A. Burger, C. Swartz, and N. Musee, A Desalination Guide for South African Municipal Engineers. Pretoria: Water Research Commission, 2006. Available: http://www.coastkzn.co.za/wpcontent/uploads/2019/02/desalination-Guideline-for-ENGINEERS-WRC.pdf.

- [15] M.S. Atab, A. Smallbone, and A. Roskilly, "An operational and economic study of a reverse osmosis desalination system for potable water and land irrigation," Desalination, 397, pp. 174-184, 2016. DOI: https://doi.org/10.1016/j.desal.2016.06.020.
- [16] G. Gilabert-Oriol, M. Hassan, J. Dewisme, V. Garcia-Molina, and M. Busch, "Backwashing pressurized ultrafiltration using reverse osmosis brine in seawater desalination and its potential costs savings," Desalin. Water Treat., 55(10), pp. 2800-2812, 2015. pp. 2800-2812 DOI: https://doi.org/10.1080/19443994.2014.939491.
- [17] G. Gilabert Oriol, M. Hassan, J. Dewisme, M. Busch, and V. Garcia-Molina, "High efficiency operation of pressurized ultrafiltration for seawater desalination based on advanced cleaning research. Ind. Eng. Chem. Res., 52(45), pp. 15939-15945, 2013. DOI: https://doi.org/10.1021/ie402643z.

APPENDIX 1 – IMSDesign Results

Integrated Membranes Solutions Design Software, 2018

Created on : 9/5/2020 03:16:52

mg/l

0.014

0.10

mg/I CaCO3

0.02 0.08

		Water Analy	sis : Raw Pass 1	
Project name	SWRO Desalination			
Water source	Sea Surface MF/UF			
pН	8.10			
E.cond	55499.0	µs/cm		
CO2	0.000	mg/l		
NH3	0.000	mg/l		
Temperature	25.0	°C		
TDS	35564	mg/l		
Ion	mg/l	mg/I CaCO3	Ion	
Са	406.00	1015.00	CO3	
Mg	1312.00	5377.05	нсоз	
Na	10957.00	23819.56	SO4	
K	393.00	502.58	CI	
NH4	0.00	0.00	F	
Ва	0.000	0.00	NO3	
Sr	0.000	0.00	PO4	
	Total, meq/l	614.28	SiO2	
			в	
				To

CaSO4 / KSP * 100	21 %
BaSO4 / KSP * 100	0 %
SrSO4 / KSP * 100	0 %
CaF2/KSP*100	21 %
SiO2 saturation	0 %
Ca3(PO4)2 saturation index	0
CCPP, mg/l	0.02
lonic strength	0.707
Osmotic pressure	26.02 bar

2757.00 2871.88 9737.81 27838.94 1.10 2.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 614.28 al, meq/l

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produced by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the a dual amount of chemical needed for JH adjustment is feedwater dependent and not merbrane dependent. Hydranautics closs not warrant chemical consumption. If a product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranteemants may result in different pricing than previously quoted. Version : 2.228.86 %

Email : imsd-support@hydranauticsprojections.net

🍈 www.membranee.com 💿 +1 760 901 2500

Integrated Membranes Solutions Design Software, 2018

Created on: 9/5/2020 03:19:10

Project name SWR0 Desaination Page: 1/6 Calculated by Randy Ncube Permate flowthain 0.45 m3/h Feed pressure 4.8 b bar Permate flowthain 3.84 6 % Feed pressure 4.9 b bar Permate flowthain 0.01 m3/h Feed pressure 5.0 °C/7/°C/7° Total system recovery 3.84 6 % Feed temperature 0.05 m3/h Element age 0.0 9 wars Feed temperature interactive interactinteractive interactive interactinteractive interactive i							С	oncent	rate Rec	irculat	ion						
Calculated by HP Pump flow Randy Number And Number Seed pressure Parmeate flow/train 0.45 m3h HP Pump flow 1.17 m3h Raw water flow/train 1.12 m3h Feed pressure 49.6 bar Permeate flow/train 1.12 m3h Feed pressure 49.6 bar Permeate recovery 38.6 % Concertrate recirculation 0.05 m3h Element age 0.0 years Feed water pH 8.10 Fux decline %, per year 5.0 Specific energy 5.12 kw/tm3 SP Increase, per year 7.0 % Pass NDP 1.4.3 bar Average flux rate 1.01 Specific energy Stage Flow Feed Conc Max Perm Bar bar Tog Max Perm Box flow Feed Water Concertate KHUE Vers Stage Flow Feed Conc Max Perm Box flow Feed Water Concertate KHUE Concertate KHUE Interdees, a CaCO3 Cost Gas20.6 573.6 Permeate Water Concertate KHUE Concertate KHUE Interdees, a CaCO3 Cost Feed Water	Project	name			SWR0 De	acalination										Page: 1/6	
HP Pump flow 1.17 m3/h Raw water flow/train 1.12 m3/h Feed pressure 4.8 bar Permeater racovery 38.45 % Feed pressure 5.0 °C/70 °F) Trai system recovery 38.45 % Feed renerature 0.0 % 0.0 % Concentrate racirculation 0.05 m3/h Element age 0.0 years Feed water pH 8.10 Flux denine %, peryear 5.0 Chem dose, mg1,- H280.4 Fouling factor 1.00 Specific energy 5.12 wWim3 SP increase, peryear 7.0 % Pass NCP 1.1 m3/h Raw water flow/trains 1.12 m3/h Average flux rate 1.51 inh Feed type Sea Surface MFJUF Pass - Perm Flow / Vessel Flux DP Flux Beta Stagewise Pressure Perm. Element PV#x Stage Flow Feed view Perms Boots Concortial t 1/x 4M Interdees, as CaCo3 6332.05 6573.67 14.332 1080.1 Ca 6332.05 6573.87 14.33	Calculat	ted hv			Randy N	ruhe				Permente flow(train						0.45	m3(h
In 1 any now 11 1 now 11 1 now 11 1 now 130 Now 130 Now 130 Now 100 % Feed pressure 25.0 °C(7.0°F) Total system recovery 40.00 % 00.00 % Concertrate recovery 100 50 °C(7.0°F) 100 50 °C(7.0°F) Feed vater pH 8.10 Flur decline %, peryear 5.0 Chem dose, mgl, - H250.4 Fouling factor 100 Specific energy 5.12 kwh/m3 SP increase, peryear 7.0 % Pass NDP 14.3 bar Average flux rate 15.11 in h Feed vater person Flow / Vessel Max Perm Boot Conc TDS Type Quantity Element Perm Boot Conc TDS Type Na / 101 0.3 25.1 1.06 0 0 4.33 22.4.5 11 nut 103/2.00 1349.28 19.33 22.5 5WC-DD-40.00 4 1.x.4M Max 1037.00 11.325.88 117.467 0.938 1064.20 Ca 93.00 60.00 0.000 0.00 0.00 Ca 93.00 60.737.67 14.302 1064.20 Ca 0.000 0.000 0.000<		nn flow			r candy ru	1 17 m3(h				Pow water flow/train						1 1 2	m3/h
Teel pessue Terminate recirculation Sol ball Terminate recirculation Sol ball	Food pr						40.6 hor Dorm					ovorv				20.12	06
Feed eventuation 22.3 C(Y,3/F) Total system relovery 40.00 % Concertrate recitruitation 0.05 m/3/F) Element age 0.0 years 5.0 Feed water pH 8.10 Flace decline %, paryear 5.0 1.00 Specific energy 5.12 kwh/m3 SP increase, peryear 7.0 % Pass NDP 14.3 bar Average flux rate 15.1 lm Average flux rate 15.1 lm Feed type Sea Surface MF/UF Pass NDP Flow / Vessel Flux DP Flux Beta Stagewise Pressure Perm. Element Element PV#x Stage Flow Feed Conc TDS Type Quantity Elem# 1-1 0.4 1.2 0.7 15.1 0.3 25.1 1.06 0 4.33 324.5 SWCS-LD-40.0 4 1.x 4M On (mat/) Rew/Weter Feed Weter Permeet Weter Total sea 1.06.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Food to	mnoratu	~o				40	.0 bar :0 ≞⊂/7:	7 0	Total	ale i el l	rocovoru				40.00	N OK
Concentrate returnation 0 000 mom Element agree (concentrate) 0 000 mom Element agree (concentrate) 0 000 mom Pass NDP 143 bar 100 Stopentice encry 7.0 % 7.0 % Pass NDP 143 bar 100 Stopentice encry 7.0 % 7.0 % Pass NDP 143 bar Feed Vater 7.0 % 7.0 % 7.0 % Pass NDP 143 bar Feed Vater Stope file encry Stope Stope file encry Trans Feed Vater Permeter Verter Concentrate file encry 1 x 4M Infinitional file encry 112.00 1134 2.0 1 134 2.0 1 134 2.0 1 134 2.0 1 134 2.0 1 x 4M Infinitional file encry 1 105 0 0 0 0.000 0.000 </td <td>Concon</td> <td>troto roci</td> <td>e reulation</td> <td></td> <td></td> <td></td> <td colspan="7">25.0 O(Fr.0 F) Flormant and</td> <td></td> <td>40.00</td> <td>70</td>	Concon	troto roci	e reulation				25.0 O(Fr.0 F) Flormant and								40.00	70	
Peed wate print 0.0 Fuck decline %, per year 5.0 Specific energy 5.12 kwh/m3 SP increase, per year 7.0 % Pass NDP 14.3 bar SP encrease, per year 7.0 % Average flux rate 15.1 imh Feed type Sea Sufface MF/UF Pass NDP Flow / Vessel Flux DP Flux Beta Stagewise Pressure Perm. Element Element PV#z Stage Flow / Vessel Flux DP Flux Beta Stagewise Pressure Perm. Element Element Element Element Element Element Element Element Im# Element Na 1/1 0.4 1.2 0.7 15.1 0.3 25.1 1.06 0 0 49.3 324.5 SWIC5.LD-4040 4 1 x 4M Marcinesa, ac CaCO3 632.25 573.67 1.14.302 1042.0 1.49.2 1.29.6 2.14.19.1 Marcinesa, 20 1.04.20 1.0 1.33.2 1.00.0 0.00.0 0.00.0 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <td>Conten</td> <td colspan="5"></td> <td>0.</td> <td>00 mom 40</td> <td></td> <td>Eleme</td> <td>niage Union</td> <td></td> <td></td> <td></td> <td></td> <td>0.0</td> <td>years</td>	Conten						0.	00 mom 40		Eleme	niage Union					0.0	years
Chem rouse, mgh, - Floure	⊂heeu w	aterp∺ '					0.10 Flux decline %, per year									5.0	
Specific energy 5.12 Writing Specific energy 7.0 % Pass NDP 14.3 bar Feed type Sea Surface MF/UF Pass NDP 15.1 lmh Feed type Sea Surface MF/UF Pass - Perm Flow / Vessel Flux DP Flux Be Sea Surface MF/UF Pass - Perm Flow / Feed Conc Max Perm Boot Conc TDS Type Quantity Element m3th m3th m3th Infh bar Infh bar max Perm Boot Concentret TDS Type Quantity Element Element </td <td>Cnema</td> <td>iose, mg/</td> <td>I, -</td> <td></td> <td></td> <td></td> <td>HZSU</td> <td>J4 4</td> <td></td> <td>Foulin</td> <td>g factor</td> <td></td> <td></td> <td></td> <td></td> <td>1.00</td> <td>~</td>	Cnema	iose, mg/	I, -				HZSU	J4 4		Foulin	g factor					1.00	~
Pass NuP* 14.3 bar Average flux rate 15.1 int Pass NuP* Flow / Vessel Flux DP Flux Beta Stage wise Pressure Perm. Element Element PV#x Name Flow Flow Flow On Max Perm. Boost Conc TOR Type Quantity Element Element PV#x 11 0.4 1.2 0.7 15.1 0.3 25.1 1.06 0 0 49.3 224.5 SWC5 LD-4040 4 1.x 4M Introhese, as CaCO3 6392.05 6573.67 14.302 10642.0 55.5 SWC5 LD-4040 4 1.x 4M Introhese, as CaCO3 496.00 41.754 0.300 0.000 <td>Specific</td> <td>: energy</td> <td></td> <td></td> <td></td> <td></td> <td>5.</td> <td>12 kwhл</td> <td>m3</td> <td>SP inc</td> <td>rease, p</td> <td>per year</td> <td></td> <td></td> <td></td> <td>7.0</td> <td>%</td>	Specific	: energy					5.	12 kwhл	m3	SP inc	rease, p	per year				7.0	%
Af verage hux rate Tot imm Feed type Sea Surface MF/UF Pass - Perm Flow / Vessel Flux DP Flux Beta Stagewise Pressure Perm Element Element Perm Element Element Perm Element Max Perm Boost Conc TDS Type Quantity Elem# 1-1 0.4 1.2 0.7 15.1 0.3 25 6573.67 14.302 1064.20 5 5 SWC5-LD-404.0 4 1.x 4M Infrances, as CaC03 6392.05 6573.67 14.302 10642.0 6 6 1 </td <td>Pass N</td> <td>UP .</td> <td></td> <td></td> <td></td> <td></td> <td>14</td> <td>1.3 bar</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Pass N	UP .					14	1.3 bar									
Pass Perm. m3/n Flow / Vessel m3/n Flux m3/n DP m3/n Flux m3/n DP m3/n Flux m3/n Perm m3/n Boast m3/n Conc TDS Type Quantity Element Element PV#x Elem# 1-1 0.4 1.2 0.7 15.1 0.3 25.1 1.06 0 0 49.3 324.5 SWC5LD-1040 4 1 x.4M Ion (ma)	Average	e flux rate	e				15	5.1 lmh									
Pass Perm. Flow / Vesel Flux DP Flux Beta Stagewise Presure bar Perm. Element bar Presuste bar Element bar Element bar Element bar Element bar Presuste bar Element bar Element bar Element bar Element bar Presuste bar Element bar Presuste bar Element bar Presuste bar										Feedt	уре			S	ea Su	rface MF	/UF
Stage Flow Feed Conc Max Perm Boost Conc TDS Type Quantity Elem# 1-1 0.4 1.2 0.7 15.1 0.3 25.1 1.06 0 0 49.3 324.5 SWC5-LD-4040 4 1 x 4M ton (mdt) RawWitter Feed Water Permeate Water Concentrate 1 1 1 x 4M ton (mdt) RawWitter Feed Water Permeate Water Concentrate 1 1 x 4M terminess, ac CaC03 6392.05 6573.67 14.302 1084.20 1 x 4M terminess, ac CaC03 6392.05 11285.68 117.487 18180.1 1 x 4M Nta 10957.00 11285.68 117.487 18180.1 1 x 4M 1 0 0.00 0.00 <td< td=""><td>Pass-</td><td>Perm</td><td>Flow/</td><td>Vessel</td><td>Flux</td><td>DP</td><td>Elux</td><td>Beta</td><td>Sta</td><td>dewise</td><td>Pressu</td><td>re F</td><td>^oerm</td><td>Element</td><td>ł</td><td>Flemen</td><td>t PV#x</td></td<>	Pass-	Perm	Flow/	Vessel	Flux	DP	Elux	Beta	Sta	dewise	Pressu	re F	^o erm	Element	ł	Flemen	t PV#x
Stage Fully Feed Cont The second seco	Ctore	Elou	Food		1 147	0.	Max	Dora	Dorm	Dor			TDO	Tuno		Quantit	. Flem≢
min min bai bai bai bai bai bai min min min bai bai <td>Stage</td> <td>FIUW</td> <td>reeu</td> <td>Conc</td> <td>Inch</td> <td>hor</td> <td>Inolo</td> <td></td> <td>Ferri.</td> <td>BUU</td> <td>151 1</td> <td>bor</td> <td>105</td> <td>Type</td> <td></td> <td>Quantity</td> <td></td>	Stage	FIUW	reeu	Conc	Inch	hor	Inolo		Ferri.	BUU	151 1	bor	105	Type		Quantity	
1-1 0.4 1.2 0.7 15.1 0.3 25.1 1.06 0 0 4.93 324.5 SWOS-LD-4040 4 1.x 4M Ion (mat) RewWeiter Feed Water Permeate Water Concentrate 1 0.00 1.4302 1.9842.0 Ca 406.00 417.54 1.9908 675.9 1.185.68 117.477 1.9842.0 Na 1.125.06 1.125.68 117.477 1.9180.1 1.185.68 117.477 1.9180.1 K		m3/h	m3/h	m3/n		par			bar	50	1	par	mg/i				
Inn (ma) RawWeiter Peerate Water Concentrate 1 Harches, as CaC03 6392.05 6673.67 1.43.02 10642.0 Ca 400.00 417.54 0.908 675.9 Mg 1312.00 1349.28 2.238 2.184.3 Na 10957.00 11285.68 117.497 18180.1 K 393.00 404.04 5.265 651.4 NH4 0.000 0.000 0.000 0.00 Ba 0.000 0.000 0.000 0.00 Sr 0.000 0.000 0.000 0.00 C3 0.01 0.01 0.000 0.00 SO4 2757.00 2835.25 6.66 458.7 C1 19737.81 20294.45 191.02 32763.2 F 1.10 1.13 0.00 0.00 OH 0.00 0.00 0.00 0.00 G3 0.00 0.00 0.00 0.00 SO4	1-1	0.4	1.2	0.7	15.1	0.3	25.1	1.06	0	0		49.3 3	324.5	SWC5-LD-4	040	4	1 x 4M
Hardness, as CaCO3 6392.05 6573.67 14.302 10642.0 Ca 406.00 417.54 0.908 675.9 Na 10957.00 1125.68 117.47 19180.1 K 339.00 404.04 5.265 651.4 NH4 0.000 0.000 0.000 0.00 Ba 0.000 0.000 0.000 0.00 Sr 0.000 0.000 0.000 0.00 C33 0.01 0.01 0.000 0.00 C33 0.01 0.01 0.000 0.00 C33 0.01 0.01 0.000 0.00 C4 2757.00 2835.32 6.869 4569.7 C1 19737.81 20294.45 191.023 32763.2 F 1.10 1.13 0.00 0.00 0.00 C4 0.00 0.00 0.00 0.00 0.00 Sio2 0.00 0.00 0.00 0.00 0.	lon (mg/)					RawWate	er	Feed Wa	ter	Perme	eate Water	Co	ncentrate 1			
Ca 406.00 417.54 0.908 675.9 Mq 1312.00 1349.28 2.936 2184.3 Na 10857.00 1125.58 1177.487 18180.1 K 393.00 404.04 5.285 651.4 NH4 0.000 0.000 0.000 0.00 Ba 0.000 0.000 0.000 0.00 Sr 0.000 0.000 0.000 0.00 C03 0.01 0.01 0.000 0.00 SO4 2757.00 285.52 6.680 4559.7 C1 19737.81 20294.45 191.023 32763.2 F 1.10 1.13 0.001 0.00 O4 0.00 0.00 0.00 0.00 SO2 0.00 0.00 0.00 0.00 SO4 222 0.00 0.00 0.00 OH 0.00 0.00 0.00 0.00 SO2 0.00 0.00<	Hardnes	s, as CaC(03			_	- 63	392.05	6	6573.67		14.302		10642.0			
Mq 1312.00 1349.28 2396 2184.3 Na 10857.00 11265.58 117.497 16180.1 K 393.00 404.04 5.265 651.4 NH4 0.00 0.000 0.000 0.00 Ba 0.000 0.000 0.000 0.00 Sr 0.000 0.000 0.000 0.00 C03 0.01 0.01 0.000 0.00 C03 0.01 0.01 0.000 0.00 SO4 2757.00 2835.32 6.680 4589.7 C1 19737.81 20294.45 191.023 32763.2 F 1.10 1.13 0.001 0.00 0.00 OH 0.03 0.00 0.000 0.00 0.00 0.00 OH 0.00 0.00 0.00 0.00 0.00 0.00 OH 0.00 0.00 0.00 0.00 0.00 0.00 SiO2 0.00	Са							106.00		417.54		0.908		675.9			
Na 10957.00 11255.88 117.487 19180.1 K 39300 404.04 5255 651.4 NH4 0.000 0.000 0.000 0.000 Ba 0.000 0.000 0.000 0.000 Sr 0.000 0.000 0.000 0.00 C03 0.01 0.01 0.000 0.00 C03 0.01 0.01 0.000 0.00 SO4 2757.00 2835.32 6.680 4589.7 C1 19737.81 20294.45 191.023 32763.2 F 1.10 1.13 0.001 0.00 OH 0.01 0.000 0.00 0.00 OH 0.013 0.01 0.02 0.00 OH 0.013 0.00 0.00 0.00 OH 0.00 0.00 0.00 0.00 OH 0.00 0.00 0.00 0.00 OH 0.00 0.00	Ma					_	13	312.00	1	349.28		2.936		2184.3			
R 333.00 404.04 5.255 851.4 NH4 0.00 0.000 0.000 0.00 Ba 0.000 0.000 0.000 0.00 Sr 0.000 0.000 0.000 0.00 HC03 0.01 0.01 0.000 0.00 SO4 2757.00 2835.32 6.680 4589.7 Cl 11973.781 20294.45 191.023 32763.2 F 1.10 1.13 0.001 0.0 NO3 0.00 0.000 0.00 0.00 OH 0.01 0.00 0.000 0.00 Sio2 0.00 0.00 0.00 0.00 B 0.00 0.00 0.00 0.00 C32 0.00 0.00 0.00 0.00 BH 0.00 0.00 0.00 0.00 DO 0.00 0.00 0.00 0.00 DH 8.10 8.10 8.10 <td>Na</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>109</td> <td>957.00</td> <td>11</td> <td>1265.68</td> <td></td> <td>117.487</td> <td></td> <td>18180.1</td> <td></td> <td></td> <td></td>	Na					_	109	957.00	11	1265.68		117.487		18180.1			
NH4 0.000 0.000 0.000 0.000 0.000 Ba 0.000 0.000 0.000 0.000 0.00 Sr 0.000 0.000 0.000 0.000 0.00 H 0.000 0.000 0.000 0.00 0.00 HC03 0.01 0.010 0.000 0.00 0.00 SO4 2757.00 2835.32 6.680 4569.7 Cl 19737.81 20294.45 191.023 32763.2 F 1.10 1.13 0.021 1.6 NO3 0.00 0.00 0.00 0.00 PO4 0.03 0.00 0.000 0.00 Gl 0.03 0.00 0.000 0.00 SiO2 0.00 0.00 0.00 0.00 B 0.00 0.00 0.00 0.00 NB3 0.00 0.00 0.00 0.00 SiS04 / ksp *100, % 21 22 40	К					_	1	393.00	404.04			5.265		651.4			
Ba 0.000 0.000 0.000 0.00 Sr 0.000 0.000 0.000 0.00 H 0.000 0.000 0.000 0.00 C03 0.01 0.01 0.000 0.00 SO4 2757.00 2835.32 6.680 4559.7 C1 19737.81 20294.45 191.023 32763.2 F 1.10 1.13 0.001 0.00 NO3 0.000 0.000 0.00 0.00 PO4 0.00 0.000 0.00 0.00 OH 0.13 0.13 0.01 0.2 Sio2 0.00 0.000 0.00 0.00 B 0.00 0.000 0.00 0.00 NH3 0.00 0.00 0.00 0.00 SiSO4/ ksp *100,% 21 22 40 400 SiSO4/ ksp *100,% 0 0 1200 BaSO4/ ksp *100,% 21 23 130 5000	NH4							0.00		0.00		0.000		0.0			
н 0.000 0.000 0.000 0.000 C03 0.01 0.01 0.000 0.00 S04 2757.00 2835.32 6.680 4589.7 CI 19737.81 20294.45 191.023 32765.2 F 1.10 1.13 0.000 0.00 P04 0.00 0.000 0.000 0.00 OH 0.013 0.13 0.001 0.02 SiO2 0.00 0.000 0.000 0.00 B 0.000 0.000 0.000 0.00 Co2 0.00 0.000 0.000 0.00 NH3 0.00 0.000 0.000 0.000 DS 35564.02 36567.55 324.32 59046.63 PH 8.10 8.10 8.13 8.13 DH 0.00 0 0 1200 BaSO 4/ ksp * 100, % 21 22 40 400 SiSO 4/ ksp * 100, % 0	Da Sr						0.000			0.000		0.000		0.0			
CO3 O.00 O.00 O.00 O.00 O.00 HCO3 0.10 0.10 0.00 0.01 SO4 2757.00 285.32 6.680 4589.7 CI 19737.81 20294.45 191023 32763.2 F 1.10 1.13 0.021 1.8 NO3 0.00 0.00 0.00 0.00 PO4 0.00 0.00 0.00 0.00 OH 0.13 0.13 0.00 0.00 GO2 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 DS 35564.02 36567.55 324.32 59046.63 PH 8.10 8.10 6.80 8.13 Saturations CaSO4 / ksp * 100, % 0 0 1200 BaSO4 / ksp * 100, %	н						0.000			0.000		0.000		0.0			
HC03 0.10 0.10 0.002 0.11 S04 2757.00 2835.32 6.680 4589.7 CI 19737.81 20294.45 191.023 32765.2 F 1.10 1.13 0.021 1.8 N03 0.00 0.00 0.000 0.0 PO4 0.00 0.00 0.000 0.0 OH 0.13 0.13 0.001 0.2 SiO2 0.00 0.00 0.000 0.00 B 0.000 0.00 0.00 0.00 CO2 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 DS 35564.02 36567.55 324.32 59046.63 pH 8.10 8.10 6.80 8.13 Saturations Raw Water Feed Water Concentrate Limits CaSO4 / ksp *100, % 21 22 40 400 SrSO 4 / ksp *100, %	CO3							0.01		0.01		0.000		0.0			
SO4 2757.00 2835.32 6.680 4589.7 CI 19737.81 20294.45 191.02 32763.2 F 1.10 1.13 0.021 1.8 NO3 0.00 0.00 0.000 0.00 PO4 0.00 0.00 0.000 0.00 OH 0.13 0.13 0.001 0.2 SiO2 0.00 0.00 0.00 0.00 B 0.00 0.00 0.00 0.00 CO2 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 PH 8.10 8.10 8.10 8.13 Saturations Raw Water Feed Water Concentrate Limits CaSO4 / ksp *100, % 21 22 40 400 SrSO4/ ksp *100, % 0 0 0 1200 BaSO4 / ksp *100, % 21 23 130 50000 Ca3(P O4)2 saturation index <td>нсоз</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>0.10</td> <td></td> <td>0.10</td> <td></td> <td>0.002</td> <td></td> <td>0.1</td> <td></td> <td></td> <td></td>	нсоз					_		0.10		0.10		0.002		0.1			
CI 19737.81 20294.45 191.023 32763.2 F 1.10 1.13 0.021 1.8 NO3 0.00 0.00 0.000 0.00 PO4 0.00 0.00 0.000 0.00 PO4 0.013 0.13 0.000 0.00 SiO2 0.00 0.00 0.000 0.00 B 0.00 0.00 0.00 0.00 C2 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 Saturations Raw Water Feed Water Concentrate Limits CaSO4 / ksp * 100, % 21 22 40 400 SrSO4 / ksp * 100, % 0 0 1200 1200 BaSO4 / ksp * 100, % 0 0 140 1200 SrSO4 / ksp * 100, %	SO4						27	757.00	2	2835.32		6.680		4589.7			
F 1.10 1.13 0.021 1.8 NO3 0.00 0.00 0.000 0.00 PO4 0.00 0.00 0.000 0.00 OH 0.13 0.13 0.001 0.2 SiO2 0.00 0.00 0.000 0.00 B 0.00 0.00 0.00 0.00 CO2 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 TDS 35564.02 36567.55 324.32 59046.63 pH 8.10 8.10 6.80 8.13 Saturations Raw Water Fee Water Concentrate Limits CaSO4 / ksp * 100, % 0 0 1200 3600 BaSO4 / ksp * 100, % 21 23 130 50000 CaS(P 04)2 saturation index	CI						197	737.81	20	0294.45		191.023		32763.2			
NO3 0.00 0.00 0.000 0.00 0.00 PO4 0.00 0.00 0.000 0.00 0.00 OH 0.013 0.13 0.001 0.2 SiO2 0.00 0.00 0.000 0.00 B 0.00 0.00 0.00 0.00 CO2 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 TDS 35564.02 36567.55 324.32 59046.63 pH 8.10 8.10 6.80 8.13 Saturations Raw Water Feed Water Concentrate Limits CaS04 / ksp * 100, % 21 22 40 400 SrS04 / ksp * 100, % 0 0 1200 1200 BaS04 / ksp * 100, % 21 23 130 50000 SiO2 saturation, % 0 0 0 140 CaS(PO4)2 saturation index 0.0 0.0 2.4	F							1.10		1.13		0.021		1.8			
PO4 0.00 0.00 0.000 0.000 0.00 OH 0.13 0.13 0.001 0.22 SiO2 0.00 0.00 0.000 0.00 B 0.00 0.00 0.000 0.00 CO2 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 TDS 35564.02 36567.55 324.32 59046.63 pH 8.10 8.10 6.80 8.13 Saturations Concentrate Limits CaSO4 / ksp * 100, % 21 22 40 400 SrSO4 / ksp * 100, % 0 0 0 10000 SiO2 saturation, % 0 0 0 10000 SiO2 saturation, % 21 23 130 50000 CaF2 / ksp * 100, % 21 23 130 50000 Ca3(PO4)2 saturation index 0.0 0.02 0.03 850 Lonic str	NO3							0.00		0.00		0.000		0.0			
OH 0.13 0.13 0.001 0.2 SiO2 0.00 0.00 0.000 0.00 B 0.00 0.00 0.000 0.00 0.00 CO2 0.00 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 0.00 TDS 35664.02 36567.55 324.32 59046.63 8.13 Saturations Raw Water Feed Water Concentrate Limits CaSO4 / ksp * 100, % 21 22 40 400 SrSO4 / ksp * 100, % 0 0 0 1200 BaSO4 / ksp * 100, % 21 22 40 400 SrSO4 / ksp * 100, % 0 0 10000 1200 BaSO4 / ksp * 100, % 21 23 130 50000 SiO2 saturation, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 Ca3(P O4)2 saturation index <td>PO4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.00</td> <td></td> <td>0.00</td> <td></td> <td>0.000</td> <td></td> <td>0.0</td> <td></td> <td></td> <td></td>	PO4							0.00		0.00		0.000		0.0			
SiO2 0.00 0.00 0.000 0.000 0.00 B 0.00 0.00 0.000 0.00 0.00 CO2 0.00 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 0.00 DS 35564.02 36567.55 324.32 59046.63 pH 8.10 8.10 6.80 8.13 Saturations Raw Water Feed Water Concentrate Limits CaSO4 / ksp * 100, % 21 22 40 400 SrSO4 / ksp * 100, % 0 0 0 1200 BaSO4 / ksp * 100, % 0 0 140 20 SrSO4 / ksp * 100, % 21 23 130 50000 SiO2 saturation, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 Ca3(P O4)2 saturation index 0.0 0.02 0.03 850 Ionic strength	он					_		0.13		0.13		0.001		0.2			
B 0.00 0.00 0.000 0.00 0.00 CO2 0.00 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 0.00 TDS 35564.02 36567.55 324.32 59046.63 pH 8.10 8.10 6.80 8.13 Saturations Raw Water Feed Water Concentrate Limits CaS04 / ksp * 100, % 21 22 40 400 SrS04 / ksp * 100, % 0 0 0 1200 BaS04 / ksp * 100, % 21 22 40 400 SrS04 / ksp * 100, % 0 0 0 10000 SiO2 saturation, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 Ca3(P 04)2 saturation index 0.0 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17 1.17	SiO2							0.00		0.00		0.000		0.0			
CO2 0.00 0.00 0.00 0.00 0.00 NH3 0.00 0.00 0.00 0.00 0.00 TDS 35564.02 36567.55 324.32 59046.63 B.10	8							0.00		0.00		0.000		0.0			
Intro 0.00 0.00 0.00 0.00 0.00 TDS 35564.02 36567.55 324.32 59046.63 5 BH 8.10 8.10 8.10 6.80 8.13 6 Saturations Raw Water Feed Water Concentrate Limits CaS04 / ksp * 100, % 21 22 40 400 SrS04 / ksp * 100, % 0 0 0 1200 BaS04 / ksp * 100, % 0 0 0 10000 SiO2 saturation, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 CaS(P 04)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	NH2							0.00		0.00		0.00		0.00			
Bit 350 kit 35	TDS						36/	64.02	36	567 55		324 32		0.00 590/16 63			
Saturations Raw Water Feed Water Concentrate Limits CaSO4 / ksp * 100, % 21 22 40 400 SrSO4 / ksp * 100, % 0 0 0 1200 BaSO4 / ksp * 100, % 0 0 0 1200 BaSO4 / ksp * 100, % 0 0 0 10000 SiO2 saturation, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 CaS(P 04)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	DH							8.10		8.10		524.52		8.13			
Saturations Raw Water Feed Water Concentrate Limits CaSO4 / ksp *100, % 21 22 40 400 SrSO4 / ksp *100, % 0 0 0 1200 BaSO4 / ksp *100, % 0 0 0 1400 SrSO4 / ksp *100, % 0 0 0 10000 BaSO4 / ksp *100, % 0 0 0 14000 SrSO4 / ksp *100, % 21 23 130 50000 CaF2 / ksp *100, % 21 23 130 50000 Ca3(PO4)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.03 850 Ionic strength 0.71 0.73 1.17																	
CaS04 / ksp * 100, % 21 22 40 400 SrS04 / ksp * 100, % 0 0 0 1200 BaS04 / ksp * 100, % 0 0 0 10000 SrS04 / ksp * 100, % 0 0 0 10000 SrS04 / ksp * 100, % 0 0 0 10000 SrS04 / ksp * 100, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 CaS(PO4)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	Satura	tions					1	Raw Wa	ter	Fe	eed Wat	ter	Co	ncentrate		Lin	nits
SrS04 / ksp * 100, % 0 0 0 1200 BaS04 / ksp * 100, % 0 0 0 10000 SiO2 saturation, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 Ca3(P 04)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	CaSO4 / ksp * 100, %					21			22			40		4	00		
BaS04 / ksp * 100, % 0 0 0 1000 SiO2 saturation, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 Ca3(P 04)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	SrSO4 / ksp * 100, %					0			0			0		12	200		
SiO2 saturation, % 0 0 0 140 CaF2 / ksp * 100, % 21 23 130 50000 Ca3(PO4)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	BaSO4	/ ksp * 1	00, %					0			0			0		10	000
CaF2 / ksp * 100, % 21 23 130 50000 Ca3(PO4)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	SiO2 si	aturation,	%					0			0		0			1	40
Ca3(PO4)2 saturation index 0.0 0.0 0.0 2.4 CCPP, mg/l 0.02 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	CaF2/	ksp * 100	D, %					21			23			130			000
CCPP, mg/l 0.02 0.03 850 Ionic strength 0.71 0.73 1.17	Ca3(P(04)2 satu	iration ind	ex				0.0			0.0			0.0			2.4
lonic strength 0.71 0.73 1.17	CCPP.	mg/l						0.02			0.02			0.03		8	50
	lonic st	rength						0.71			0.73			1.17			
Osmotic pressure, bar 26.0 26.8 43.2	Osmoti	ic pressui	re, bar					26.0		26.8			43.2				

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produced by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the adual amount of chemical needed for pla djustment is feedwater dependent and not membrane dependent. Hydranautics does not warrant (bernical consumption). If a product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranties may result in different pricing than previously quoted. Version : 2.228.86 %

Email : imsd-support@hydranauticsprojections.net

🏶 www.membranee.com 💿+1 760 901 2500 🛛 🜅

Integrated Membranes Solutions Design Software, 2018

						(Concent	rate Recin	culation						
Project	name		SM	/RO De	salinat	tion								Pa	age : 2/6
Calcula	ited by		F	Randy N	lcube				Permeat	e flowtrair	1			0.45	m3/h
HP Pur	np flow						1.17 m3	/h	Raw wat	ter flow/trai	n			1.12	m3/h
Feed p	ressure						49.6 bai	,	Permeat	e recovery				38.46	%
Feedte	mperatur	Э					25.0 °C((77.0°F)	Total sys	stem recov	ery			40.00	%
Concer	ntrate reci	rculation					0.05 m3	/h	Element	age				0.0	years
Feed w	ater pH						8.10		Flux dec	line %, per	year			5.0	
Chem o	iose, mg/l					н	2804		Fouling 1	factor				1.00	
Specifi	: energy						5.12 kw	h/m3	SP incre	ase, per ye	ear			7.0	%
Pass N	DP						14.3 bai	,							
Averag	e flux rate						15.1 Imł	1 I							
									Feed typ	e			Sea Sur	face M F/L	JF
Pass-	Perm.	Flow / V	essel	Flux	DP	Flux	Beta	Stage	ewise Pres	ssure	Perm.	Eleme	ent E	lement	PV # x
Stage	Flow	Feed	Conc			Max		Perm.	Boost	Conc	TDS	Түра	e G	Quantity	Elem#
-	m3/h	m3/h	m3/h	Imh	bar	Imh		bar	bar	bar	mg/l			,	
1-1	0.4	1.2	0.7	15.1	0.3	25.1	1.06	0	0	49.3	324.5	SWC5-LD	-4040	4	1 x 4M
Pass-	Element	Feed	Pressure	e Coi	nc	NDP	Permeat e Water	Permeate Water	Beta		Permea	ite (Stagew	/ise cumu	lative)	
Stage	no.	Pressure	Drop	Osn	no.		Flow	Flux		TDS	Са	Mq	Na	CI	
-		bar	bar	ba	ar	bar	m3/h	Imh				-			
1-1	1	49.6	0.1	31.	.7	18.9	0.2	25.1	1.06	162.5	0.455	1.47	58.885	95.729	
1-1	2	49.5	0.07	36.	4	13.8	0.1	17	1.05	208.6	0.584	1.887	75.573	122.862	
1-1	3	49.4	0.06	40.	2	9.9	0.1	11.2	1.04	262.8	0.736	2.378	95.203	154.783	
1-1	4	49.3	0.05	43.	2	6.8	0.1	7.3	1.03	324.5	0.909	2.937	117.54	191.11	

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produced by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the adval amount of chemical needed for pla djustment is feedwater dependent and not membrane dependent, Hydranautics does not warrant chemical consumption. If a product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranties may result in different pricing than previously quoted. Version : 2.228.86 %

Email : imsd-support@hydranauticsprojections.net

🏶 www.membranee.com 💿+1 760 901 2500 🛛 🜅

Integrated Membranes Solutions Design Software, 2018

Created on: 9/5/2020 03:19:11

Concentrate Recirculation												
Project name Temperature :	SV 25.0 °C	√R0 Desalination	Element age, P1 :	Page: 3/6 0.0 years								
	1	2 → () - (3)	4	<7>→								

Stream No.	Flow (m3/h)	Pressure (bar)	TDS (mg/l)	CaF2	Langelier	lonic strength	O smotic pressure (bar)
1	1.12	0	35564	21.2	-2.123	0.707	
2	1.17	0	36568	23.3	-2.102	0.727	
3	1.17	49.6	36568	23.3	-2.102	0.727	
4	0.720	49.3	59047	130	-1.726	1.174	
5	0.050	0	59047	130	-1.726	1.174	
6	0.670	0	59047	130	-1.726	1.174	
7	0.450	0	324	0.000	-7.628	0.006	

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produced by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the actual arount of chemical needed for pl adjustment is feedwater dependent and not membrane dependent, Hydranautics does not warrant chemical consumption. If a product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranties may result in different pricing than previously quoted. Version : 2.228.86 %

Email : imsd-support@hydranauticsprojections.net

- 🍈 www.membranee.com 🚳 +1 760 901 2500 🛛 🜅

Integrated Membranes Solutions Design Software, 2018

Created on: 9/5/2020 03:19:11

		Con	icentrate Re	circulation					
Project name	SWRO Desalination	n	Page : 4/6						
Calculated by	Randy Ncube			Permeate f	lowtrain			0.45 n	n3/h
HP Pump flow		1.17	7 m3/h	Raw water	flow/train			1.12 n	n3/h
Feed pressure		49.6	3 bar	Permeate r	ecovery			38.46 %	6
Feed temperature		25.0	0 °C(77.0°F)	Total system	m recovery			40.00 %	
Concentrate recirculation	0.06	5 m3/h	Element ag	e		0.0 years			
Feed water pH	8.10)	Flux decline	e %, per ye	ar		5.0		
Chem dose, mg/l, -	H2SO4	4	Fouling fac	tor			1.00		
Specific energy		5.12	2 kwh/m3	SP increase	e, peryear			7.0	Ж
Pass NDP		14.3	3 bar						
Average flux rate		15.1	1 Imh						
				Feed type			Sea Su	rface MF/UF	
Pass - Perm. Flow / Vesse	I Flux DP	Flux	Beta S	tagewise Pre:	ssure	Perm.	Element	Element	PV # x
Stage Flow Feed Con	с	Max	Perm	n. Boost	Conc	TDS	Туре	Quantity	Elem#
- m3/h m3/h m3/	h lmh bar	Imh	bar	bar	bar	mg/l			
1-1 0.4 1.2 0.7	15.1 0.3	25.1	1.06 0	0	49.3	324.5	SWC5-LD-4040	4	1 x 4M

CALCULATION OF POWER REQUIREMENT

	Pass 1	Total system power
Pump/Boost pressure, bar	49.6	
Product flow, m3/h	0.5	0.45
Pump flow, m3/h	1.2	
Pump efficiency, %	80.0	
Motor efficiency, %	90.0	
VFD efficiency, %	97.0	
Pumping power, BHP	3.1	
Pumping power, kw	2.3	2.3
Pumping energy, kwh/m3		5.12

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produce d by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the a dual arrount of chemical needed for pl a djustment is fedwater dependent. Hydranautics does not warrant chemical consumption. If a product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranties may result in different pricing than previously quoted. Version : 2.228.86 %

Email : imsd-support@hydranauticsprojections.net

🌐 www.membranee.com 🔘+1 760 901 2500 🛛 🜅

Integrated Membranes Solutions Design Software, 2018

Created on: 9/5/2020 03:19:11

						C	oncentr	ate Rec	irculation					
Project	name			SWRO De	esalinatio	n							Pa	age : 5/6
Calcula	ited by			Randy N	lcube				Permeate 1	1ow/train			0.45 m	3/h
HP Pump flow					1.17 m3/	(h	Raw water	flow/train			1.12 m	3/h		
Feed pressure					49.6 bar Permeate recovery						38.46 %			
Feed temperature					25.0 °C(77.0°F)	Total syste	m recovery	/		40.00 %			
Concentrate recirculation					0.05 m3	/h	Element ag	je .		0.0 years				
Feed water pH				8.10		Flux declin	e %, per ye	ear		5.0				
Chem dose, ma/l, -			H2	SO4		Fouling fac	tor			1.00				
Specifi	c energy						5.12 kwł	n/m3	SP increas	e, per year	,		7.0 %	5
Pass N	DP						14.3 bar							
Averag	e flux rate	e					15.1 Imh	1						
									Feed type			Sea S	urface MF/	UF
Pass-	Perm.	Flow /	Vessel	Flux	DP	Flux	Beta	St	agewise Pre	ssure	Perm.	Element	Element	PV# x
Stage	Flow	Feed	Conc			Max		Perm.	Boost	Conc	TDS	Түре	Quantity	Elem #
-	m3/h	m3/h	m3/h	Imh	bar	Imh		bar	bar	bar	mg/l			
1-1	0.4	1.2	0.7	15.1	0.3	25.1	1.06	0	0	49.3	324.5	SWC5-LD-4040	4	1 x 4M

CALCULATION OF INVESTMENT AND WATER COST

Plant capacity as permeate	0.45	m3/h
Specific investment	22,151.11	USD/m3/h
Investment	9,968.00	USD
Plant life	15.0	years
Membrane life	5.0	years
Interest rate	4.5	%
Membrane cost	500.00	USD/element
Plant factor	90.0	%
Number of elements	4.0	
Powercost	0.200	USD/kwhr
Inhibitor cost	2.20	USD/kg
Power consumption	5.12	kwhr/m3
Inhibitor dosing	3.0	mg/l
Maintenance(as % of investment)	3.0	%
Acid cost	0.15	USD/kg
Acid dosing	0.00	mg/l

CALCULATION RESULTS

Capital cost	0.17 USD/m3
Powercost	1.02 USD/m3
Chemicals cost	0.02 USD/m3
Membrane replacement costs	0.11 USD/m3
Maintenance	0.08 USD/m3
Total water cost	1.41 USD/m3

Product performance calculations are based on nominal element performance when operated on a feed water of acceptable quality. The results shown on the printouts produced by this program are estimates of product performance. No guarantee of product or system performance is expressed or implied unless provided in a separate warranty statement signed by an authorized Hydranautics representative. Calculations for chemical consumption are provided for convenience and are based on various assumptions concerning water quality and composition. As the actual arrount of chemical needed for pH adjustment is feedwater dependent and not membrane dependent. Hydranautics does not warrant chemical consumption. If a product or system warranty is required, please contact your Hydranautics representative. Non-standard or extended warranties may result in different pricing than previously quoted. Version : 2.228.86 %

Email : imsd-support@hydranauticsprojections.net

🌐 www.membranee.com 💿+1 760 501 2500 🛛 📃

APPENDIX 2 – ROSA Results

Reverse Osmosis System Analysis for FILMTEC™ Membranes	ROSA ROSA_Desalitech ConfigDB u399339_356
Project: SWRO Desalination Single Stage 10m3 unit 2	Case: 1
Randy Ncube, University of KwaZulu Natal	16/4/2020

Project Information:

Case-specific: 10 m3/d SWRO Desalination Unit

System Details

Feed Flow to Stage 1	1.13 m³/h	Pass 1 Permeate Flow	0.45 m³/h	Osmotic Pressure:	
Raw Water Flow to System	1.13 m³/h	Pass 1 Recovery	40.00 %	Feed	25.22 bar
FeedPressure	47.44 bar	Feed Temperature	25.0 C	Concentrate	42.68 bar
Flow Factor	0.90	Feed TDS	35588.35 mg/l	Average	33.95 bar
Chem. Dose	None	Number of Elements	12	Average NDP	13.19 bar
Total Active Area	31.21 M²	Average Pass 1 Flux	14.42 1mh	Power	1.65 kW
Water Classification: Seawater with Conventional pretro	eatment, SDI < 5			Specific Energy	3.66 kWh/m³

Stage	Element	#PV	/#Ele	Feed Flow (m³/h)	Feed Press (bar)	Recirc Flow (m³/h)	Conc Flow (m³/h)	Conc Press (bar)	Perm Flow (m³/h)	Avg Flux (lmh)	Perm Press (bar)	Boost Press (bar)	Perm TDS (mg/l)
1	SW30-2540	2	2 6	1.13	47.10	0.00	0.68	46.17	0.45	14.42	0.00	0.00	633.30

Pass Streams (mg/l as Ion)								
NT	T 1	Concentrate	Permeate					
Ivame	Feed	A ajuste a Feed	Stage 1	Stage 1	Total			
NH4+ + NH3	0.00	0.00	0.00	0.00	0.00			
K	393.00	393.00	649.25	8.62	8.62			
Na	10957.00	10957.00	18111.67	224.92	224.92			
Mg	1312.00	1312.00	2180.58	9.12	9.12			
Ca	406.00	406.00	674.81	2.78	2.78			
Sr	0.00	0.00	0.00	0.00	0.00			
Ba	0.00	0.00	0.00	0.00	0.00			
CO3	0.00	0.00	0.00	0.00	0.00			
HCO3	0.00	0.00	0.00	0.00	0.00			
NO3	0.00	0.00	0.00	0.00	0.00			
a	19751.75	19751.75	32665.20	381.47	381.47			
F	1.10	1.10	1.82	0.03	0.03			
SO4	2767.47	2767.47	4608.22	6.34	6.34			
Si O2	0.00	0.00	0.00	0.00	0.00			
Boron	0.00	0.00	0.00	0.00	0.00			
CO2	0.00	0.00	0.00	0.00	0.00			
TDS	35588.35	35588.35	58891.57	633.30	633.30			
pH	8.10	8.10	8.10	8.10	8.10			

*Permeate Flux reported by ROSA is calculated based on ACTIVE membrane area. DISCLAIMER: NO WARRANTY, EXPRESSED OR IMPLIED, AND NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS GIVEN. Neither FilmTec Corporation nor The Dow Chemical Company assume any obligation or liability for results obtained or damages incurred from the application of this information. Because use conditions and applicable laws may differ from one location to another and may change with time, customer is responsible for determining whether products are appropriate for customer's use. ROSA projections do not guarantee performance nor are such projections meant to be a warranty for the system or its design. If you choose to design your systems based on the ROSA projections, you will take full responsibility for such design and for the system. You acknowledge that Dow gives a system warranty only in limited circumstances and only under certain specific terms and conditions. Should you decide to buy Membranes, to the extent Dow gives its standard Membrane warranty, which is the standard FilmTec 3-year proted element warranty, Dow will provide such a limited warranty. You acknowledge that a system warranty is not typical and is not an entitlement. You agree to use best engineering practices and process judgment in product selection and system design FilmTec Corporation and The Dow Chemical Company assume no liability, if, as a result of customer's use of the ROSA membrane design software, the customer should be sued for alleged infingement of any patent not owned or controlled by the FilmTec Corporation nor The Dow Chemical Company.

Reverse Osmosis System Analysis for FILMTEC™ Membranes Project: SWRO Desalination Single Stage 10m3 unit 2 Randy Ncube, University of KwaZulu Natal ROSA ROSA_Desalitech ConfigDB u399339_356 Case: 1 16/4/2020

Design Warnings

-None-

Solubility Warnings

CaF2 (% Saturation) > 100% Antiscalants may be required. Consult your antiscalant manufacturer for dosing and maximum allowable system recovery

Stage Details

Stage 1	Element	Recovery	Perm Flow (m³/h)	Perm TDS (mg/l)	Feed Flow (m ³ /h)	Feed TDS (mg/l)	Feed Press (bar)
	1	0.12	0.07	299.93	0.56	35588.35	47.10
	2	0.11	0.05	419.21	0.50	40376.48	46.89
	3	0.09	0.04	595.12	0.44	45105.24	46.71
	4	0.07	0.03	847.64	0.40	49467.93	46.55
	5	0.06	0.02	1215.24	0.37	53268.56	46.42
	6	0.04	0.02	1704.85	0.35	56387.86	46.29

*Permeate Flux reported by ROSA is calculated based on ACTIVE membrane area. DISCLAIMER: NO WARRANTY, EXPRESSED OR IMPLIED, AND NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, IS GIVEN. Neither FilmTec Corporation nor The Dow Chemical Company assume any obligation or liability for results obtained or damages incurred from the application of this information. Because use conditions and applicable laws may differ from one location to another and may change with time, customer is responsible for determining whether products are appropriate for customer's use. ROSA projections do not guarantee performance nor are such projections meant to be a waranty for the system or its design. If you choose to design your systems based on the ROSA projections, you will take full responsibility for such design and for the system. You acknowledge that Dow gives a system waranty only in limited circumstances and only under certain specific terms and conditions. Should you decide to buy Membranes, to the extent Dow gives its standard Membrane warranty, which is the standard FilmTec 3-year proteted element warranty. Dow will provide such a limited warranty. You acknowledge that a system warranty is not typical and is not an entitlement. You agree to use best engineering practices and process judgment in product selection and system design FilmTec Corporation and The Dow Chemical Company assume no liability, if, as a result of customer's use of the ROSA membrane design software, the customer should be sued for alleged infingement of any patent not owned or controlled by the FilmTec Corporation nor The Dow Chemical Company.