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Abstract
In this paper the dual scalar Aharonov-Bohm effect is explored
in the context of massive electrodynamics. Specifically, the
phase shift of a package of neutral particles with magnetic
dipole moment (neutrons) is obtained in the presence of
an internal magnetic field pulse from an infinite solenoid
calculated with Proca’s equations. The phase correction
introduced for the Proca equations is compared with the
experimental precision and a limit of the order of 2 × 10−44g
is obtained for the photon mass.
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I. INTRODUCCTION

The photon is the particle that mediates electromagnetic
interaction. This particle appears as a consequence of the
quantification of Maxwell’s theory with the peculiarity that it
has no mass [1]. On the other side, Proca [2] in 1936 introduced
a relativistic generalization of Maxwell’s equations which lead,
through quantization, to a photon with mass [1]. Although
Maxwell’s scenario has been extensively tested experimentally,
Proca’s scenario does not fail to attract attention because it
seems more intuitive that every particle in nature has mass.
Consequently, the controversy of whether the photon has
mass or not must be resolved only by means of experimental
verification. A similar controversy arose with the neutrino,
which is the particle that mediates strong nuclear interaction.
This particle was considered massless like the photon, but
recently, the oscillation of neutrinos has been experimentally
observed, a property that is possible only if the neutrino has
mass [3] [4]. Thus, the search for the photon mass (as opposed
to the neutrino mass) remains an open and fundamental issue
in particle physics. Recently,

Theoretical perspective: From the theoretical point of view
the insertion of a massive term in the Lagrangian of quantum
electrodynamics breaks its gauge invariance, meaning this, the
theory cannot be renormalizable. But this is not the case with
the Proca Lagrangian because it is the fixed gauge version of
Stückelberg’s Lagrangian [5] which restores gauge invariance.
The above indicates that the theory can admit a massive
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photon, but finally it must be the experimental verification
that has the last word. According to the uncertainty principle(
mγ ≈ ~/ (∆t) c2

)
the upper final limit that can be established

for the photon mass is mγ ≈ 10−66g, where the age of the
universe which is around 1010 years has been used for ∆t [6].

Methodology: In Proca’s theory the electric and magnetic
fields are modified, for example, the potential of a charged
particle q has the shape of a Yukawa type potential [6], that
is, V (r) = q

4πε0
e−µγr

r ,which is reduced to the Coulomb
potential at the limit µγ → 0. Being µγ (measured in m−1) a
parameter related to the mass of the photon through the relation
mγ = µγ~/c. A theorem due to Goldhaber and Nieto [7] states
that: “the fractional change due to the mass of the photon in the
fields in a region of dimension D is of the order of (µγD)”.
Therefore, if a certain phenomenon produces an observable
intensity I in Maxwell’s theory, the same intensity in Proca’s
theory will be∼ I+I (µγD)

2. The term I (µγD)
2 is the effect

due to the mass of the photon, which must be very small and its
effect must be, at most masked in the experimental precision,
∆I , of the studied phenomenon, thus, I (µγD)

2 ≤ ∆I . With
this it is observed that µγ ≤ D−1

√
∆I/I which shows that the

limit of the photon mass depends on the dimension D and the
experimental precision ∆I (∆I ∝ I). These considerations
give rise to two types of phenomena that can be explored:
1) Type 1: phenomena of large length scales and / or low
experimental precision, or 2) Type 2: phenomena with very
small length scales and great experimental precision.

Among the type 1 phenomena are measurements of the
deviation of the Earth’s magnetic dipole field made by
Fischbach et al. [8] (mγ ∼ 1.0 × 10−48g) and Goldhaber
and Nieto [9] (mγ ∼ 4.0 × 10−48g), see also Xing et al.
[10] (mγ ∼ 5.1 × 10−45g) and Wei et al. [11] (mγ ∼
1.5 × 10−45g). A more extensive list of type 1 methods
can be found in the review papers of Tu et. al. [6] and
Goldhaber and Nieto [7][12]. Among the type 2 phenomena
is the high precision test of Coulomb’s law carried out by
William et al. [13] (mγ ∼ 1.4 × 10−47g) and the cryogenic
experiment by Ryan et al. [14] (mγ ∼ 1.5 × 10−42g). Since
precision is a fundamental condition in type 2 phenomena, then
it is reasonable to explore quantum phenomena in which this
requirement is present. The first to explore this scenario were
Boulware and Deser [15] studying the Aharonov-Bohm effect
[16] with Proca’s theory (mγ ∼ 2.8 × 10−45g). The Spavieri
effect (AB to electron-positron effect) [17] and the Tackchuk
effect [18] has been studied by Spavieri and Rodriguez [19]
obtaining the limit (mγ ∼ 2.8 × 10−51g) and (mγ ∼ 2.8 ×
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10−41g), respectively. The effect of type AB for neutrons
proposed by Sangster et. al.[20] was studied by M. Rodriguez
[21] (mγ ∼ 1.1 × 10−41g). Another quantum scenario that
has been recently explored is that of atomic spectroscopy,
specifically, Caccavano and Leung have explored the effect
of the photon mass in the context of the hyperfine structure,
finding an expression with the photon mass for the 21cm line
of hydrogen [22]. To expand the discussion on the mass of
the photon in quantum scenarios, see the article by Spavieri
et. al. [23]. Following this methodology, in this work an
experiment of type 2, specifically the Dual Scalar Aharonov-
Bohm effect (DEAB) [24] is explored in the context of Proca’s
equations or massive electrodynamics. Consequently, the work
is organized as follows: in section 2 Proca’s theory is reviewed
and the internal magnetic field of an infinite solenoid is derived,
this result is an application of the procedure used by Boulware
and Deser [15] to get the magnetic field in the context of the
Aharonov-Bohm effect with photon mass. In section 3 we
introduce the Aharonov-Bohm [16] scalar effect and its dual
effect that will be analyzed in this work. With the results of
section 2 and the DEAB effect in the section 4 we established
a limit on the mass of the photon. Finally, in section 5 the
conclusions are made.

II. PROCA’S EQUATIONS AND MAGNETIC FIELD
OF AN INFINITE SOLENOID

A. Proca’s equations

The set of electromagnetic field equations leading to the
massive photon known as Proca’s equations are as follows (in
the international system of units, SI):

∇ ·E =
ρ

ε0
− µ2

γφ (1)

∇×E =− ∂B

∂t
(2)

∇ ·B =0 (3)

∇×B =µ0J + µ0ε0
∂E

∂t
− µ2

γA (4)

where E is the electric field, B the magnetic field, ρ the charge
density, J the current density, φ the scalar potential, A the
vector potential, µ0 and ε0 are the permittivity and permeability
of free space and µγ a characteristic length of the related theory
(by means of quantization [1]) with the photon mass, that is:

mγ =
µγ~
c

(5)

Additionally, potentials maintain their standard form,

B = ∇×A, (6)

and

E = −∇φ− ∂A

∂t
(7)

along with the Lorentz condition

∇ ·A+
1

c2
∂φ

∂t
= 0 (8)

which is necessary for the validity of the conservation of the
load. It should be noted that due to the parameter µγ present
in the equations (1) and (4) the fields E and B acquire an
exponential attenuation, in addition to the natural dependence
on distance, hence Proca electrodynamics is also known as
finite range electrodynamics.

B. Magnetic Field of an Infinite Solenoid

To find the static magnetic field inside a solenoid, you must first
obtain the potential vector A. To do this, substitute (6) in (4)
together with Coulomb´s gauge ∇ ·A = 0, this last condition
is obtained from considering that the fields are static and thus
the equation (8) gives the mentioned condition. So,

(−∇2 + µ2
γ)AAB = µ0JAB . (9)

Now let M (z) = µ̄ẑ be the magnetization per unit length
of the solenoid so the associated surface current is K = µ̄φ̂.
Therefore, the equation (9) takes the following form:

(−∇2+µ2
γ)AAB = φ̂ (µ0µ̄) δ(ρ−a) = ∇×{B0ẑΘ(a− ρ)} ,

(10)

where B0 = µ0µ̄ is the internal standard magnetic field of an
infinite solenoid in SI units, a is the radius of the solenoid,
(ρ̂, ẑ) are unit vectors, Θ is the step function and ρ is the radius
in the x−y plane. If A = ẑ×∇Π(ρ) is taken, then the equation
(10) after some manipulations takes the following form:

1

ρ

∂

∂ρ

(
ρ
∂Π(ρ)

∂ρ

)
− µ2

γΠ(ρ) = B0Θ(a− ρ). (11)

The relevant homogeneous solutions of this equation are the
modified Bessel functions I0 and K0 which are regular at the
origin and at infinity, respectively:

x→ 0 : I0 (x) ∼ 1 +
x2

4
, K0 (x) ∼ − ln

(x
2

)
x→∞ : I0 (x) ∼ (2πx)

−1/2
ex, K0 (x) ∼ −

(π
2

)1/2
e−x.

Consequently, Green’s function:

G (ρ, ρ′) = I0 (µγρ<)K0 (µγρ>) (12)

thus Π (ρ) is given by:

Π(ρ) = B0Θ(a− ρ)[K0(µγρ)

∫ ρ

0

I0(µγρ
′)ρ′dρ′

+ I0(µγρ)

∫ a

ρ

K0(µγρ
′)ρ′dρ′]

−B0Θ(ρ− a)K0(µγρ)

∫ a

0

I0(µγρ
′)ρ′dρ′. (13)
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Therefore, the magnetic field is:

B = ∇×A = ẑ∇2Π = ẑB0Θ(a− ρ) + ẑµ2
γΠ (ρ) . (14)

The first term on the right side of (14) is, of course, the usual
B0 usual magnetic field in Maxwell’s theory. It is clear from
(13) that µ2

γΠ (ρ) cancels out at the limit µγ → 0 since I0 is
regular and K0 is logarithmic in the arguments (for ρ fixed).
The internal magnetic field of the solenoid which is of interest
in this work will be given by the following expression:

B = ẑB0Θ(a− ρ)
{

1 + µ2
γ [C +D]

}
(15)

where,

C = − ln
(µγρ

2

)∫ ρ

0

(
1 +

(µγρ
′)2

4

)
ρ′dρ′

and

D = −
(

1 +
(µγρ)2

4

)∫ a

ρ

ln

(
µγρ

′

2

)
ρ′dρ′

The integrals of C and D are as follows:∫ ρ

0

(
1 +

(µγρ
′)2

4

)
ρ′dρ′ =

1

µ2
γ

[
(µγρ)4

10
+

(µγρ)2

2

]
(16)

∫ a

ρ

ln

(
µγρ

′

2

)
ρ′dρ′ =

4

µ2
γ

 [
(µγa)

2

2 ln (µγa)− (µγa)
2

4

]
−
[
(µγρ)

2

2 ln (µγρ)− (µγρ)
2

4

] 
(17)

Substituting (16) and (17) in (15) we obtain:

B = ẑB0

1 +

3
(µγρ)2

2
ln (µγρ) + 5

(µγρ)4

2
ln (µγρ)

−2(µγa)2 ln (µγa)− (µγρ)2(µγa)2

2
ln (µγa)

+(µγa)2 − (µγρ)2 +
(µγρ)2(µγa)2

4
− (µγρ)4

4


(18)

Now, although (18) is the expression of the magnetic field
inside the solenoid, here you will be interested in the internal
field near the origin, in this case the following approach is true:

µγρ� µγa� 1 (19)

Consequently, the field of interest in this work will have the
following expression:

B = ẑB0

[
1− 2(µγa)2 ln (µγa)

]
(20)

If the field is time dependent in the form of a pulse, then the
field (20) take the form:

B (t) = ẑB0 (t)
[
1− 2(µγa)2 ln (µγa)

]
(21)

where

B0 (t) =

{
B0 si 0 ≤ t ≤ tv
0 t > tv

Where tv is the time during which the pulse is applied.

III. AHARONOV-BOHM DUAL SCALAR EFFECT

A. Aharonov-Bohm scalar effect

Little mention is made in the literature of the Aharonov-
Bohm (EAB) scalar (or electrical) effect for electrons proposed
by Aharonov and Bohm in their famous 1959 paper [16]
entitled “Importance of Electromagnetic Potentials in Quantum
Theory” In this effect the shift of the interference pattern is
caused by the presence of a scalar potential, V = −eU , in the
path of the particles, although E = B = 0. Schrödinger’s
equation in this case takes the following form

(H0 + V ) Ψ = i~
∂

∂t
Ψ (22)

The figure (1) illustrates the Aharonov-Bohm scalar effect. In
this effect, an electron package is divided into two packages
that travel through two cylinders that act as Faraday boxes.
During the transit of each electron packet through the cylinders
a potential pulse is ignited in each cylinder for a time interval τ .
The pulse is considered to be turned on when the electron pack
is away from the edges of the cylinders. This condition allows
a constant potential (force free effect) and also disregards edge
effects. Now, according to the Schrödinger equation (22) the
phase difference, ∆φS , that these two packages experience
when they emerge from Faraday’s boxes is:

∆φS =
1

~

∫ t2

t1

e [U2 (t)− U1 (t)] dt =
e

~
[U2 − U1] τ (23)

where it has been considered that:

U2 (t) =

{
U2 si t1 ≤ t ≤ t2
0 t > t1 y t < t2

and

U1 (t) =

{
U1 si t1 ≤ t ≤ t2
0 t > t1 y t < t2

where τ = t2 − t1. A greater effect is achieved if U1 = −U2,
so the phase would be double, that is:

∆φS = 2
e

~
U2τ (24)

B. Aharonov-Bohm scalar dual effect

Allman et. al. [24] presented an experiment very similar
to the EAB effect, but with neutrons. In this phase shift is
produced the scalar potential, V = −µ · B, in analogy with
the scalar potential V = −eU . For this, the electron pack
was replaced by a neutron package (Fig 2), and the Faraday
cylinders or boxes with solenoids with pulses of current i1 and
i2 that produce pulses of magnetic fields B2 (t) and B1 (t).
Consequently, the phase difference, ∆φN , experienced by the
neutron packets is:

∆φN =
1

~

∫ t2

t1

µ [B2 (t)−B1 (t)] dt (25)
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FIG. 1: Illustration of the scalar (or electric) AB effect for electrons.
Two coherent electron beams travel through two held cylinders at
different potentials, U1 (t) and U2 (t). Phase shift occurs when the
potential in one of the cylinders is pulsed during the time it takes
for the beam to pass through it. Inside the cylinders the electric and
magnetic field is zero E = B = 0.

FIG. 2: Illustration of the scalar (or electrical) AB effect for neutrons.
Two coherent neutron beams travel through two solenoids in which
two currents circulate, i1 (t) and i2 (t). Phase shifting occurs when
the current in each solenoid is pulsed for the time τ that the package
remains within the solenoids.

Now, we consider that

B2 (t) =

{
B0 si t1 ≤ t ≤ t2
0 t > t1 y t < t2

and

B1 (t) =

{
−B0 si t1 ≤ t ≤ t2

0 t > t1 y t < t2

Then,

∆φN =
2

~

∫ t2

t1

µB2 (t) dt = 2
µB0

~
τ (26)

where τ = t2 − t1 and µ is the magnetic moment of the
neutrons. Note that the edge effect is also not taken in this
effect since the neutron packet is considered to be inside the
cylinder and away from the edges when the current pulse at
each solenoid is turned on.

IV. LIMIT ON THE MASS OF THE PHOTON

To establish a limit on the mass of the photon in the
configuration proposed by Allman et. al. [24]. Replace the
expression (21) in (26), thus obtaining the phase for the scalar
effect for neutrons in massive electrodynamics , ∆φN,γ :

∆φN,γ =
2µB0τ

~
[
1− 2(µγa)2 ln (µγa)

]
It is convenient to separate this expression in the following
way:

∆φN,γ = ∆φN −∆φN
[
2(µγa)2 ln (µγa)

]
where ∆φN = 2µB0

~ . Therefore, the additional term in phase
due to the mass of the photon is:

∆φγ = ∆φN
[
2(µγa)2 ln (µγa)

]
Considering the approximation (19) this last expression can be
written as 2(µγa)2 ln (µγa) ' 2(µγa)2, whereby we are left
with the correction to the phase due to the mass of the photon,
∆φγ , is as follows:

∆φγ = 2∆φN (µγa)2

This agrees with the Goldhaber and Nieto theorem [7]
mentioned in the introduction, i.e., the correction due to the
photon mass is of the order of (µγD)2 where D is the
dimension of the interaction region, in this case Dis the radius
a of the solenoid. So,

2∆φN (µγa)2 ≤ δ (∆φN )

Thus,

µγ = a−1

√
1

2

δ (∆φN )

∆φN
(27)

where δ (∆φN )is the precision of the measurement in this
scenario. The expression (27) is the result that allows obtaining
a limit on the mass of the photon. As in this work the possibility
of obtaining a limit mγ is being explored, we proceed to
test values of the parameters contained in (27) that are within
the allowed experimental technology. For this purpose, it is
necessary to consider ultra slow neutrons, according to Daum
et. al. [25] neutrons can obtain low velocities, for example,
v = 10m/s, this implies that the flight time of neutrons within
a 1m long solenoid is tv = 10−1m/s. With this speed for the
neutrons then the pulse of the magnetic field inside the solenoid
can be activated for τ = 10−2s, this is equivalent to a flight
distance of 10cm, which is necessary for the neutrons to be in
the center of the solenoid and thus do not take into account
the edge effects. According to Boulware and Deser [15] the
magnetic field of the solenoid can be B0 = 10T. Furthermore,
the radius of the solenoid can be a = 10−1m. Finally, the
precision of the measurement that can be obtained in neutron
interferometers is δ (∆φN ) = 5.2 × 10−4rad, as reported by
the work of Cimmino et. al. [26] in the measurement of
the topological effect of the Aharonov-Bohm type for neutrons
known as the Aharonov-Casher [27]. With all these data, the
following limit is obtained for µγ :

µγ = 10m−1
√

1

2

5.2× 10−4

9.2× 106
=5, 3× 10−5m−1
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This implies a searched limit for mγ according to (5) is:

mγ =
µγ~
c

= 2× 10−44g.

V. CONCLUSIONS

In this work, the internal field of a solenoid has been calculated
with Proca’s electrodynamics. This result together with the
phase of the DEAB effect proposed by Allman et. al. [24]
allows to obtain an expression for the phase of the DEAB
effect in the context of the massive electrodynamics or mass
of the photon. Under certain experimental considerations it is

possible to obtain a limit on the mass of the photon of the order
of 2 × 10−44g. The obtained value is an order of magnitude
greater than the limit reported by [15][10][11] and three orders
of magnitude less than the result reported by M. Rodriguez [21]
in the context of the Sangster et. al. [20]. It can be seen that
type 1 tests compete or are comparable with the limits obtained
in type 2 tests, such as the recent results of Xing et al. [10] and
Wei et al. [11] through Fast radio bursts. Accordingly, with
the advent of improvements in the precision of interferometers,
it could be possible to obtain limits that are closer to the final
limit of 10−66g for the mass photon.
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and P. Mészáros, Astrophysical Journal Letters 882 (2019), cited
By 3.

[11] J.-J. Wei and X.-F. Wu, Journal of Cosmology and Astroparticle
Physics 2018 (2018), cited By 5.

[12] A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 82, 939
(2010).

[13] E. R. Williams, J. E. Faller, and H. A. Hill, Phys. Rev. Lett. 26,
721 (1971).

[14] J. J. Ryan, F. Accetta, and R. H. Austin, Phys. Rev. D 32, 802
(1985).

[15] D. G. Boulware and S. Deser, Phys. Rev. Lett. 63, 2319 (1989).
[16] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[17] G. Spavieri, Eur. Phys. J. D 37, 327 (2006).
[18] V. M. Tkachuk, Phys. Rev. A 62, 052112 (2000).
[19] G. Spavieri and M. Rodriguez, Phys. Rev. A 75, 052113 (2007).
[20] K. Sangster, E. A. Hinds, S. M. Barnett, and E. Riis, Phys. Rev.

Lett. 71, 3641 (1993).
[21] M. Rodriguez, Rev. Mex. Fis. 55, 373 (2009).
[22] A. Caccavano and P. T. Leung, Physics Letters A 377, 2777

(2013).
[23] G. Spavieri, J. Quintero, T. G. Gillies, and M. Rodrı́guez, Eur.

Phys. J. D 61, 531 (2011).
[24] B. E. Allman, A. Cimmino, A. G. Klein, G. I. Opat, H. Kaiser,

and S. A. Werner, Phys. Rev. Lett. 68, 2409 (1992).
[25] M. Daum, A. Frei, P. Geltenbort, E. Gutsmiedl, P. Höbel, H.-C.
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