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Abstract

In this paper, we first propose a split Bregman method, using
the CGLS (Conjugate gradient least squares method), for
solving a TVL1-type of image restoration model with impulse
noise, and then we provide a convergence analysis for the split
Bregman method. We also provide numerical experiments for
several test problems with impulse noise in order to evaluate
the performance of the split Bregman method.
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1. INTRODUCTION

One of the most fundamental problems in image processing
and computer vision is image restoration whose main goal is to
recover a true image from an observed image. Specifically, we
consider the problem of restoring images degraded by blurring
and impulse noise. There are two main types of impulse noise
which are salt-and-pepper noise and random-valued noise.
Assume that an intensity range of an images is [dmin, dmax].
Salt-and-pepper noise corrupts a portion of pixels with only
two values of dmin or dmax while keeping other pixels
unaffected. For random-valued noise, a portion of pixels is
corrupted in the same manner as salt-and-pepper noise except
that the corrupted pixels can take any random value between
dmin and dmax.

Throughout the paper, we assume that the true image U has a
square array of size N × N . For convenience of exposition,
the true image U is represented by a long vector u of size
m = N2 which is obtained by stacking the columns of U .
We also assume that an observed (or degraded) image f ∈ Rm
is represented by

f = Nimp(Au), (1.1)

where Nimp(·) denotes the process of image degradation by
impulse noise, and A ∈ Rm×m is a blurring operator which is
generated by a point spread function and a boundary condition
imposed outside of the image. In this paper, we only consider
the reflexive boundary condition, which means that the scene
outside the image boundaries is a mirror image of the scene
inside the image boundaries. Our objective of this paper is to
restore u from the blurred image f with impulse noise as well
as possible.

The classic TVL1 model [9] for recovering a true image u

from an observed image f with impulse noise is given by the
following variational problem with the l1-norm fidelity term
and total variational regularization term

mim
u

{
‖Au− f‖1 + µTV (u) : u ∈ Rm

}
, (1.2)

where µ > 0 is a regularization parameter, A is a blurring
matrix and TV (u) denotes the isotropic TV (total variation)
norm. Notice that the isotropic TV norm can be represented
by TV (u) = (ϕ ◦ B)(u) = ϕ(Bu) (see [14] for the detailed
descriptions of ϕ and B).

In the last few decades, the problem of solving the classical
TVL1 model (1.2) has been studied by many researchers
[3, 5, 9, 10, 12]. It was shown that the TVL1 model (1.2)
works successfully in recovering blurred images corrupted by
impulse noise. Notice that the TVL1 peoblem (1.2) is very
difficult to solve since both the l1-norm data fidelity term and
regularization term are not differentiable.

There have been many mathematical models other than the
TVL1 model (1.2) for recovering a true image from an
observed image corrupted by blur and impulse noise (see
[4, 7, 8, 11, 13, 14]). Recently, Lu et al. [8] proposed the
following TVL1 regularization model for image restoration

min
u

{
‖Au− f‖1 +

λ

2
‖u‖22 + µTV (u)

}
, (1.3)

where λ and µ are positive constants. They showed that
the fixed-point method for solving the TVL1 model (1.3)
performs remarkably better in the image quality measured
by PSNR and preserves more features than FTVd (Fast total
variation deconvolution) proposed in [12] at the expense of
much increase in computational time.

Motivated by the derivation of the TVL1 model (1.3), Yun and
Lim [14] proposed the following image restoration model

min
u∈Rm

{
‖Au− f‖1 +

λ

2
‖Du‖22 + µTV (u)

}
, (1.4)

where A ∈ Rm×m is a blurring matrix, u ∈ Rm is a true
image, f ∈ Rm is a degraded image, λ and µ are positive
regularization parameters, D = −∆ and ∆ denote a discrete
Laplacian operator. Under the reflexive boundary condition,
the negative Laplacian operator D is represented by a singular
matrix in Rm×m (see [14] for the detailed description of
D). Throughout the paper, we call the model (1.4) TVL1D2
problem. It was shown in [14] that the fixed-point-like method
for solving the TVL1D2 problem performs much better in both
PSNR value and CPU time than the fixed-point method for
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solving the TVL1 problem (1.3). Hence, the purpose of this
paper is to propose a split Bregman method, using the CGLS
(Conjugate gradient least squares method) [1], for solving the
TVL1D2 problem.

Notice that the problem (1.3) has a unique solution since its
objective function is strictly convex, while the problem (1.4)
may not have a unique solution since its objective function is
not generally strictly convex.

This paper is organized as follows. In Section 2, we

first propose a split Bregman method, using the CGLS, for
solving the TVL1D2 problem (1.4), and then we provide a
convergence analysis for the split Bregman method. In Section
3, we provide numerical experiments for several test problem
in order to evaluate the efficiency and reliability of the split
Bregman method for solving the TVL1D2 problem. This can
be done by comparing its performance with that of the split
Bregman method for solving the TVL1 problem (1.3). Lastly,
some conclusion are drawn.

2. SPLIT BREGMAN METHOD FOR THE TVL1D2 PROBLEM

In this section, we first propose a split Bregman method for solving the TVL1D2 problem (1.4), and then we provide a convergence
analysis for the split Bregman algorithm. For the basic idea and derivation about the split Bregman method, we refer to [2, 6]. The
problem (1.4) can be expressed as

min
u

{
‖Au− f‖1 +

λ

2
‖Du‖22 + µϕ(Bu)

}
. (2.1)

The problem (2.1) can be considered as a constrained minimization problem

min
u

{
‖h‖1 +

λ

2
‖Du‖22 + µϕ(d)

}
subject to Bu = d and Au− f = h. (2.2)

where d ∈ R2m, B ∈ R2m×m and h ∈ Rm×m. Rather than considering (2.2), we will consider the following unconstrained
optimization problem with a penalty parameters γ, τ > 0

min
u,d,h

{
‖h‖1 +

λ

2
‖Du‖22 + µϕ(d) +

γ

2
‖h− (Au− f)− b‖22 +

τ

2
‖d−Bu− c‖22

}
. (2.3)

Then, the alternating split Bregman method using auxiliary vectors b and c for solving (2.3) can be written as follows:
Given u0 = f and h0 = d0 = b0 = c0 = 0, the sequence (uk, hk, dk) is generated by the following iteration step

uk+1 = argmin
u

{λ
2
‖Du‖22 +

γ

2
‖hk − (Au− f)− bk‖22 +

τ

2
‖dk −Bu− ck‖22

}
,

hk+1 = argmin
h

{
‖h‖1 +

γ

2
‖h− (Auk+1 − f)− bk‖22

}
,

dk+1 = argmin
d

{
ρϕ(d) +

τ

2
‖d−Buk+1 − ck‖22

}
,

bk+1 = bk +
(
Auk+1 − f

)
− hk+1,

ck+1 = ck +Buk+1 − dk+1.

(2.4)

We now want to provide a convergence analysis of the split Bregman method defined by (2.4) for the TVL1D2 problem. For this,
we note that the first order optimality conditions for the first three equations of (2.4) yield



0 = λDTDuk+1 − γAT
(
hk − (Auk+1 − f)− bk

)
− τBT

(
dk −Buk+1 − ck

)
,

0 = pk+1 + γ
(
hk+1 − (Auk+1 − f)− bk

)
,

0 = ρqk+1 + τ
(
dk+1 −Buk+1 − ck

)
,

bk+1 = bk +
(
(Auk+1 − f)− hk+1

)
,

ck+1 = ck +
(
Buk+1 − dk+1

)
.

(2.5)

where pk+1 ∈ ∂‖hk+1‖1 and qk+1 ∈ ∂ϕ(dk+1). Here the symbol ∂ denotes the subdifferential operator.

Definition 2.1. Let ψ be a convex function and p ∈ ∂ψ(v). Then the Bregman distance is

Bpψ(u, v) = ψ(u)− ψ(v)− 〈u− v, p〉, (2.6)

where 〈·, ·〉 stands for the standard inner product.
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Lemma 2.2. Let ψ be a convex function, d ∈ ∂ψ(x) and e ∈ ∂ψ(y). Then

〈x− y, d− e〉 ≥ 0.

Proof. Since Bdψ(y, x) = ψ(y)− ψ(x)− 〈y − x, d〉 and Beψ(x, y) = ψ(x)− ψ(y)− 〈x− y, e〉,

Bdψ(y, x) +Beψ(x, y) = ψ(y)− ψ(x)− 〈y − x, d〉+ ψ(x)− ψ(y)− 〈x− y, e〉
= 〈x− y, d− e〉.

Since all Bregman distances are nonnegative, 〈x− y, d− e〉 ≥ 0.

In the following theorem, we state a convergence property for the split Bregman iteration (2.4), and the detailed proof which can
be done using the techniques introduced in [2] is provided in Appendix A.

Theorem 2.3. Assume that u∗ is a solution of the problem (2.1) and λ, µ > 0. Then we have the following convergence property
for the split Bregman iteration (2.4):

lim
k→∞

(
‖Auk − f‖1 +

λ

2
‖Duk‖22 + µϕ(Buk)

)
= ‖Au∗ − f‖1 +

λ

2
‖Du∗‖22 + µϕ(Bu∗)

(2.7)

From the iterations step (2.4), we can obtain a split Bregman method, called Algorithm 1, for solving the TVL1D2 problem (1.4).

Algorithm 1 Split Bregman algorithm for the TVL1D2 problem (1.4)

1: Given : observed image f , positive parameters γ, τ, λ, µ

2: Initialization : h0 = 0, b0 = 0, d0 = 0, c0 = 0 and u0 = f

3: for k = 0 to maxit do
4: Solve (γATA+ τBTB + λDTD)uk+1 = γAT (hk − bk + f) + τBT (dk − ck) for uk+1

5: hk+1 = max
{
|(Auk+1 − f) + bk| − 1

γ
, 0

}
·∗ sgn((Au

k+1 − f) + bk)

6: for i = 1, 2, · · · ,m do

7:
(

(dk+1)i
(dk+1)m+i

)
= max

{∥∥∥∥( (Buk+1 + ck)i
(Buk+1 + ck)m+i

)∥∥∥∥
2

− µ
τ , 0

}
·

 (Buk+1 + ck)i
(Buk+1 + ck)m+i


∥∥∥∥∥∥
 (Buk+1 + ck)i
(Buk+1 + ck)m+i

∥∥∥∥∥∥
2

8: end for
9: bk+1 = bk + (Auk+1 − f)− hk+1

10: ck+1 = ck +Buk+1 − dk+1

11: if ‖u
k+1−uk‖2
‖uk+1‖2

< tol then

12: Stop

13: end if

14: end for

Notice that the linear system in line 4 of Algorithm 1, which can be viewed as a least squares problem, is approximately solved
using the CGLS with a tolerance value (e.g., see [14]). The symbol ·∗ in line 5 of Algorithm 1 denotes elementwise multiplication.

If the matrix D in line 4 of Algorithm 1 is replaced with an identity matrix I , then we obtain Algorithm 1 which is the split
Bregman method for solving the TVL1 problem (1.3). From Theorem 2.3, we can easily obtain the following corollary which
guarantees the convergence of Algorithm 1.

Corollary 2.4. Assume that u∗ is a unique solution of the problem (1.3) and λ, µ > 0. Then we have the following convergence
property for Algorithm 1:

lim
k→∞

(
‖Auk − f‖1 +

λ

2
‖uk‖22 + µϕ(Buk)

)
= ‖Au∗ − f‖1 +

λ

2
‖u∗‖22 + µϕ(Bu∗).

Furthermore, lim
k→∞

‖uk − u∗‖2 = 0.
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3. NUMERICAL EXPERIMENTS

In this section, we provide numerical experiments for several
test problems to evaluate the efficiency and reliability of the
split Bregman method (i.e., Algorithm 1). This can be done
by comparing its numerical results with those of Algorithm
1. Numerical experiments have been done for five test images
such as “Cameraman (Cam)”, “Lena”, “House”, “Boat” and
“Pepper”. The pixel size of five test images is 256 × 256. All
numerical tests have been performed using Matlab R2016a on
a personal computer with Intel(R) Core(TM) i5-3337U CPU
and 8.00GB RAM. maxit is set to 500, and tol is set to
2 × 10−4. For the CGLS method which is used to solve a
linear system every iteration of Algorithm 1, the tolerance for
stopping criterion is set to 5×10−2 and the maximum number
of iterations is set to 120.

To evaluate the quality of the restored image, we use the PSNR
(Peak Singal to Noise Ratio) value between the restored image
and original image which is defined by

PSNR = log10

(
M ·N ·maxi,j |uij |2

‖U − Ũ‖2F

)
,

where ‖·‖F refers to the Frobenius norm, U and Ũ are the
original and restored image with size M ×N , respectively. In
addition, uij stands for the value of original image U at the
pixel point (i, j) and M ·N is the total number of pixels. It is
generally true that the larger PSNR value stands for the better
quality of restored image.

For all numerical experiments, we have used the test images
with an intensity range of [0, 1]. For all test problems,
we choose the degraded images which are resulting images
blurred by Gaussian kernel of size 15 × 15 with standard
deviation 9 under the reflexive boundary condition, and then
corrupted by salt-and-pepper impulse noise with noise levels
20%, 30%, or 60%. In Tables 1 to 3, “Alg.” represents the
algorithm number to be used, “P0” represents the PSNR value
for the blurred and noisy image f , “Iter” denotes the number of
iterations required for each algorithm, parameters “γ, τ , λ and
µ” are chosen as the best one by numerical tries, and “Time”
denotes the elapsed CPU time in seconds.

Tables 1 to 3 contain numerical results for the split Bregman
methods (i.e., Algorithm 1) for degraded images with 20%,
30% or 60% salt-and-pepper impulse noise. In Figures 1 to
5, the first row contains the images restored by Algorithm 1
for blurred images with 60% salt-and-pepper noise, and the
second row contains the images restored by Algorithm 1 for
blurred images with 30% salt-and-pepper noise.

Algorithm 1 restores the true image better than Algorithm 1
takes less CPU time than Algorithm 1 in most cases (see Tables
1 to 3 and Figures 1 to 5). This means that the split Bregman
method for the TVL1D2 problem (1.4) performs better in both
PSNR value and CPU time than the split Bregman method
for the TVL1 problem (1.3). As can be seen from numerical
results in [14], Algorithm 1 restores the true image as well as
the fixed-point-like method proposed for the TVL1D2 problem
(1.4)

Table 1: Numerical results of the split-Bregman methods for 60% salt-and-pepper noise

Image P0 Alg. γ τ µ λ tol PSNR Iter Time

Cam 7.11
0 40 0.006 0.014 0.007 1× 10−5 24.86 266 714

1 7 0.002 0.013 0.004 2× 10−4 24.94 318 812

Lena 7.12
0 40 0.006 0.016 0.007 1× 10−5 26.37 311 799

1 90 0.02 0.014 0.01 2× 10−4 26.54 197 378

House 7.11
0 41 0.005 0.016 0.009 1× 10−5 31.10 248 731

1 40 0.009 0.015 0.01 2× 10−4 31.55 167 425

Boat 6.76
0 38 0.02 0.015 0.02 1× 10−5 24.70 165 311

1 50 0.0004 0.012 0.02 2× 10−4 25.19 299 1125

Pepper 7.40
0 41 0.006 0.016 0.003 1× 10−5 27.78 367 1139

1 16 0.002 0.015 0.004 2× 10−4 28.00 354 1164
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Table 2: Numerical results of the split-Bregman methods for 30% salt-and-pepper noise

Image P0 Alg. γ τ µ λ tol PSNR Iter Time

Cam 9.86
0 108 0.002 0.003 0.0002 1× 10−5 30.49 384 1827

1 394 0.002 0.0027 0.0004 2× 10−4 30.49 386 1290

Lena 9.92
0 109 0.002 0.003 0.0002 1× 10−5 30.29 362 1911

1 350 0.007 0.0026 0.001 2× 10−4 30.34 268 1156

House 9.91
0 250 0.0002 0.0032 0.005 1× 10−5 36.67 353 1576

1 350 0.0008 0.0027 0.004 2× 10−4 37.18 261 1129

Boat 9.55
0 108 0.002 0.003 0.0002 1× 10−5 30.50 355 1727

1 360 0.008 0.0027 0.002 2× 10−4 30.76 229 929

Pepper 10.13
0 109 0.002 0.003 0.0003 1× 10−5 34.61 342 1644

1 460 0.002 0.003 0.0008 2× 10−4 34.77 368 1640

Table 3: Numerical results of the split-Bregman methods for 20% salt-and-pepper noise

Image P0 Alg. γ τ µ λ tol PSNR Iter Time

Cam 11.42
0 111 0.001 0.002 0.00006 1× 10−5 32.91 355 2389

1 470 0.1 0.0017 0.0001 2× 10−4 33.05 390 1536

Lena 11.52
0 114 0.001 0.002 0.0002 1× 10−5 32.28 387 4681

1 300 0.1 0.0015 0.0001 2× 10−4 32.34 308 1226

House 11.54
0 111 0.001 0.002 0.00005 1× 10−5 38.24 366 1870

1 400 0.2 0.0015 0.0025 2× 10−4 38.61 172 555

Boat 11.42
0 110 0.001 0.001 0.00002 1× 10−5 32.97 373 1772

1 400 0.1 0.0017 0.0005 2× 10−4 33.19 271 1021

Pepper 11.65
0 113 0.001 0.002 0.00005 1× 10−5 37.04 386 2461

1 470 0.1 0.0019 0.0001 2× 10−4 37.12 390 1536
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True image 60% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Blurred image 30% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Figure 1: Image restoration by split Bregman methods for blurred Cameraman image with 60% or 30% salt-and-pepper noise.

True image 60% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Blurred image 30% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Figure 2: Image restoration by split Bregman methods for blurred Lena image with 60% or 30% salt-and-pepper noise
.
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True image 60% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Blurred image 30% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Figure 3: Image restoration by split Bregman methods for blurred House image with 60% or 30% salt-and-pepper noise
.

True image 60% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Blurred image 30% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Figure 4: Image restoration by split Bregman methods for blurred Boat image with 60% or 30% salt-and-pepper noise
.
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True image 60% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Blurred image 30% noisy blurred image Restored image by Alg. 0 Restored image by Alg. 1

Figure 5: Image restoration by split Bregman methods for blurred Pepper image with 60% or 30% salt-and-pepper noise
.

4. CONCLUSIONS

In this paper, we proposed a split Bregman method, using the
CGLS, for solving the TVL1D2 problem (1.4) with impulse
noise. Numerical experiments showed that the split Bregman
method (i.e., Algorithm 1) for the TVL1D2 problem performs
better in both PSNR value and CPU time than the split
Bregman method (i.e., Algorithm 0) for the TVL1 problem
(1.3). Also Algorithm 1 restores the true image as well as

the fixed-point-like method proposed for the TVL1D2 problem
(see [14]). Hence, for image restoration problem with impulse
noise, the TVL1D2 model is preferred over the existing TVL1
model (1.3), and it is recommended to use Algorithm 1.

The split Bregman method proposed for the TVL1D2 model
can be applied to an image inpainting problem or image
denoising problem with impulse noise. Future work will study
these kinds of problems.

APPENDIX A

Proof of Theorem 2.3. Using the Fermat rule for the minimization problem (2.1), u∗ must satisfy

0 ∈ AT∂(‖Au∗ − f‖1) + λDT (Du∗) + µBT ◦ ∂ϕ(Bu∗). (4.1)

From (4.1), we can obtain the following equality

0 = AT p∗ + λDT (Du∗) + µBT q∗. (4.2)

where p∗ ∈ ∂(‖Au∗ − f‖1) and q∗ ∈ ∂ϕ(Bu∗). Let b∗ = 1
γ p
∗ and c∗ = µ

τ q
∗. Since d∗ = Bu∗ and h∗ = Au∗ − f , from (4.2)

we can obtain the following equations

0 = λDTDu∗ − γAT
(
h∗ − (Au∗ − f)− b∗

)
− τBT

(
d∗ −Bu∗ − c∗

)
,

0 = p∗ + γ
(
h∗ − (Au∗ − f)− b∗

)
,

0 = µq∗ + τ
(
d∗ −Bu∗ − c∗

)
,

b∗ = b∗ +
(
(Au∗ − f)− h∗

)
,

c∗ = c∗ +
(
Bu∗ − d∗

)
.

(4.3)

(4.3) means that {u∗, h∗, d∗, b∗, c∗} is a fixed point set of the split Bregman iteration (2.4).

Let us define the errors uke = uk − u∗, hke = A(uk − u∗), dke = dk − d∗, bke = bk − b∗ and cke = ck − c∗. All equations of (4.3)
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subtracted from those of (2.5) correspondingly show that

0 = λDTDuk+1
e − γA

(
hke −Auke − bke

)
− τBT

(
dke −Buk+1

e − cke
)
,

0 =
(
pk+1 − p∗

)
+ γ
(
hk+1
e −Auk+1

e − bke
)
,

0 = µ
(
qk+1 − q∗

)
+ τ
(
dk+1
e −Buk+1

e − cke
)
,

bk+1
e = bke +

(
Auk+1

e − hk+1
e

)
,

ck+1
e = cke +

(
Buk+1

e − dk+1
e

)
.

(4.4)

Taking the inner products for both sides of the first three equations of (4.4) with respect to uk+1
e , hk+1

e and dk+1
e respectively, we

have 

0 = λ‖Duk+1
e ‖22 + γ|Auke‖22 − τ‖Buk+1

e ‖22
− γ〈hke , Auk+1

e 〉+ γ〈bke , Auk+1
e 〉 − τ〈dke , Buk+1

e 〉+ τ〈cke , Buk+1
e 〉,

0 = 〈pk+1 − p∗, hke〉+ γ‖hk+1
e ‖22 − γ〈Auk+1

e , hk+1
e 〉 − γ〈bke , hke〉,

0 = µ〈qk+1 − q∗, dk+1
e 〉+ τ‖dk+1

e ‖22 − τ〈Buk+1
e , dk+1

e 〉 − τ〈cke , dke〉.

(4.5)

Squaring both sides of the last two equations of (4.4) yields the following equalities

‖bk+1
e ‖22 = ‖bke‖22 + ‖Auk+1

e − hk+1
e ‖22 + 2〈bke , Auk+1

e − hk+1
e 〉,

‖ck+1
e ‖22 = ‖cke‖22 + ‖Buk+1

e − dk+1
e ‖22 + 2〈cke , Buk+1

e − dk+1
e 〉.

(4.6)

Summing all three equations in (4.5) gives us

0 = λ‖Duk+1
e ‖22 + 〈pk+1 − p∗, hk+1

e 〉+ µ〈qk+1 − q∗, dk+1
e 〉

+ γ
(
‖Auk+1

e ‖22 + ‖hk+1
e ‖22 − 〈Auk+1

e , hk+1
e + hke〉+ 〈bke , Auk+1

e − hk+1
e 〉

)
+ τ
(
‖Buk+1

e ‖22+‖dk+1
e ‖22 − 〈Buk+1

e , dk+1
e + dke〉+ 〈cke , Buk+1

e − dk+1
e 〉

)
.

(4.7)

Note that two equalities of (4.6) can be reformulated as

〈bke , Auk+1
e − hk+1

e 〉 =
1

2

(
‖bk+1
e ‖22 − ‖bke‖22

)
− 1

2
‖Auk+1

e − hk+1
e ‖22,

〈cke , Buk+1
e − dk+1

e 〉 =
1

2

(
‖ck+1
e ‖22 − ‖cke‖22

)
− 1

2
‖Buk+1

e − dk+1
e ‖22.

(4.8)

Substituting (4.8) into (4.7) yields

0 =λ‖Duk+1
e ‖22 + 〈pk+1 − p∗, hk+1

e 〉+ µ〈qk+1 − q∗, dk+1
e 〉

+ γ

(
‖Auk+1

2 ‖22 + ‖hk+1
e ‖22 − 〈Auk+1

e , hk+1
e + hke〉

+
1

2
(‖bk+1

e ‖22 − ‖bke‖22)− 1

2
‖Auk+1

e − hk+1
e ‖22

)
+ τ

(
‖Buk+1

e ‖22 + ‖dk+1
e ‖22 − 〈Buk+1

e , dk+1
e + dke〉

+
1

2
(‖ck+1

e ‖22 − ‖cke‖22)− 1

2
‖Buk+1

e − dk+1
e ‖22

)
.

(4.9)

On the other hand, some computational manipulation gives

γ‖Auk+1
e ‖22 + γ‖hk+1

e ‖22 − γ〈Auk+1
e , hk+1

e + hke〉 −
γ

2
‖Auk+1

e − hk+1
e ‖22

=
γ

2
‖Auk+1

e ‖22 +
γ

2
‖Auk+1

e ‖22 +
γ

2
‖hk+1

e ‖22 +
γ

2
‖hk+1

e ‖22

− γ〈Auk+1
e , hk+1

e 〉 − γ〈Auk+1
e , hke〉 −

γ

2
‖Auk+1

e − hk+1
e ‖22

=
γ

2
‖Auk+1

e ‖22 +
γ

2
‖hk+1

e ‖22 − γ〈Auk+1
e , hke〉+

γ

2
‖hke‖22 −

γ

2
‖hke‖22

=
γ

2
‖Auk+1

e − hke‖22 +
γ

2
‖hk+1

e ‖22 −
γ

2
‖hke‖22

(4.10)
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and

τ‖Buk+1
e ‖22 + τ‖dk+1

e ‖22 − τ〈Buk+1
e , dk+1

e + dke〉 −
τ

2
‖Buk+1

e − dk+1
e ‖22

=
τ

2
‖Buk+1

e ‖22 +
τ

2
‖Buk+1

e ‖22 +
τ

2
‖dk+1
e ‖22 +

τ

2
‖dk+1
e ‖22

− τ〈Buk+1
e , dk+1

e 〉 − τ〈Buk+1
e , dke〉 −

τ

2
‖Buk+1

e − dk+1
e ‖22

=
τ

2
‖Buk+1

e ‖22 +
τ

2
‖dk+1
e ‖22 − τ〈Buk+1

e , dke〉+
τ

2
‖dke‖22 −

τ

2
‖dke‖22

=
τ

2
‖Buk+1

e − dke‖22 +
τ

2
‖dk+1
e ‖22 −

τ

2
‖dke‖22.

(4.11)

Substituting (4.10) and (4.11) into (4.9), we obtain

0 = λ‖Duk+1
e ‖22 + 〈pk+1 − p∗, hk+1

e 〉+ µ〈qk+1 − q∗, dk+1
e 〉

+
γ

2

(
‖bk+1
e ‖22 − ‖bke‖22

)
+
γ

2
‖Auk+1

e − hke‖22 +
γ

2
‖hk+1

e ‖22 −
γ

2
‖hke‖22

+
τ

2

(
‖ck+1
e ‖22 − ‖cke‖22

)
+
τ

2
‖Buk+1

e − dke‖22 +
τ

2
‖dk+1
e ‖22 −

τ

2
‖dke‖22.

(4.12)

By summing the equation (4.12) from k=0 to k = K, we obtain

γ

2

(
‖b0e‖22 + ‖h0e‖22

)
+
τ

2

(
‖c0e‖22 + ‖d0e‖22

)
=

K∑
k=0

λ‖Duk+1
e ‖22 +

K∑
k=0

〈pk+1 − p∗, hk+1
e 〉+ µ

K∑
k=0

〈qk+1 − q∗, dk+1
e 〉

+
γ

2

(
‖bk+1
e ‖22 + ‖hk+1

e ‖22
)

+
γ

2

K∑
k=0

‖Auk+1
e − hke‖22

+
τ

2

(
‖ck+1
e ‖22 + ‖dk+1

e ‖22
)

+
τ

2

K∑
k=0

‖Buk+1
e − dke‖22.

(4.13)

Since pk+1 ∈ ∂
(
‖hk+1‖1

)
, p∗ ∈ ∂

(
‖h∗‖1

)
and ‖·‖1 is convex, by Lemma 2.2 we have

〈pk+1 − p∗, hk+1
e 〉 ≥ 0.

Since qk+1 ∈ ∂ϕ(dk+1), q∗ ∈ ∂ϕ(d∗) and ϕ(·) is convex, by Lemma 2.2 we also have

〈qk+1 − q∗, dk+1
e 〉 ≥ 0.

Hence all terms involved in (4.13) are non-negative.

From (4.13), we can obtain the following inequality

γ

2

(
‖b0e‖22 + ‖h0e‖22

)
+
τ

2

(
‖c0e‖22 + ‖d0e‖22

)
≥

K∑
k=0

λ‖Duk+1
e ‖22 for every K. (4.14)

Taking the limit of K →∞ for the inequality (4.14) yields

∞∑
k=0

λ‖Duk+1
e ‖22 ≤

γ

2

(
‖b0e‖22 + ‖h0e‖22

)
+
τ

2

(
‖c0e‖22 + ‖d0e‖22

)
<∞.

From this inequality, one can easily obtain

lim
k→∞

λ‖Duk+1
e ‖22 = lim

k→∞
λ〈DTDuk+1 −DTDu∗, uk+1 − u∗〉 = 0. (4.15)

On the other hand, we have the following identity

BD
TDu∗

1
2
‖D(·)‖22

(uk, u∗) +BD
TDuk

1
2
‖D(·)‖22

(u∗, uk)

=
1

2
‖Duk‖22 −

1

2
‖Du∗‖22 − 〈uk − u∗, DTDu∗〉+ 1

2
‖Du∗‖22 −

1

2
‖Duk‖22 − 〈u∗ − uk, DTDuk〉

= 〈DTDuk −DTDu∗, uk − u∗〉.

(4.16)
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Since the Bregman distances are non-negative, from (4.15) and (4.16)

lim
k→∞

λBD
TDu∗

1
2‖D(·)‖22

(uk, u∗) = 0. (4.17)

That is, we obtain

lim
k→∞

λ
(1

2
‖Duk‖22 −

1

2
‖Du∗‖22 − 〈uk − u∗, DTDu∗〉

)
= 0. (4.18)

From (4.13), one can obtain the following inequality

γ

2

(
‖b0e‖22 + ‖h0e‖22

)
+
τ

2

(
‖c0e‖22 + ‖d0e‖22

)
≥

K∑
k=0

〈pk+1 − p∗, hk+1
e 〉 for every K. (4.19)

Taking the limit of K →∞ for (4.19), we obtain

∞∑
k=0

〈pk+1 − p∗, hk+1
e 〉 ≤ γ

2

(
‖b0e‖22 + ‖h0e‖22

)
+
τ

2

(
‖c0e‖22 + ‖d0e‖22

)
<∞,

which implies
lim
k→∞

〈pk − p∗, hke〉 = 0. (4.20)

On the other hand, we have the following identity

Bp
∗

‖·‖1(hk, h∗) +Bp
k

‖·‖1(h∗, hk) = 〈pk − p∗, hke〉.

Using (4.20) and non-negativity of the Bregman distance, we obtain

lim
k→∞

Bp
∗

‖·‖1(hk, h∗) = lim
k→∞

(‖hk‖1 − ‖h∗‖1 − 〈hk − h∗, p∗〉) = 0. (4.21)

From (4.13), one obtains the following inequality

γ

2

(
‖b0e‖22 + ‖h0e‖22

)
+
τ

2

(
‖c0e‖22 + ‖d0e‖22

)
≥ µ

K∑
k=0

〈qk+1 − q∗, dk+1
e 〉 for every K. (4.22)

From (4.22), we can obtain
µ lim
k→∞

〈qk − q∗, dke〉 = 0. (4.23)

Since Bq
∗

ϕ(·)(d
k, d∗) +Bq

k

ϕ(·)(d
∗, dk) = 〈qk − q∗, dke〉 and the Bregman distances are non-negative, from (4.23) one can obtain

lim
k→∞

µBq
∗

ϕ(·)(d
k, d∗) = µ lim

k→∞

(
ϕ(dk)− ϕ(d∗)− 〈dk − d∗, q∗〉

)
= 0. (4.24)

From (4.13), we can also obtain the following properties

lim
k→∞

‖Buk+1
e − dke‖2 = 0, (4.25)

lim
k→∞

‖Auk+1
e − hke‖2 = 0. (4.26)

Since Buk+1
e − dke = Buk+1 − dk and h∗ = Au∗ − f , (4.25) and (4.26) imply

lim
k→∞

‖Buk+1 − dk‖2 = 0, (4.27)

lim
k→∞

‖(Auk+1 − f)− hk‖ = 0. (4.28)

Since ϕ(·) is continuous and d∗ = Bu∗, by (4.24) and (4.27) we obtain

µ lim
k→∞

(
ϕ(Buk)− ϕ(Bu∗)− 〈Buk −Bu∗, q∗〉

)
= 0. (4.29)
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Since ‖·‖1 is continuous, by (4.21) and (4.28)

lim
k→∞

(
‖Auk − f‖1 − ‖Au∗ − f‖1 − 〈(Auk − f)− (Au∗ − f), p∗〉

)
= lim
k→∞

(
‖Auk − f‖1 − ‖Au∗ − f‖1 − 〈uk − u∗, AT p∗〉

)
= 0.

(4.30)

Summing (4.18), (4.29) and (4.30), one obtains

lim
k→∞

λ
(1

2
‖Duk‖22 −

1

2
‖Du∗‖22 − 〈uk − u∗, DTDu∗〉

)
+ lim
k→∞

µ
(
ϕ(Buk)− ϕ(Bu∗)− 〈Buk −Bu∗, q∗〉

)
+ lim
k→∞

(
‖Auk − f‖1−‖Au∗ − f‖1−〈uk − u∗, AT p∗〉

)
= 0.

(4.31)

Rearranging (4.31), one obtains

lim
k→∞

(
‖Auk − f‖1+

λ

2
‖Duk‖22 + µϕ(Buk)

− ‖Au∗ − f‖1−
λ

2
‖Du∗‖22 − µϕ(Bu∗)

− 〈uk − u∗, λDTDu∗ +AT p∗ + µBT q∗〉
)

= 0.

(4.32)

Since λDTDu∗ +AT p∗ + µBT q∗ = 0 from (4.2), (4.32) gives

lim
k→∞

‖Auk − f‖1 +
λ

2
‖Duk‖22 + µϕ(Buk) = ‖Au∗ − f‖1 +

λ

2
‖Du∗‖22 + µϕ(Bu∗), (4.33)

which completes the proof.
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