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Abstract  

In this paper, a hybrid approach for treating Stochastic Vector 

Optimization Problem (SVOP) is suggested. This approach 

combines the characteristics of both the generalized 

Tchebycheff norm approach and the method of constraints.  

In this approach the stochastic parameters is considered to be 

in the right hand of the constraints. This approach is deduced 

by combining the generalized Tchebycheff norm approach 

together with the constraint approach. The advantages of the 

suggested approach over the hybrid one lies in the fact that all 

its parameters can be included only in the constraints. In 

addition, it gathers the characteristics of both generalized 

Tchebycheff norm and constraint approaches. 
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1.  INTRODUCTION 

In the real life problem, we encounter many problems with 

uncertain parameters. Several combined problems are 

developed and formulated as approaches for characterizing the 

efficient solutions for VOP. A methods combining the 

weighting method and the 𝜀 −constraint method is called the 

Hybrid method. This method is described in Corley [1], and 

Wendell and Lee [2] in slightly different forms. The 

advantage of this approach is that it generates only the 

properly efficient solutions of VOP and there is no difficulty 

in solving problems. 

Wendell [2] combined the weighting problem and the 

constraint problem to introduce another form of scalar 

optimization methods, which is combined different scalar 

optimization problems together to deduce new approaches for 

treating VOP which will be assumed to be rather simple than 

the available one’s and/or with more weaker conditions than 

that imposed on the available approaches. 

The ability of solving VOP relies completely on the success of 

solving the resulting SOP, Therefore, a great deal of work has 

been done to characterize the efficient solutions of VOP, let us 

mention that, Gass and Saaty [3] and Zadeh [4] solved VOP 

using the weighting problem, Chankong and Haimes [5] 

introduced other forms of scalarization which are the 

lagrangian problem and the constraint problem. Lin [6, 7] 

proposed another SOP to generate the efficient solutions of 

VOP which named by the proper equality constraint problem. 

Bowman [8] showed that the solutions of VOP can be 

characterized in terms of the generalized Tchebycheff norm 

problem and Choo and Atkins [9] gave an extension to the 

generalized Tchebycheff norm to characterize the proper 

efficient solutions of VOP even in the nonconvex cases. 

Wendell and Lee [2] combined the characteristics of both the 

weighting problem and the constraint problem to introduce 

another form of SOP which called the hybrid approach 

problem. 

[10] Proposed an efficient technique for stochastic bicriteria 

programming problem (SBCPP) with random variables in 

both the objective functions and in the right-hand side of the 

constraints. Widyan used mathematical and statistical tools to 

treat stochastic multicriterion programming problem 

(SMCPP) with random parameters in both the objective 

functions and the right hand side of the constraints [11]. 

In this work a new combined approach for characterizing the 

efficient solutions of stochastic vector optimization problems 

(SVOP) is presented. This approach is called a modified 

hybrid approach which combines the characteristics of both 

the generalized Tchebycheff norm and the stochastic 

constraint problems with random variable in the constraints.  

This approach is rather simpler than the other scalarization 

method, since its parameters can be included only in the 

constraints instead of being included in both the objective 
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function and the constraints. 

There are two approaches to deal with SVOP through two 

phases, the first one, to transform the stochastic constraint 

problem into an equivalent deterministic model, then 

combined it with the deterministic Generalized Tchebycheff 

Norm. The second approach is to combine the stochastic 

constraint problem with deterministic Generalized 

Tchebycheff Norm problem, then transforming it to a 

deterministic one. 

Our scope in this manuscript is concentrated on characterizing 

the efficient solutions of SVOP in terms of the first approach 

mentioned above. 

 

2.  VECTOR OPTIMIZATION PROBLEM FORMULATION 

The Vector Optimization Problem (VOP) can be formulated 

as follows: 

min
𝑥∈𝑀

  𝐹(𝑥)                                                                 (1) 

 Where, 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), ⋯ , 𝑓𝑚(𝑥)): 𝑅𝑛 → 𝑅𝑚 denotes 

the real-valued functions that represents the objective 

functions, and M is the decision space or the feasible region of 

the system which will be characterized by:  

𝑀 = {𝑥 ∈ 𝑅𝑛: 𝐺(𝑥) ≤ 0} 

Where, 𝐺(𝑥) = (𝑔1(𝑥), 𝑔2(𝑥), ⋯ , 𝑔𝑘(𝑥)): 𝑅𝑛 → 𝑅𝑘  denotes 

the real-valued functions that represented the constraints. 

There are several techniques for scalarization in order to 

characterize the efficient solutions of VOP. In our work, we 

will combined two of them, which are  Generalized 

Tchebycheff Norm Problem[8] and 𝜀 −constraint problem [5]  

 

2.1  Generalized Tchebycheff Norm Problem 

Consider the following generalized Tchebycheff norm 

problem as: 

  min
𝑥∈𝑀

   max
𝑗

𝛽𝑗|𝑓𝑗(𝑥) − 𝑢𝑗
∗|                                                           (2) 

Where 𝛽 ∈ 𝑅+
𝑚   (the positive orthant of 𝑅𝑚–space), 𝑢∗ ∈ 𝑅𝑚 

is an ideal target. 

 

 

 

2.2 The Kth-Objective 𝜺 −Constraint Stochastic Problem 

The Kth-Objective 𝜀 −Constraint stochastic Problem is 

defined by: 

min
𝑥∈𝑀

𝑓𝑘(𝑥) 

Subject to (3) 

𝑓𝑗(𝑥) ≤ 𝜀𝑗,   𝑗 = 1, 2, … , 𝑚,    𝑗 ≠ 𝑘 

Where, 𝜀𝑗, 𝑗 = 1,2, … , 𝑚, 𝑗 ≠ 𝑘 are stochastic parameters 

belonging to the probability distribution function. 

The random Variables 𝜀𝑗 are assumed to be independently 

normally distributed with means 𝐸(𝜀𝑗) = 𝜇𝑗 and 

variances  𝑉𝑎𝑟(𝜀𝑗) = 𝜎𝑗
2, i.e. 𝜀𝑗: 𝑁(𝜇𝑗, 𝜎𝑗

2), 𝑗 = 1, 2, 3, … , 𝑚. 

The cumulative function of normal distribution is defined as 

𝑃(𝜀 ≤ 𝜀𝑗) = ∫
1

𝜎√2𝜋
𝑒

−
(𝜀𝑗−𝜇𝑗)2

2𝜎𝑗
2

𝜀𝑗

−∞

𝑑𝜀𝑗 ,    𝜀𝑗 ∈ 𝑅,

𝜇𝑗 ∈ 𝑅, 𝜎𝑗 > 0   

Let 𝑍𝑖 =
𝜀𝑗−𝜇𝑗

𝜎𝑗
, 𝑗 = 1, 2, 3, … , 𝑚 are assumed to be normally 

distributed with mean equal zero and variance equal one, i.e. 

𝑍𝑗: 𝑁(0, 1), 𝑗 = 1, 2, … , 𝑚. Therefore,  

Φ(𝑧)  = 𝑃(𝑍 ≤ 𝑧) ≥ 𝛼 

Then,  𝑧 ≥ Φ−1(𝛼), where, Φ−1(. ) the inverse distribution of 

the random variable. 

Now, using chance constrained approach to transform 

problem (3) into an equivalent deterministic model as follows: 

𝑃(𝑓𝑗(𝑥) ≤ 𝜀𝑗) ≥ 𝛼𝑗    , 0 ≤ 𝛼𝑗 ≤ 1, 𝑗 = 1, 2, … , 𝑚 

𝑃 (
 𝑓𝑗(𝑥) − 𝜇𝑗

𝜎𝑗

≥
𝜀𝑗 − 𝜇𝑗

𝜎𝑗

) ≤ 1 − 𝛼𝑗      

Let 𝛾𝑗 = 1 − 𝛼𝑗, then 

 𝑓𝑗(𝑥) ≤ 𝜇𝑗 + 𝜎𝑗Φ−1(𝛾𝑗  ) 

 

3. THE MODIFIED HYBRID APPROACH FOR 

SOLVING SVOP PROBLEMS 

This approach is deduced by combining the generalized 

Tchebycheff norm approach together with the constraint 

approach. The main advantage of the suggested approach 

over the hybrid one lies in the fact that all its parameters can 

be included only in the constraints. 
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The formulation of this approach can be states as: 

min
𝑥∈𝑀

   max
𝑗

𝛽𝑗|𝑓𝑗(𝑥) − 𝑢𝑗
∗|  

Subject to 4) 

 𝑓𝑗(𝑥) ≤ 𝜇𝑗 + 𝜎𝑗Φ−1(𝛾𝑗), 𝑗 = 1, 2, … , 𝑚 

Where 𝛽 ∈ 𝑅+
𝑚 , 𝑅+

𝑚 is the positive orthant of 𝑅𝑚, 𝑢∗ is an 

ideal target, and  

The problem (4) can be reformulated to have the following 

equivalent form: 

  min z 

Subject to  (5) 

𝑁(𝛽) = {(𝑧, 𝑥) ∈ 𝑅𝑛+1: 𝛽𝑗[𝑓𝑗(𝑥) + 𝛿 − 𝑓𝑗
−] − 𝑧 ≤ 0,  𝑓𝑗(𝑥)

≤ 𝜇𝑗 + 𝜎𝑗Φ−1(𝛾𝑗), 𝑗 = 1, 2, … , 𝑚} 

and  

𝑔𝑘(𝑥) ≤ 0, k=1,2,…,r 

where 𝑢∗is taken as 𝑢𝑗
∗ =𝑓�̅�-𝛿, j=1,2,…,m, 

𝑓�̅� =  𝑚𝑖𝑛𝑥∈𝑀𝑓𝑗(𝑥) 

and  𝛿  is a small positive number [12]. 

 

4.   CHARACTERIZATION OF THE EFFICIENT 

SOLUTIONS FOR SVOP. 

The following theorem which characterizes the efficient 

solutions of SVOP in terms of the modified hybrid approach 

and those which relate the hybrid and modified hybrid 

approaches is introduced. 

Theorem 1. 𝑥∗is an efficient solution of problem (1) iff 𝑥∗is 

an optimal solution of problem (5) for any given 𝛽 > 0 and 

for some 𝛾𝑗 for which problem (5) is feasible. 

Proof: Necessity: Assume that for any given 𝛽 > 0, 𝑥∗ does 

not solve problem (5), hence 

𝛽𝑗[𝑓𝑗(�̅�) − 𝑢�̅�] ≤ 𝛽𝑘[𝑓𝑘(𝑥∗) − 𝑢𝑘
∗ ]. 

If 𝛽 > 0 the above relation can be rewritten as 

𝑓𝑗(�̅�) − 𝑢�̅� ≤ 𝑓𝑘(𝑥∗) − 𝑢𝑘
∗ . 

Hence 𝑥∗ is not an efficient solution of SVOP. 

Sufficiency: Suppose that 𝑥∗ solves problem (4) for 

some 𝛽, 𝛾𝑗, it must be also solve problem (4) for 𝛽 = 𝛽∘,  

𝜇𝑗
∗ +  𝜎𝑗

∗Φ−1(𝛾𝑗
∗) = 𝑓(𝑥∗). 

Suppose that 𝑥∗ is not an efficient solution, this implies that 

there exist 𝑥∘ ∈ 𝑀, such that  𝑓𝑗(𝑥∘) − 𝑢𝑗
∘ ≤ 𝑓𝑗(𝑥∗) − 𝑢𝑗

∗. 

Hence for any 𝛽𝑗
° > 0 

𝛽°[𝑓𝑗(𝑥∘) − 𝑢∘] < 𝛽∘[𝑓𝑗(𝑥∗) − 𝑢𝑗
∗] 

This clearly contradicts the fact that 𝑥∗ solves problem (4) 

for 𝛽 = 𝛽∘and 𝜇𝑗
∗ + 𝜎𝑗

∗Φ−1(𝛾𝑗
∗) since 𝑥° is a feasible point of 

(𝛽∘, 𝜇𝑗
∗ +  𝜎𝑗

∗Φ−1(𝛾𝑗
∗)), thus 𝑥∗ must be an efficient solution 

of SVOP. 

 

5. ILLUSTRATIVE EXAMPLE 

This example can be demonstrated to show the validity of the 

proposed approach. 

min  [x1
2 + x2

2, x1
2 + x2] 

Subject to  

M = {(x1, x2): x1 + x2 ≤ 1 and x1 ≥ 0, x2 ≥ 0} 

It is clear that the point  (0,0)  is an efficient solution of the 

above problem, and then the problem can reformulated to take 

the following stochastic combined form: 

                 min z    

Subject to  

Ν (𝛽, 𝜀) = {(𝑧, 𝑥): −𝑧 + 𝛽1(𝑥1
2 + 𝑥2

2  + 𝛿) ≤ 0.   

−𝑧 + 𝛽2(𝑥1
2 + 𝑥2 + 𝛿) ≤ 0.  

𝑥1
2 + 𝑥2

2 ≤ 𝜀1, 

𝑥1
2 + 𝑥2 ≤ 𝜀2, 

 𝑥1 + 𝑥2 ≤ 1.  

𝑥1 ≥ 0 𝑎𝑛𝑑 𝑥2 ≥ 0} 

Where, 𝜀1, 𝜀2 are random variables belonging to normal 

distribution with means 𝜇1 = 4, 𝜇2 = 6 and standard 

deviations 𝜎1 = 0.5, 𝜎2 = 0.7 respectively. Let the confidence 

levels 𝛾1 = 0.99, 𝛾2 = 0.95, and hence,  Φ−1(0.99) = 2.33,

Φ−1(0.95) = 1.645.Take 𝛿 = 0.1.Using lingo package [13], 

for different values of 𝛽, to get the subset of efficient and non-

dominated solutions as shown in Table1. 

 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 5078-5082 

© International Research Publication House.  http://www.irphouse.com 

5081 

Table 1. The Subset of efficient and non-dominated solutions 

𝛽 𝑥1 𝑥2 𝑧 𝑓1 𝑓2 

0.1 2.671412E-04 2.672869E-04 9.000017E-02 8.100102E-03 1.620013E-02 

0.3 3.093922E-04 3.092770E-04 7.000018E-02 4.900121E-03 9.800146E-03 

0.5 1.524103E-04 1.528814E-04 5.000003E-02 2.500026E-03 5.000029E-03 

0.7 1.206266E-04 1.208759E-04 7.000003E-02 4.900019E-03 9.800023E-03 

0.9 1.143774E-04 1.147309E-04 9.000003E-02 8.100019E-03 1.620002E-02 

 

6. CONCLUSION 

In this work, a new combined approach for characterizing the 

efficient solutions of stochastic vector optimization problems 

(SVOP) is presented. This approach is called a modified 

hybrid approach which combines the characteristics of both 

the generalized Tchebycheff norm and the stochastic 

constraint problems with random variable in the right hand 

side of the constraints. This approach enables us to determine 

the efficient solutions for SVOP easier than the hybrid one. 
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