
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 5213-5218

© International Research Publication House. http://www.irphouse.com

5213

Co-designed implementation of the PRESENT cryptographic algorithm for

an ARM-based System on Chip

Edwar Jacinto Gómez 1, Fredy H. Martínez S.2 and Fernando Martínez Santa 3

Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá D.C, Colombia.

1ORCID: 0000-0003-4038-8137 2ORCID: 0000-0002-7258-3909
3ORCID: 0000-0003-2895-3084

Abstract

The complexity of current electronic systems allows to

interconnect devices with different architectures in a System on

Chip - SOC, performing data acquisition and processing tasks,

as well as transmission and reception of information in IoT

and/or IIoT intelligent network applications. To guarantee the

security of the information in these systems it is possible to

incorporate cryptographic processes in those applications,

although these processes suppose a high expenditure of system

resources for their execution, increasing the processing time in

the creation of the same ones therefore it makes difficult its

implementation in safe low-cost applications, the reason why

the use of minimalist computer security algorithms like the

ciphers by light blocks have arisen. This article presents the

implementation of the lightweight block cipher algorithm

called "PRESENT" by hardware-software coding in a low-cost

device such as the PSoC® 5LP to reduce the time and number

of resources used in the data encryption process, as well as

execution times for the cryptographic algorithm.

Keywords: Co-designed, PRESENT, ultra-lightweight cipher,

System on Chip.

I. INTRODUCTION

The complexity of current electronic systems allows

interconnecting devices with different architectures in one SOC

(System On Chip) or several integrated circuits , these devices

having this great computing capacity can perform multiple

tasks: acquire and process data [1][2], as well as transmit and

receive information in an intelligent network IoT (Internet of

things) and/or IIoT (Industrial Internet of things); these tasks

should not occupy all the system processing time so that the

tasks of acquisition and processing of information are

performed satisfactorily[3][4].

These systems must guarantee a minimum of security in the

transmission and reception of data [4][5], which is why it is

required that cryptographic processes are performed in all IoT

applications, and therefore seeks to improve the algorithms and

methods of data encryption [6][7]. Cryptographic algorithms

are a high expenditure of resources for the system, investing a

lot of processing time in creating security mechanisms for

information [8][9].

However, this is not a major problem for high-performance

computer systems, but it makes it difficult to implement secure

low-cost applications [10][11], so it requires the use of

minimalist computer security algorithms such as lightweight

block ciphers , This article shows the implementation of one of

them called "PRESENT"[12], which performs the encryption

process using 80 and 128-bit keys and processing blocks of up

to 64 bits [13][14], all this implemented in an SoC of the

Cypress company using coding techniques to lower the time

and amount of resources used in the data encryption

process[15][16].

Colombian research groups from the Universidad Distrital

(Bogotá, Colombia) have done some work on

cryptography[17], deepening in the implementation of light

ciphers like CLEFIA and PRESENT on embedded platforms

like FPGA and SoC[18][19].

Embedded applications that implement encryption algorithms

require communication with a central computer that must do

the tasks of storage and processing[19][20], in other words,

security tasks typically fall to software made on this computer

with greater computing power, these cryptographic algorithms

implemented in the central computer are not optimized

[21][22]. Cryptography applications and libraries are available

in languages such as C/C++ and Python, which take AES

(Advanced Encryption Standard) as their default block cipher.

However, this article aims to make a code-designed hardware-

software implementation [23][24], which improves execution

times for the cryptographic algorithm PRESENT in a PSoC®

5LP, thus implementing a lightweight block cipher algorithm

in a low-cost device[25][26].

II. METHOD

The implementation was done in a Cypress® PSoC® 5LP that

has an ARM core, along with a field-configurable matrix type

CPLD, the PSoC Creator is used as a development tool as an

IDE; C++ is used for microcontroller processor programming

and Verilog as a hardware description language. Next, the

process of co-design is shown, starting with the internal

architecture of the device used, then the block diagram of the

implemented algorithm, and finally the parts of the

hardware/software implementation are shown with their

respective metrics and the improvement of the algorithm

compared to previous works.

II.I SoC Architecture: Cypress PSoC

The implementation was done in a PSoC® 5LP

Microcontroller, which has an ARM Cortex®-M3 core, some

configurable analog and digital blocks, plus at least 256Kb of

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 5213-5218

© International Research Publication House. http://www.irphouse.com

5214

FLASH program memory and at least 64 Kb of SRAM; but the

important and significant thing about this low-cost device is its

architecture, which allows to directly interconnect the

processor bus with the reconfigurable digital blocks. The

Cypress Creator IDE allows programming in C and C + + for

the embedded software that runs on the Cortex ®-M3 and

Verilog to make the description of the hardware of the blocks

reconfigurable in the field.

The PSoC® 5LP Microcontroller has mixed hardware with an

analog part, an ARM Cortex®-M3 core along with a field

configurable array, with some basic blocks called UDB

(Universal Digital Block array) interconnected by a system bus,

as shown in Figure 1. These configurable digital blocks can be

reprogrammed in different ways, with a series of tools, but in

general, these tools generate a code in Verilog language.

Fig. 1. Interconnection block diagram of the PSoC® 5LP

digital blocks [27]

The UDB blocks are distributed in a programmable

interconnection matrix. This matrix structure is homogeneous

and allows flexibility in the interconnection of functions in the

matrix. The matrix supports a complex range of flexible routing

interconnections between UDBs and all interconnected digital

parts of the system. The architecture of this interconnection

matrix is shown in figure 2.

Fig. 2. Digital Programmable Architecture of the PSoC® 5LP

[27]

II.II Block diagram of the block cipher: PRESENT

For the co-design process, it is required to know the internal

architecture of the device perfectly, to perform the design

partition. In this case, a previous work of analysis of the

functional blocks of the block cipher algorithm must be

performed, measuring the times and the amount of memory

used in each block.

An implementation of the block cipher cryptographic algorithm

PRESENT [1], which has a block size of 64-bits, using as

possible key sizes 80-bits or 128-bits is one of the lightweight

algorithms taken as a reference since it has a minimalist

architecture, which could work up to a 4-bit processor since the

word sizes and S-Box layer substitution tables are adapted to

work with nibbles. In figure 3, the general block diagram of the

cipher is shown.

Fig. 3. PRESENT cipher general block diagram

Next, the operation of each of the layers of the algorithm is

specified:

 Byte substitution layer (S-box): Consists of a non-

linear substitution state matrix called S-box, which

can describe as a simple table in C/C++ language. This

substitution block is applied to 16 nibbles that

complete 64 bits of information.

Table 1. sBox Layer Nibble Replacement Valuer [Hex]

 Bit Permutation (pLayer): This is a pure binary

substitution layer, in which 64-bit blocks of

information are exchanged bit by bit. This layer

requires a series of frameworks to be performed

in embedded software using the Cortex-M3 core

of the microcontroller, and being purely binary it

is the best candidate to be implemented using the

logical digital matrix.

Table 2. pLayer Permutation Bit Position

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 5213-5218

© International Research Publication House. http://www.irphouse.com

5215

 Key expansion function (addRoundKey): This

is the layer in charge of updating the keys, which

can be 80 or 128 bits in length, this design only a

key of 80 bits will have implemented, each round

the new calculated key will be mixed after

applying the key expansion function.



II.III Co-design

After having each of the tasks of the subsystems, it is required

the designer to carry out an execution planning scheme, making

clear the instant of time when the actions will be executed. For

hardware, it is required to make clear the function of each of

the blocks and how to achieve the synchronization of them [

23]. At that time, a Data-Path is performed, in which each of

the subsystems is write in a C/C++ language and that will

perform the synchronization of the global system with the

Player layer which has been described in Verilog.

In the co-design it is required to have knowledge of the internal

architecture of the device, to generate the communication and

verification channels between the structural blocks of the

PSoC® 5LP, for this specific case, when developing algorithms

of certain complexity in the previously mentioned platform,

tools or design methodologies are required for the

implementation and generation of total design tests.

In previous works [24] 24]a full software implementation was

made, where the entire cipher ran on the ARM Cortex®-M3 of

the PSoC® 5LP, for this purpose some measurements of the

processing times of the cipher were made, in addition to

specific measurements of the amount of memory used per block

and the amount of time measured in seconds of each of the

structural blocks of the algorithm, These metrics can be seen in

Figure 4, which presents the summary of results in a percentage

of program memory usage on the left and the percentages of

time used to perform each of the layers of the algorithm on the

right.

Fig. 4. PRESENT Ciphers metrics on the PSoC® 5LP.

Percentage of memory used per layer (left) and runtime per

layer (right) [28]

This analysis conducted in this previous work [29], clearly

shows that the pLayer is the layer that most requires to be

described or redesigned, so it is chosen as the layer that should

be made in hardware using the logic available in the UDP's, for

this we made a description of this layer hardware, making a

thorough review of how to make the access to the processor bus

to share the embedded software data with the digital

programmable logic.

The hardware description is done classically, making the

description of the permutation of the bits, complying with the

indicated in Table 2, but to this hardware description must be

added a line of code to capture the data from the software

"cy_psoc3_control", which is a function that allows to read the

data from a software register and write them in a UDP, it is

important to clarify that in this way only bytes can be written,

these bytes directly affect variables in the Verilog code, since

the cipher handles a 64-bit word, you have to call this function

8 times, similarly the function "cy_psoc3_status" allows to read

the data after passing through the hardware description to the

ARM Cortex®-M3 kernel. Analog functions are performed in

the software layer to read and write from the programmable

digital layer.

III. RESULT

The results of the implementation of the PRESENT

cryptographic algorithm using co-design, specifically

performing the pLayer in hardware are shown in figure 5, these

results were tabulated by comparing each of the layers of the

cipher, verifying the percentage of memory usage on the left

and the time used by the microcontroller in the encryption

process on the right.

i P(i) i P(i) i P(i) i P(i)

0 0 16 4 32 8 48 12

1 16 17 20 33 24 49 28

2 32 18 36 34 40 50 44

3 48 19 52 35 56 51 60

4 1 20 5 36 9 52 13

5 17 21 21 37 25 53 29

6 33 22 37 38 41 54 45

7 49 23 53 39 57 55 61

8 2 24 6 40 10 56 14

9 18 25 22 41 26 57 30

10 34 26 38 42 42 58 46

11 50 27 54 43 58 59 62

12 3 28 7 44 11 60 15

13 19 29 23 45 27 61 31

14 35 30 39 46 43 62 47

15 51 31 55 47 59 63 63

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 5213-5218

© International Research Publication House. http://www.irphouse.com

5216

Fig. 5. PRESENT cryptographic algorithm using co-design,

specifically performing the pLayer

In these graphs you can make several observations, on the left

side you can see the significant change in memory usage, where

before the pLayer layer used 70.4% of the application's

memory and now it only uses 47.1% of the same, on the other

hand, the most significant change is observed in the amount of

time required by the algorithm to perform the pLayer, since

before the vast majority of the processing time of the cipher

80.5% was to perform the permutations of this layer, but now

only 0.7% of the time is required since the permutation of the

bits required for this layer is done concurrently, the only time

used is the time required by the processor to load data into the

hardware layer.

To better understand the number of resources used in the

cipher, table 3 is presented, where the measurements of the

amount of program memory used in the whole cipher and each

of its layers is shown. This metric is made by subtracting the

memory used by the bootloader to load the program to the

microcontroller.

Table 3. Use of program memory measured in bytes

When implementing the pLayer using the SoC hardware only

45.69% of the FLASH memory is required, compared to the

PRESENT implementation only described in software for the

same device.

As for the amount of time used by the cipher, a measurement is

made using the system clock called "sys_tick", using this tool

the times of each of the layers were taken, in table 4 the results

are shown, starting with the amount of time used to cipher a

block of information and each of the layers, taking into account

that this data is for the 31 rounds of the algorithm.

Table 4. Use of program memory measured in bytes

You can see the decrease in time as the pLayer, which was

optimized using programmable logic, since this layer is

combinatorial only, requiring an exchange of a few bits in a D-

type flip-flop, this makes the processing time required is only

limited to the loading and reading of data in the hardware layer.

In this case, the processing time decreases from 5,626

milliseconds to only 0,0102 milliseconds, which, makes the

total cipher time decrease from 6,9875 milliseconds to 1,44896

milliseconds, that is, the processing time was reduced by

79.26% compared to the one used to cipher a block of

information in the full software implementation.

IV. CONCLUSION

By performing a thorough analysis of the important metrics in

an algorithm, it can be determined which of its components are

susceptible to be improved, in this case, the use of FLASH

memory is improved, it makes the algorithm go down from 2k

bytes of program memory usage to only 1 K byte

approximately.

In addition to this, the throughput of the application should be

analyzed, so that it is a usable algorithm in application IoT or

similar, in this case, by reducing the processing time of each of

the blocks you get a system output of 44.19 Kbps, which makes

it more than enough for this type of applications.

At the time that the algorithm was developed, it was thought to

be implemented on a device that would cost only 10 USD or

less, which makes it is by definition a minimalist application

from the point of view of cost and the number of resources

required, but at the time of this publication, the company

Cypress® updated this family of devices from 24Mhz to

80Mhz, which makes the throughput increase significantly in a

faster device with the same cost and architecture.

REFERENCES

[1] A. Bogdanov et al., “PRESENT: An ultra-lightweight

block cipher,” in International Workshop on

Cryptographic Hardware and Embedded Systems, 2007,

pp. 450–466.

 FLASH memory (bytes)

 Software Codesign

cipher 2136 976

data_xor_key 128 128

key_update 232 232

sBoxLayer 224 224

pLayer 1504 520

Execution time (Time milliseconds)

 Software Co-design

cipher 6.9875 1.44896

data_update 6.69178

data_xor_key 0.232 0.232

key_update 0.23448 0.23448

sBoxLayer 0.97228 0.97228

pLayer 5.626 0.0102

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 5213-5218

© International Research Publication House. http://www.irphouse.com

5217

[2] Z. Gong, S. Nikova, and Y. W. Law, “KLEIN: a new

family of lightweight block ciphers,” in International

Workshop on Radio Frequency Identification: Security

and Privacy Issues, 2011, pp. 1–18.

[3] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T.

Akishita, and T. Shirai, “Piccolo: an ultra-lightweight

blockcipher,” in International Workshop on

Cryptographic Hardware and Embedded Systems, 2011,

pp. 342–357.

[4] D. Engels, M.-J. O. Saarinen, P. Schweitzer, and E. M.

Smith, “The Hummingbird-2 lightweight authenticated

encryption algorithm,” in International Workshop on

Radio Frequency Identification: Security and Privacy

Issues, 2011, pp. 19–31.

[5] M. Alizadeh, M. Salleh, M. Zamani, J. Shayan, and S.

Karamizadeh, “Security and performance evaluation of

lightweight cryptographic algorithms in RFID,” Kos

Island, Greece, 2012.

[6] Y.-C. Lee, “Two ultralightweight authentication

protocols for low-cost rfid tags,” Appl. Math. Inf. Sci.,

vol. 6, no. 2S, pp. 425–431, 2012.

[7] X. Bai, L. Jiang, Q. Dai, J. Yang, and J. Tan,

“Acceleration of RSA processes based on hybrid ARM-

FPGA cluster,” in 2017 IEEE Symposium on Computers

and Communications (ISCC), 2017, pp. 682–688.

[8] S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and F.-X.

Standaert, “Towards green cryptography: a comparison

of lightweight ciphers from the energy viewpoint,” in

International Workshop on Cryptographic Hardware and

Embedded Systems, 2012, pp. 390–407.

[9] B. K. B. Raju, A. Krishna, and G. Mishra,

“Implementation of an efficient dynamic AES algorithm

using ARM based SoC,” in 2017 4th IEEE Uttar Pradesh

Section International Conference on Electrical,

Computer and Electronics (UPCON), 2017, pp. 39–43.

[10] E. Andreeva et al., “APE: authenticated permutation-

based encryption for lightweight cryptography,” in

International Workshop on Fast Software Encryption,

2014, pp. 168–186.

[11] B. Zhou, M. Egele, and A. Joshi, “High-performance low-

energy implementation of cryptographic algorithms on a

programmable SoC for IoT devices,” in High

Performance Extreme Computing Conference (HPEC),

2017 IEEE, 2017, pp. 1–6.

[12] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K.

Varici, and I. Verbauwhede, “Spongent: The design space

of lightweight cryptographic hashing,” IEEE Trans.

Comput., vol. 62, no. 10, pp. 2041–2053, 2013.

[13] C. Manifavas, G. Hatzivasilis, K. Fysarakis, and K.

Rantos, “Lightweight cryptography for embedded

systems–A comparative analysis,” in Data Privacy

Management and Autonomous Spontaneous Security,

Springer, 2014, pp. 333–349.

[14] M. Grillo, W. Pereira, and Y. Cardinale, “Seguridad para

la Autentificación, Cifrado y Firma en la Ejecución de

Servicios Web Compuestos.(P. 106-118),” Tekhné, vol.

1, no. 18, 2017.

[15] H. Ning, H. Liu, and L. Yang, “Cyber-entity security in

the Internet of things,” Computer (Long. Beach. Calif).,

vol. 46, no. 4, p. 1, 2013.

[16] J.-P. Aumasson, L. Henzen, W. Meier, and M. Naya-

Plasencia, “Quark: A lightweight hash,” J. Cryptol., vol.

26, no. 2, pp. 313–339, 2013.

[17] M. Mozaffari-Kermani and R. Azarderakhsh, “Efficient

fault diagnosis schemes for reliable lightweight

cryptographic ISO/IEC standard CLEFIA benchmarked

on ASIC and FPGA,” IEEE Trans. Ind. Electron., vol. 60,

no. 12, pp. 5925–5932, 2013.

[18] V. Ruiz-Rosas, J. Forero-Casallas, and C. Bohórquez-

Ávila, “Optimización topológica de un semirremolque

tipo plataforma-Topological optimization of a platform

semitrailer,” Rev. científica, vol. 2, no. 19, pp. 56–63,

2014.

[19] R. De Clercq, L. Uhsadel, A. Van Herrewege, and I.

Verbauwhede, “Ultra low-power implementation of ECC

on the ARM Cortex-M0+,” in Design Automation

Conference (DAC), 2014 51st ACM/EDAC/IEEE, 2014,

pp. 1–6.

[20] N. Arora and Y. Gigras, “FPGA implementation of low

power and high speed hummingbird cryptographic

algorithm,” Int. J. Comput. Appl., vol. 92, no. 16, 2014.

[21] E. E. Gaona García, S. L. Rojas Martínez, C. L. Trujillo

Rodríguez, and E. A. Mojica Nava, “Authenticated

encryption of pmu data,” Tecnura, vol. 18, no. SPE, pp.

70–79, 2014.

[22] C. Franck, J. Großschädl, Y. Le Corre, and C. L. Tago,

“Energy-Scalable Montgomery-Curve ECDH Key

Exchange for ARM Cortex-M3 Microcontrollers,” in

2018 6th International Conference on Future Internet of

Things and Cloud Workshops (FiCloudW), 2018, pp.

231–236.

[23] R. Beaulieu, S. Treatman-Clark, D. Shors, B. Weeks, J.

Smith, and L. Wingers, “The SIMON and SPECK

lightweight block ciphers,” in Design Automation

Conference (DAC), 2015 52nd ACM/EDAC/IEEE, 2015,

pp. 1–6.

[24] H. Tschofenig and M. Pegourie-Gonnard, “Performance

of state-of-the-art cryptography on ARM-based

microprocessors,” 2015.

[25] S. Belguith, A. Jemai, and R. Attia, “Enhancing data

security in cloud computing using a lightweight

cryptographic algorithm,” in The Eleventh International

Conference On Autonomic and Systems, 2015, pp. 98–

103.

[26] A. K. Luhach, “Analysis of lightweight cryptographic

solutions for Internet of Things,” Indian J. Sci. Technol.,

vol. 9, no. 28, 2016.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 5213-5218

© International Research Publication House. http://www.irphouse.com

5218

[27] A. T. Dust and G. Reynolds, “AN82156 Designing PSoC

Creator Components with UDB Datapaths.”

[28] F. Martínez Santa, E. Jacinto, and H. Montiel,

“PRESENT cipher implemented on an ARM-based

system on chip,” Commun. Comput. Inf. Sci., vol. 1071,

pp. 300–306, 2019, doi: 10.1007/978-981-32-9563-6_31.

[29] G. Edwar Jacinto, A. Holman Montiel, and S. Fernando

Martínez, “Implementation of the cryptographic

algorithm ‘present’ in different microcontroller type

embedded software platforms,” Int. J. Appl. Eng. Res.,

vol. 12, no. 19, pp. 8092–8096, 2017.

