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Abstract 

The paper studies the solvability of one system of nonlinear 

second-order partial differential equations for given boundary 

conditions. Currently, there are many works devoted to the 

derivation of partial differential equations in shell theory and 

numerical methods for their solution. However, when they 

derive partial differential equations and boundary conditions 

for them, the problem of the adequacy of these problems to 

real processes comes to the fore. The solution to this problem 

is based on a rigorous mathematical study of boundary value 

problem solvability for nonlinear partial differential equations. 

Besides, the existence of theorems makes it easy to prove the 

convergence of numerical methods to an exact real solution. 

Therefore, a rigorous study of boundary value problem 

solvability for partial differential equations, the proof of 

theorem existence is a very urgent problem. The research 

method consists in reduction the original system of equations 

to one nonlinear operator equation in Sobolev space. The 

research method is based on integral representations for the 

desired solution containing arbitrary holomorphic functions. 

Finding holomorphic functions is one of the main and difficult 

moments of the proposed research. In this work, an arbitrary 

region is first conformally mapped onto a unit circle. Then, 

explicit representations of solutions of the Riemann-Hilbert 

problem for holomorphic functions in the unit disc are used. 

The integral representations constructed in this way make it 

possible to reduce the original boundary value problem to one 

nonlinear equation, the solvability of which is established 

using the principle of squeezed mappings.  

Keywords: system of nonlinear differential equations, integral 

representations, contracted mapping principle, existence 

theorem.  

 

I. INTRODUCTION 

A system of five nonlinear partial differential equations of the second order of the following form is considered in an arbitrary 

bounded domain   : 

   1 1 2 2 1 21 2 11 1 2
,w w w f

     
     1 1 2 2 1 21 2 22 2 1

,w w w f
     

     

         
 

 

1 1 2 2 1 2 1 2

1 2

2

1 3 4 5 33 3 1 2 1 2

2 2 3

3 4 23 3 3

(1)
/ 2 / 2 0

k w w k w k w k w

k w k w T w R 

       



   

  



      

     
 

 

                              1 1 2 2 1 21 2 1 0 11 1 2
,g k

     
        1 1 2 2 1 21 2 2 0 22 2 1

,g k
     

        

under the following conditions 

2 3 2 , (2)w w    

1 2 2 1

2 1

1 1 31 2 1 2
( )( ) ( )( ) ( )( ), (3)w w t d ds w w t d ds w t

   
         

1 2 2 1

2 1

1 1 31 2 1 2
( )( ) ( )( ) ( )( ) (4)t d ds t d ds w t

   
            

on its border G. 
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The following designations are adopted in the formulas (1) - (4): 

1 1 1 1 2 1 2 1 2 2

1

1 1 3 3 2 1 23 3 3 3 3 3 3
( ) ,f f w k w w w w w w w R

         
       

2 2 2 2 1 1 2 2 1 1

2

2 2 3 4 2 1 23 3 3 3 3 3 3
( ) , (5)f f w k w w w w w w w R

         
         

3 0 1 1 23
( ) , 1,2, (1 ) 2, (1 ) 2,j

j
j jg g w k w L j


               

1 2 1 2

1 2 2 2 1

1 3 2 13 3 3 3
( )( ) ( ) [ 2( ) 2( )] ( ) ( ) ,w t P s w t w t d ds w t w t d ds

   
        

1 1 2

1 3 1 3 1 2 4 2 1( )( ) ( ), ( ) ( ) ( ), , ,w t N s t t s s i s k k k k k k               

2 2 2 2 2 3 2

5 1 2 1 2 0 1 22 , 6 (1 ) / , 12(1 ) / ( ), (1 ) ( ).k k k k k k k h h E Eh               

 

The system (1), together with boundary conditions (2) - (4), 

describes the equilibrium state of an elastic shallow isotropic 

homogeneous shell with hinged edges within the shear model 

by S.P. Tymoshenko [1, pp. 168-170, 269]. In this case: T 
- 

the efforts ( , 1,3)   ; )2,1( jw j  and 
3w  –  tangential 

and normal displacement of the points, 
0S , )2,1( jj  – the 

angles of normal section rotation, 
0S , )3,1( jR j , 

)2,1( kLk
, N1, P1 –  the components of external forces 

acting on the shell, const   –  Poisson's ratio, constE   

– Young's modulus, constkk 21,  –  principal curvatures, 

constk 2  –  shear coefficient, consth   –  shell thickness, 

const21,  – Cartesian point coordinates of the domain 

Ω. 

Problem A. Find a solution to the system (1) satisfying the 

boundary conditions (2) - (4). 

 

II. METHODS 

Currently, there is a number of works devoted to the study of 

nonlinear problems in the framework of the Timoshenko shear 

model [2–9]. The studies in [2–9] are based on integral 

representations for generalized displacements containing 

arbitrary holomorphic functions, which are found in such a 

way that generalized displacements satisfy the given boundary 

conditions. Two approaches are used to construct them. The 

first approach is based on the use of explicit representations of 

solutions to the Riemann - Hilbert problems for holomorphic 

functions in the unit disc. Therefore, a flat domain 

homeomorphic to the middle surface of the shell is either 

assumed from the very beginning to be the unit disk [2–5], or 

is mapped conformally onto the unit disk [6], [9]. In the 

second approach, holomorphic functions are sought in the 

form of Cauchy-type integrals with real densities, which are 

found as the solutions of a system of one-dimensional singular 

integral equations [7], [8]. In this paper, the conformal 

mapping method is used to study a nonlinear boundary value 

problem for arbitrary shallow shells under other boundary 

conditions. 

We will study the boundary value problem A in a generalized 

setting. We consider the following conditions to be satisfied: 

a) Ω is a simply connected domain with the boundary 1

C

; b) external forces )3,1( jR j , )2,1( kLk
 pL  , the 

components of external forces N1, P1  C Г ; here and 

further everywhere: 2p  , 0 1  . 

Definition. A generalized solution of problem A is the vector 

of generalized displacements  1 2 3 1 2, , , ,a w w w   

   2

pW  , 2p  , which satisfies the system (1) and 

pointwise boundary conditions (2) - (4) almost everywhere. 
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III. RESULTS AND DISCUSSION 

Let's consider a system of the first two equations in (1), in which the deflection 3w
 
is temporarily assumed to be fixed. The 

general solution of the system (1) has the form [2]: 

1 2

0 2 1 2 1 1 2( ) ( ) [ ]( ), , ( ) 2, (6)z w iw z iTd Tf z z i f f if             

where  z1  С  ,  z2  1C   – arbitrary holomorphic functions; 

 1
, ,

f
Tf d d i

z


    
 



   
 1 2 1 1[ ] , ( ( 1) ) / (4 ), 1,2.j

jd g d g d g d j        

We find the function  from the boundary condition 2 0w  on . We obtain the Riemann - Hilbert problem with the 

boundary condition for a holomorphic function  in the domain : 

2Re[ ( )] Re [ ]( ), , (7)t iTd t t Г     

).()()()( 2121 121211 
 wwiwwzTfzz   

Let us denote by the function  the conformal mapping of the single circle  onto the domain . Since the 

condition a) is satisfied for the region , it follows from [10, p. 25] that the function  belongs to the space . In 

the boundary condition (7), we make the change , , leaving the same designations for the new 

variables. Thus, in the single circle K we arrive at the Riemann - Hilbert problem for a holomorphic function  with the 

boundary condition: 

2Re[ ( )] Re [ ]( ( )), ;| | 1, (8)t iTd t t K t       

where ,  are defined in (6). The solution of the problem (8) is given by the formula [11, p. 253]: 

2 1 0

1
( ) Re [ ]( ( )) , , (9)

2 K

t z dtz Td Tf t ic z K
t z t







     

  

where  – an arbitrary real constant. 

We find the holomorphic function  using the boundary condition (3). The expressions of the functions ,  from (6) 

are introduced into (3). Taking into account the ratios   

1 / Re ( ) / 2, , (10)d ds t t t t        

 

the boundary condition (3) can be represented as 

2Re{ ( )} ( ), / , , (11)t t h t t dt ds t      

where  

 2 3 1 3 1 3( )( ) Re{ [ ] ( )} Re{ ( )}/ 2, (1 ) / (2(1 )), (12)h t l w t t Sd t t t             

)(2 z 

)(2 z 

)(z 1|:| K 

 ( )  )(1 KC

)(tt  )())(( 22 tt  

)(2 z

][gd Tf

0c

1( )z 1w 2w

,)()( 211221 itiiidsiddsdtt  
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1

3 1 3 3 3 1 3( )( ) ( )( ) / ( 1) Re{ [ ] ( )} Re ( )} [ ( ); ( )];l w t w t t Sd Tf t d ds Tf t l f w w          

1( )t  defined in (5). Through  they denote the limit of the function  at  from inside 

the region .  – the boundary value of the holomorphic function  : 

2 3 1( ) ( ) ( ) / 2. (13)z i z z      

Thus, for the function  in an arbitrary domain  we have the Riemann - Hilbert problem with the boundary condition 

(11). We will reduce this problem to the problem in a single circle. Using the conformal mapping of the domain  onto the 

single circle , we obtain 

( ( )) ( ) 1
( ) , (14)

| ( ) |

dt d d dt
ds ds d ds

    
  

  
     


 

              

Therefore, leaving the previous designations for the new variables, taking into account (10) and (14), we arrive at the Riemann - 

Hilbert problem for a holomorphic function  in the single circle  with the boundary condition: 

2Re{ ( ) ( )} ( ( )) | ( ) |, :| | 1. (15)t t t h t t t K t         

Let us study the problem (15). The index of the problem (15) is –1. Then, following [11, p. 253], the solution of the problem (15) 

has the following form: 

2 ( ( )) | ( ) |1
( ) , , (16)

( ) K

h t t dtz z K
z t z t

 





   

   

in this case, they satisfy the condition of this problem solvability 

2 ( ( )) | ( ) |
0. (17)

K

h t t dt
t

 




  

For  from relation (13) we have 

1 2 3( ) ( ( ) ( ))2 / , . (18)z z i z z       

Let's transform the representation (18). To do this, you need to find , , ( )z . The representation for 

 is found in [6]. For the function   из (9), from (9), using the representation  from (6) 

and taking into account that  we have the following: 

1 1 1
2 2 2

( ( )) ( ( ))
( ) (19)

2 ( ) ( ) ( )K K

d T t T tz dt dt
z t z t z

 


 

  
     

   
   

                  

)(][ 1 tSd  )]([ 1 zSd   tz
 ( )t 

( )z 



K

( ), ( ), :| | 1, .t K d d             

)()( zz  K

)(1 z

)(][ 1 tSd  )(2 z

)(][ 1 tSd  )(2 z ( )z K ][gd
2(( ) ( )) 2 ( )t z t z t t z   

.
)(

))(]([Re
)(

1

)(

))((

)(

))((

)(2 22

1

2

12



























ККК zt
dttTfTd

z
dt

zt
tTdt

zt
tT

z
d







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Let us calculate all the integrals on the right-hand side of the representation (19). Taking into account the operator T 

representation (6) and changing the variable , we obtain 

    2

1 1

1

| ( ) |1 1
( ( )) , . (20)

( ) ( ) ( )
T t d d d d t K

t t
   

    
      

 

 
     

     

 

Further, taking into account the representation for the function 0( ; ) ( ( ) ( )) / ( )z z z         and the Cauchy formula, 

we find the following integrals easily 

0

2 2 2

1/ ( ; ) 2 ( )
, (21)

( )( ) ( ) ( ) [ ( ) ( )]K

t i i zdt
t t z z z

    

      



 

     

 

, . 

 

Then the first integral in the formula (19), taking into account (20) and the representation  from (6), is transformed to the 

form 

 

                             . 

 

Applying the formula (4.9) [10, p. 29], we have 

 

                               

 

Then, taking into account (21), we obtain 

. 

 

( )t t

0

2 2 2

1 ( ; ) 2 2 ( )
,

( )( ) ( ) ( ) [ ( ) ( )]k

t i i zdt
t t z z z
    

      



 

   

0

2 2

1 ( ; ) 2

( )(1 ) ( )(1 )К

t idt
t zt z

  

   


  


0

2 2

1 ( ; )

( )(1 ) ( )(1 )К

t idt
t zt z

  

   


  



Tf

























 


2

2

1

2

1

)()()(

|)(|)(1

)(

))((

zt
dtdd

t
dt

zt
tT

K KК










2

0

1

)();(

)()()(1

zt
dt

t
dd

tK K 

























 




  







































 
 

2

0

11

2

1

)();(

)()()(

2

1

2

)()(

)(

))((

zt
dt

t
d

ti
ttdt

zt
tT

K KК 











01
12 2

1 ( ; )( ) ( )1 1
( ) ( ) ( ) .

2 ( ) 2 ( )( )K K K

tt t dt dt d
t z i t t z

 
     

 
  

 
   

   
  

 
 















K KК

d
zz

zd
z

dt
zt

tT










22

0

1

2

1

2

1

)()];([

)()()(
)(

)(

)()(

)(

))((
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Let us transform the second integral in representation (19). First, for this we use (20), then we apply the formula (4.9) to the 

integral over the domain K [10, p.29], and then - the last formula in (21), and calculate the integral 

 

                           

                           

It's obvious that 

. 

Let us calculate the third integral in representation (19). Applying the formulas (20) and (21), we obtain 

 

                        . 

Let   – the area obtained from the area by throwing out the circle centered at the point  with the boundary 

.  

Then we have 

          

Using the formula (4.7) [10, p. 28], we calculate the following integral: 

        

                             . 

 

 

 

1 1

2 2 2

0

( ( )) ( ) ( ) ( )1

( ; )( ) ( )К K K

T t d d dtdt
t tt z t t z

       

    

   
        

  

1
1 2 2

0

( ) ( ) ( )1 1
( ) ( )

2 ( ; ) 2 ( )K K

d dtt t
i t t t t z

     


   
 

 
    

  
 

0 1 1
12 2 2

1 ( ; ) ( ) ( ) ( ) ( )1 1
( ) ( ) ( ) .

2 2( )(1 ) (1 ) (1 )K K K K

t t t t tdt d dt dt
i t zt zt zt

   
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Here the first term is equal to zero, since the function  is the boundary value of the function 

, holomorphic by  in . We use the replacement for the second term: 

, 

and passing to the limit at , we obtain 

. 

Therefore, the integral over the region K 

. 

Similarly, using the formula (4.7) [10, p.28] in the case of the domain , we find the integral 

 

               , 

where, using the substitution , it is easy to establish that 

. 

Thus, for the third integral in representation (19), we have  
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Substituting the found expressions of the integrals into the formula (19), we obtain the following representation for : 
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We substitute the expressions  from (22) and  from (23) into the formula (18). After cumbersome transformations, 
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. Then, obviously, , .  

Substituting the expression of the function  from the formula (24) into the formula (9), we obtain the representations for 

 of the following form 

2 2 3 0( ( )) [ ( )]( ( )) , , (25)z l w z ic z    

 

Substituting the representations (24), (25) into the formula (6), for the functions , , satisfying the system of the first two 

equations in (1) and the boundary conditions in (2), (3), under condition (17) we obtain the desired representation 

0 0 3 0( ) ( ) , , (26)z H w z ic z     

)(2 z

2

1 1 2 1
2 12 2

0

( ) ( ) ( ) ( ) 1 Re [ ]( ( ))
( ) , .

2 ( ) ( ) 2 ( ; )( ) ( ) ( )K K К

d d Td Tf dd d id z z K
z z z z z z

         
 

       
  

 
     

     

)(z

)(z

 
 




















K KK

dt
ztt

ttwl
z

d
zz

idd
zz

id
.

)(

|)(|))()((

)(

1

)(

)()(

)(2))(;(

)()(

2

3

2

11

0

2

12 

















)(2 z )(z

1( )z

,
)(

)(

2

1
)(

2






K

K dt
zt
tf

i
zfS



)( 3wl

)(z  )(z

)()( 1   Cz )())(( )1(

1  pWz )1/(22  p

1( )z

))((2 z

.
)(

)(
))]]([Re))]](([[(Re

2

1
))()](([ 3132 







К t
dt

zt
zttTfTdtwlTdzwl








1w 2w



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 5317-5327 

© International Research Publication House.  http://www.irphouse.com 

5325 

 

To transform the solvability condition (17), the function  is replaced by the formula (12). Further, applying the formula 

(14) and Cauchy's formula, we can easily reduce the condition (17) to the form  , which, 

in turn, is transformed to the following final form  
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Thus, finding the solution to the problem A was reduced to the equation (31) solution for the function  with the condition 

 on the boundary . Next, we reduce the equation (31) with the term   on the boundary  to the 

equivalent equation  
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IV. CONCLUSIONS 

Let us assume that the external forces acting on the shell and 
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V. SUMMARY 
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more and more reliable, accurate design data and often pose 

completely new challenges. This work makes a significant 

contribution to the study of this class of problems solvability 

within the framework of more general models, as well as 

during the solution of specific applied problems for a wider 

class of elastic structures.  
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