
Performance Evaluation of Data Provenance System with
Blockchain-Based Cloud Environment

Yurim Kwon1, Eun-Kyu Lee2 and Junghee Jo3
1,2 School of Information Technology, Incheon National University, Korea (South).

3 Department of Computer Education, Busan National University of Education, Korea (South).

Abstract

With regard to data source verification, recent researches that
use the blockchain technology for data provenance only
consider registered files. This paper proposes a data provenance
system that ensures to verify all the change history of data file
on cloud environment. A technical challenge in the system is
how to minimize latency required to share files on the cloud. In
particular, the latency is primarily affected by the unit for one
transaction record. The proposed system takes into account
three methods: (i) a file is considered as transaction record, (ii)
a file's metadata is determined as transaction record, and (iii)
an activity record, a unique characteristic of the cloud, is judged
as transaction record. We implement all of them, run
experiments, and compare their impacts on latency. Based on
results, this paper classified a suitable scenario for each method,
and the cloud-based method showed the best performance.

Keywords: Data provenance, Cloud, Blockchain, Security,
Internet of Things, Distributed system

I. INTRODUCTION

In a modern digitalized society, it becomes common for people
to exchange various files via the Internet. If the source is
unclear, however, there exists a risk of malicious code or a
copyright problem. In particular, copyright infringement (a.k.a.,
piracy) has been a critical social issue for a while and is
expected to be more challenging because a number of digital
contents are being generated and consumed by individuals
every day. Korea Copyright Commission reported that 1,763
million copies and 204 million copies of pirates in online and
offline markets, respectively, were found in Korea in 2018 [1].
It also presented that price of such pirates reached to 377,009
million Korean Won (KRW) in total (351,794 million KRW
from online and 25,215 million KRW from offline). The report
also recorded the number of online monitoring that referred to
an action by content providers to stop copying and transmitting
illegal copies, which was less than 1% of total numbers of the
pirates. To resolve the issue, recent researches have proposed
solutions that used a blockchain technology to guarantee the
copyright of files stored on the cloud. Fig. 1 pictures a general
concept of data sharing on the cloud. The cloud allows users to
share files in a convenient way. Alice creates a file on the cloud
that can be easily accessed and changed another user, Bob.
Eventually, the file remains changed and all the change history
is logged. However, files are distributed through various
channels. To ensure the history of these files, limit them to
cloud environments. Moreover, most of previous researches
managed only one file registered in a system.

Fig. 1. The cloud allows users to share files in a convenient

way. Alice creates a file on the cloud that can be easily
accessed and changed by another user, say Bob.

In order to tackle the limitation, this paper proposes a data
provenance system that ensures to verify all the change history
of data file on cloud environment. A technical challenge in the
system is how to minimize latency required to share files on the
cloud. In particular, the latency is primarily affected by the unit
for one transaction record. Because of increasing volume of
information to be processed, it becomes a new technical
challenge to minimize latency required to share files on the
cloud. Latency is primarily affected by the unit for one
transaction record. To scrutinize the performance metric, this
paper takes into account three methods: (i) a file is considered
as transaction record, (ii) a file's metadata is determined as
transaction record, and (iii) an activity record, a unique
characteristic of the cloud, is judged as transaction record. We
compare their impacts on latency performance via extensive
experiments. Results demonstrate that there is a suitable
environment for each method, and the cloud-based method
shows the best performance.

This paper is organized as follows. Section 2 gives a brief
introduction to a blockchain technology. Section 3 reviews
research works related to integration of blockchain with cloud
storage. Section 4 designs and develops the proposed data
provenance system, which is followed by description of delay
issues in file sharing on cloud with preliminary experimental
results. Section 6 explains our experiments and results. Finally,
Section 7 concludes the paper.

II. BACKGROUND

II.I Blockchain

Blockchain is a distributed ledger technology that ensures the
reliability of the ledger without a third trust agency. It
distributes the ledger of transaction information generated
between participants to the network rather than the central
server of a particular institution as shown in Fig 2.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4245-4250
© International Research Publication House. http://www.irphouse.com

4245

AA
Text Box
ORCIDs: 0000-0003-1459-5458 (Eun-Kyu Lee), 0000-0002-9068-3620 (Junghee Jo)

The blockchain technology composes of three main
components: Miners, consumers who trade, and nodes that are
network participants who verify and approve their transactions.

Relevant information is generated once a user takes an action,
e.g., generation and copy of a file, in the cloud. Transmitting
this information to one node initiates validation by
broadcasting to adjacent nodes. When the verified transaction
information shows a miner who has gained the right to create a
block, other transaction records are combined to create one
block. The generated blocks are connected to the previous
blocks and are called blockchain. Because blockchain is a
distributed data storage technology that is not stored on a
specific server, no one can falsify or change blocks [2].

Fig. 2. Blockchain is a distributed data storage that operates in

steps of transaction, block generation, verification and
connecting the block to a chain.

Blockchain receipts provide evidence that some data existed at
a certain time. The receipt contains all the information needed
to prove that the individual hash is part of the Merkle tree [3].
It is possible to track the path from the Merkle root to the target
hash to generate the Merkle evidence proving that one of the
elements is in the Merkle tree without having to know the entire
tree.

II.II SHA-256 Hash and Merkle Tree Root

Secure Hash Algorithm (SHA) is a standard hash function
published by the National Institute of Standards and
Technology (NIST) as a U.S. Federal Information Processing
Standard (FIPS). Out of the algorithm family, this paper
employs SHA-256 that uses 32-bit words. In SHA-256, input
data is divided into blocks by 512 bits in padding blocks, and
each block is further divided into 16 32-bit words through pre-
processed blocks. The K constant block is a block with an array
of constants used in the computation with W and has 64 32-bit
constants, providing one K value in hash blocks for each round.
The hash computation block is provided with the K-constant
and W-word values required for the computation in the K-
constant block and the pre-processed block for each round to
perform 64 round operations. At the end of the operation, the
final hash value of 256-bit length is printed.

A Merkle tree is a hash of all transactions contained by the
blockchain and is stored in disk space. Its operation repeats the
process of hashing and re-hashing the multiple transactions that
make up the block in pairs. In this process, it is summarized as
a single hash called a Merkle root as shown in Fig. 3. Thus, it
is able to detect attempts to fabricate transactions.

Fig. 3. A Merkle tree hashes all transactions contained in

blockchain, which is eventually summarized by a root node.

III. RELATED WORKS

Authors in [4] proposed ProvStore, the first online public
repository to support W3C's new PROV standard. It allowed
users and applications to store the provenance of their data on
the web. The RESTful API (OAuth support) enabled the
conversion, visualization, and sharing of provenance
documents into various serializations available in third-party
applications. Eckert et al. presented a workflow model
implemented in accordance with the principles of RESTful
Web Services and linked data principles [5]. They showed that
RDF-based specifications for Web services, workflows, and
runtime information established a complete chain of
provenances for all resources created within these workflows.
Tosh et al. discussed design problems of consensus protocols
for a blockchain-based cloud provenance system [6]. In
particular, they highlighted performance and security issues
when adopting various Proof of Work Agreement protocols
within a data provenance framework.

Sultana and Bertino proposed a provenance model that could
express the source of all data objects captured in any abstract
layer and present the abstract schema of the model [7]. The
expressive characteristics of the model have the advantage of
enabling various source queries. They introduced a data
provenance middleware system consisting of several
components and services that could capture provenances
according to the model and store them safely in a central
repository. Liang et al. designed and developed ProvChain, a
distributed and reliable cloud data provenance architecture
using blockchain technology [8]. Consisting of three operation
steps of (1) collecting provenance data, (2) storing provenance
data, and (3) validating provenance data, it used cloud storage
scenarios and selected cloud files in data units to detect user
activity to collect data from sources. Xia et al. proposed
MeDShare, a data sharing system based on blockchain [9]. It
provided data provenance, audit, and control of healthcare data
in a cloud repository shared between large data entities. All the
actions on the system including transmitting and sharing data
from one entity to another were regarded in a tamper-proof
manner. MeDShare were able to track data behaviors, to detect
violation of permissions on data by using smart contracts and
access control mechanisms, and to revoke access to
problematic entities if found. Li et al. developed a method that
could track a full life cycle of data by using blockchain
techniques [10]. Authors, in particular, focused on data
transmissions and data regenerations between cloud data
centers. Authors in [11] developed a digital forensic
architecture that used blockchain, smart contract, and software
defined networking (SDN) technologies. To solve integrity and
reliability problems in centralized forensic management, they

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4245-4250
© International Research Publication House. http://www.irphouse.com

4246

proposed secure ring verification based authentication scheme
that could ensure authorized user accesses only. Hasan et al.
proposed a framework that could store provenance information
in a secure manner using blockchain technology and
InterPlanetary File System (IPFS) [12]. Without relying on the
trust of a cloud storage provider, it allowed users to check
integrity of own data. Roemsri and Hewett addressed user
authentication in the cloud environment [13]. They proposed a
new authentication method that used data provenance and
location information of a user. Yue et al., proposed a
blockchain-based data integrity checking framework that
worked on a decentralized network such as a peer-to-peer cloud
storage [14]. Consisting of three components of the blockchain,
a cloud storage service provider and a data integrity service, it
used Merkle trees for data integrity verification.

Sharma et al. presented a systematic survey that reviewed
applications of blockchain technology for cloud storage
security [15]. Nguyen et al. also reported a similar technical
review where authors addressed Cloud of Things (CoT)
enabled by the combination of cloud computing and Internet of
Things [16]. They surveyed blockchain applications and related
development in CoT.

IV. PROPOSED SYSTEM - DESIGN & DEVELOPMENT

IV.I Design

In the proposed system, a cloud server provides access to files,
allowing users to share files between them. Fig. 4 illustrates an
overall architecture of the system. When a user uploads a file
to the cloud, the server generates a SHA-256 hash of the file
and sends it to a node that is currently active in the block chain
network. Here, a file can be hashed in three different ways; (i)
hashing a file entirely, (ii) hashing metadata of a file, or (iii)
hashing a cloud activity of a file. The node transmits the hash
value to the blockchain network by broadcasting it to the
surrounding nodes. When a block is created after verification
on the network, a blockchain receipt is returned to the cloud
and stored. Later, the blockchain receipt can be used to access
the blockchain network to verify that the hash record is valid.

Fig. 4. An overall architecture of the proposed data

provenance system; when a user uploads a file, the cloud
server generates a corresponding hash code that is then

delivered to the blockchain network for future verification.

In the proposed system, the blockchain network frequently
communicates with the cloud and the verification entity. The
followings describe the details of the communications.

(a) To Request a list of blockchain nodes currently active in
the network. Because the blockchain network operates in
a decentralized manner, it is necessary to know which
nodes are currently active inside the network. To this end,
the cloud sets url using a HTTP API method to access the
blockchain network. Accessing the url of the blockchain
network returns a list of active nodes in JSON format. To
reduce delay in this process, we employ a cache
prefetching technique that is explained further later in this
section.

(b) To publish a hash value to the blockchain network
(/hashes). The cloud generates a variable json_hash, a
hash value representing a transaction on a target file,
creates a message including the variable, sends the
message (/hashes interface) to an active node of the
blockchain network that is selected from the list received
in step (a). This returns a result array that contains
information about when the hash value is registered in
which anchor as well as a variable hash_id_core that is
necessary when issuing a receipt later.

(c) To issue a receipt of a transaction (/proofs). Using
hash_id_core obtained in set (b), the cloud is able to send
a HTTP GET message to a url,
“http://blockchain_node/proofs/hash_id _core” in order
to obtain a corresponding receipt. The blockchain network
returns a proof encoded by Base 64. The proof value
contains contents of the blockchain receipt: Hash value of
the transaction (targetHash), the height of the block, the
hash value of the previous block, the Merkle root, and the
transaction ID [17].

(d) To verify the receipt (/verify). The cloud or the
verification entity can check validation of the receipt
received in step (c). The Merkle tree, taking the form of a
binary tree, is created by adding each transaction record
to the hash operation. In order to confirm that the target
hash is included in the blockchain, therefore, we can
compute it first with the hash record on a sibling node of
the target hash. An outcome can be computed with a hash
record of its sibling node, and this computation is repeated
until a value is finally left. If the final outcome is same to
the Merkle root value on the receipt, the receipt is proved
to be valid.

The proposed data provenance system provides users with the
following capabilities when sending and receiving files in the
cloud.

(a) Guaranteeing the source of the file in real time: If a user
takes a file-related action in the cloud, information is sent
directly to a blockchain network to ensure the source of
the file in real time.

(b) Anti-modification: History information of the file is
collected and sent to the blockchain network that protects
the source data. All data in the blockchain is shared among
nodes. The cloud creates timestamp logs for all user
operations on cloud data. All source items are assigned
blockchain receipts for future validation.

(c) Source verification: Source records are posted on the
blockchain network worldwide, and numerous blockchain
nodes provide verification for all blocks. Thus, it is
possible to check all sources using the blockchain receipt.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4245-4250
© International Research Publication House. http://www.irphouse.com

4247

(d) Copyright guarantee: It uses history information of files
to track files changes, and guarantee copyright. If a file is
downloaded out of the cloud, copyright is guaranteed by
posting the information of the file in the blockchain
network.

IV.II Development

This paper implements the proposed system on top of cloud
environment. To this end, we employ an open source cloud
server, ownCloud software [18, 19], and build it on a Linux
Ubuntu system. We modify it so that it is able to record all the
activities on files and thus to make logs of such activities.

Our system uses a blockchain API called Chainpoint for the
cloud data server [20]. Table 1 lists APIs for communicating
with the blockchain network. Chainpoint is an open standard
for creating timestamp attestation of data, files, or processes. It
connects the data hash to the blockchain and returns the
timestamp proof. Nodes in it use the Merkle tree to receive a
hash and encrypt data to connect to the bitcoin blockchain. A
Proof contains information to ensure that the hash of some data
is fixed to the blockchain. Thus, it can be demonstrated that the
data existed at a particular point in time. Chainpoint provides
API via HTTP request and offers Calender and Bitcoin as
anchor. Bitcoin is an online crypto that is based on blockchain
technology. It takes about 90 minutes for Chainpoint to post a
hash with Bitcoin. The useful thing is Calender. Developed for
application to embedded system, it makes of being able to
publish in less than 10 seconds.

Table 1. Chainpoint provides HTTP-based APIs to
communicate with the blockchain network.

Function GET/
POST Usage

To publish a hash value to the
blockchain network POST /hashes

To receive a receipt from the
blockchain network GET /proofs{hash

_id_core}
To verify validation of a receipt POST /verify
To search transactions included in the
calendar GET /calendar/{tx

_id}/data
To fetch information of the latest block
generated locally GET /recent

To fetch information of a blockchain
node GET /config

Since the blockchain provides API via HTTP, we update our
storage server by installing Apache Web Server. In this way,
the cloud server is able to communicate with the blockchain
network.

IV.III Modification for improved delay performance -
prefetching

The proposed system employs a cache prefetching technique
that speeds up the execution of a program by bringing data from
memory in advance before a processor needs it. That is, the
prefetching reduces memory access latency. Using the
technique, our system is designed and developed to reduce the
number of GET/POST API calls, resulting in reduced service
time. We also employ link prefetching, a browser-provided
feature that improves site performance by specifying files that

need to be preloaded on a website and making them easy to use
on demand.

V. DELAY ISSUE IN FILE SHARING ON CLOUD

Once a transaction occurs, blockchain sends this event
information to the blockchain network. Then, it is important
what you see as a “one deal” in a system that manages file
sources using the cloud. This is the hash of the file mentioned
in the previous section. To capture a delay issue in the process,
this section conducts a preliminary experiment and records its
result in Fig. 5. It shows time duration when a file is uploaded
to a typical cloud without adding blockchain functionality. As
shown, it takes up to more than 4 seconds to upload a file of
512 KB to the cloud. We note that the uploading delay may be
different on different cloud settings because they are on various
network conditions and use different optimization techniques.
This paper uses the preliminary results as base data to evaluate
performance of blockchain-related operations.

Fig. 5. Time [sec] to upload a file to the cloud without adding

the blockchain hashing.

To resolve the delay issue, this paper tries to minimize time to
share files on the cloud. Our system, in particular, takes into
account three methods. At the first method, a file is considered
as transaction record, that is, the entire file is hashed regardless
of its size. Second, a file's metadata is determined as transaction
record. Since metadata is only hashed, this method can reduce
processing delay. Last, an activity record, a unique
characteristic of the cloud, is judged as transaction record.

VI. EXPERIMENTS AND RESULTS

This research makes use of Apache JMeter to measure delay
performance of the proposed data provenance system. Apache
JMeter is an open source software based on Java application
designed for performance testing of client-server-structured
software like Web applications [21]. It has been used in many
places, such as unit/performance/stress tests. JMeter supports
general-purpose protocols such as TCP, FTP, and HTTP(S); it
only sends and receives messages between the client and the
server in line with the communication protocols. It does not
work on web browsers and does not perform operations
performed by the client itself.

Using JMeter, this section conducts experiments that measure
time to upload a file to the cloud after running the blockchain
hashing with three methods mentioned in the previous section.
Table 2 summarizes the experimental results.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4245-4250
© International Research Publication House. http://www.irphouse.com

4248

Table 2. Time [sec] to upload a file to the cloud after
running blockchain hashing

File size [KB] 1 8 32 64 128 256 512
Delay [sec]

with A 1s 2.48s 4.12s 6.8s 8.25s 15.4s 24s

Delay [sec]
with B 0.88s 1.25s 2.92s 3.13s 4.79s 5s 6.4s

Delay [sec]
with C 0.88s 1.06s 2.26s 2.97s 3.41s 4.66s 5.3s

VI.I Hashing a File Entirely (A)

This method considers a file to be a transaction. Table 2 shows
the upload time by the file size when a file itself is hashed. It
also includes the speed of the upload process at the rate at which
the file is uploaded and hashed in the SHA-256 format until the
result is reached. For example, suppose the test.txt file has a
string called “Hello World!” stored. If another user clears “!”
then test.txt is considered to be a different file and is re-hashed.
The larger the size of the file, the more pressure it is in terms of
speed. Fig. 6 compares the delay performance of method A
(hashing an entire file before uploading it to the cloud) to those
cases of not hashing files. The figure presents that the delay
value grows exponentially as a file size increases when an
entire file is hashed. Delay increases up to longer than 24
seconds even (6 times longer comparing to the base case) when
using a file of 512 KB size, which is generally not acceptable
to end users in a real world. In this sense, the first method
cannot be applied to a cloud-based data provenance system
directly. However, if a similarity testing process is included and
user names and timestamps are added, they are appropriate for
examples related to copyright using blockchain, such as Proof
of Experience (PoE) [22].

Fig. 6. Hashing an entire file and then uploading it to the

cloud add a long processing delay. Thus, method A, as it is, is
not appropriate to the cloud environment.

VI.II Hashing Metadata of a File (B)

When a user uploads a file, the file's metadata is hashed in
method B. The third row in Table 2 shows its performance
output. As above, the total upload time includes the time it takes
to upload the file. Compared to hashing files, this method takes
shorter time to upload files. Metadata of data may include
author, file name, file size, timestamp, and file type. Therefore,
even if the contents of the file are different, the same metadata
is treated as the same file.

VI.III Hashing Cloud Activity of a File (C)

This hash method is a possible way to work in a cloud
environment. Most clouds keep track of user activity. This is a
way to report and hash activity records as a transaction. For
example, "A user named Alice uploads a file named
addressbook.txt at 19:35 on November 10, 2020" is interpreted
as an activity record and treated as a transaction. As with the
other cases, the file upload process is also included. It's much
faster than hashing the file itself, and a bit faster than hashing
the metadata. It's hard to say that it's related to the file. If users
X and Y upload the same file separately, the hash value of the
record will be different, so both can be identified as sources.

Fig. 7. File hashing takes much longer than other as data size
increases. Two hashing methods do not introduce overhead

much comparing to base delay that uploads files without
blockchain hashing.

Fig. 7 compares the results of the experiments at once. The X-
axis shows the file size [KB] while Y-axis represents the time
taken [seconds]. The figure presents that the delay value grows
almost linearly as a file size increases in both methods B and C.
In the case of method B (hashing metadata), there are 74% of
more overhead with 64 KB of data, but this value decreases to
39% when data is 512 KB in size. It is expected that the
overhead decreases as the file size increase. To capture our
expectation, this section represents these overheads in the
format of seconds as follows. It takes 1.33 more seconds to
process metadata hashing with 64 KB of data, and this value
increases to 1.71 and 1.79 seconds with 256 KB and 512 KB of
data. Since method B introduces hashing overhead of only meta
information of a file, and we do not expect that the size of meta
information increases along with the file size, we can conclude
that the overhead becomes smaller as the file size gets bigger.
It is also expected that the overheads in method B vary
according to file types; a specific file type including a large size
metadata will result in weighted overhead. In the case of
method C (hashing cloud activities), there are 65% of more
overhead with 64 KB of data, but this value decreases to 15%
when data is 512 KB in size. Except for two cases of smallest
data size (1 KB and 8 KB), the average overhead is 0.98
seconds, which is shorter than delay values in method B. It is
also expected that the overheads in method C does not vary
much unlike the case of method B. This is mainly attributed to
the fact that contexts of cloud activities are somewhat limited
and small in size.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4245-4250
© International Research Publication House. http://www.irphouse.com

4249

Based on observation, this paper recommends that the second
method (hashing metadata of a file) is suitable for the purpose
of copyright protection while the third method (hashing cloud
activities of a file) works well for tracking the history of files.

VII. CONCLUSION

In general, it is recommended to hash a file in order to prevent
forgery of a file itself and its origin. In a file sharing
environment like the cloud, however, this paper observes that
it is suitable to hash metadata or activity records for data
proceeding. The problem mentioned in the case of hashing the
activity record can be solved with a blockchain receipt. The
blockchain receipt also includes a timestamp so that one can
identify who created data earlier.

ACKNOWLEDGMENT

This research was supported by Incheon National University
Research Grant in 2019. Authors thank to Jueun Yoo for efforts
to this research. E.-K. Lee (eklee@inu.ac.kr) is the
corresponding author.

REFERENCES

[1] Korea Copyright Commission. Available online: https:/
/www.copyright.or.kr/ [accessed on 11/24/2020]

[2] Becoming a blockchain node. Available online: https://
brunch.co.kr/@mobiinside/1186 [accessed on 11/24/20
20]

[3] R. Merkle, "A Digital Signature Based on a
Conventional Encryption Function," Advances in
Cryptology, vol. 293, pp. 369-378, 1987.

[4] T. D. Huynh and L. Moreau, “ProvStore: A Public
Provenance Repository,” International Provenance and
Annotation Workshop (IPAW), June 2014.

[5] K. Eckert, D. Ritze, K. Baierer, and C. Bizer, "RESTful
open workflows for data provenance and reuse," ACM
International Conference on World Wide Web, April
2014.

[6] D. K. Tosh, S. Shetty, X. Liang, C. Kamhoua and L.
Njilla, "Consensus protocols for blockchain-based data
provenance: Challenges and opportunities," IEEE
Ubiquitous Computing, Electronics and Mobile
Communication Conference, October 2017.

[7] S. Sultana, and E. Bertino, "A Distributed System for
The Management of Fine-grained Provenance," Journal
of Database Management, 26(2), pp. 32-47, April, 2015.

[8] X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat,
and L. Njilla, "ProvChain: A Blockchain-based Data
Provenance Architecture in Cloud Environment with
Enhanced Privacy and Availability," IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, May 2017.

[9] Q. Xia, E. Sifah, K. Asamoah, J. Gao, X. Du, and M.
Guizani, "MeDShare: Trust-Less Medical Data Sharing
Among Cloud Service Providers via Blockchain," IEEE
Access, vol. 5, pp. 14757-14767, July 2017.

[10] H. Li, K. Gai, Z. Fang, L. Zhu, L. Xu, and P. Jiang,
"Blockchain-enabled Data Provenance in Cloud
Datacenter Reengineering," ACM International
Symposium on Blockchain and Secure Critical
Infrastructure, July 2019.

[11] M. Pourvahab and G. Ekbatanifard, "Digital Forensics
Architecture for Evidence Collection and Provenance
Preservation in IaaS Cloud Environment Using SDN
and Blockchain Technology," IEEE Access, vol. 7, pp.
153349-153364, 2019,

[12] S. S. Hasan, N. H. Sultan, and F. A. Barbhuiya, "Cloud
Data Provenance using IPFS and Blockchain
Technology," ACM International Workshop on Security
in Cloud Computing, July 2019.

[13] P. Roemsri and R. Hewett, "Provenance Location-based
Authentication in Cloud Computing," ACM
International Conference on Advances in Information
Technology, July 2020.

[14] D. Yue, R. Li, Y. Zhang, W. Tian, and C. Peng,
"Blockchain based data integrity verification in p2p
cloud storage," IEEE International Conference on
Parallel and Distributed Systems, Dec. 2018.

[15] P. Sharma, R. Jindal, and M. D. Borah, "Blockchain
Technology for Cloud Storage: A Systematic Literature
Review," ACM Computing Surveys, 53(4), pp. 1–32,
2020.

[16] D. C. Nguyen, P. N. Pathirana, M. Ding and A.
Seneviratne, "Integration of Blockchain and Cloud of
Things: Architecture, Applications and Challenges,"
IEEE Communications Surveys & Tutorials, 22(4), pp.
2521-2549, 2020,

[17] Gateway HTTP API. Available online: https://github.co
m/chainpoint/chainpoint-gateway/wiki/Gateway-HTTP
-API [accessed on 11/24/2020]

[18] ownCloud. Available online: https://owncloud.org/ [acc
essed on 11/24/2020]

[19] ownCloud Installation. Available online: https://doc.ow
ncloud.org/server/10.3/admin_manual/installation/ [acc
essed on 11/24/2020]

[20] Chainpoint. Available online: https://chainpoint.org/ [ac
cessed on 11/24/2020]

[21] Apache JMeter™. Available online: https://jmeter.apac
he.org/ [accessed on 11/24/2020]

[22] Proof of Existence. Available online: https://en.wikiped
ia.org/wiki/Proof_of_Existence [accessed on 11/24/202
0]

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4245-4250
© International Research Publication House. http://www.irphouse.com

4250

