
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4635

Pilot Model of the Embedded Reconfigurable Real Time Computing System

Alexey I. Martyshkin

Candidate of Engineering Sciences, Associate Professor, Sub-Department of Computers and systems,
Penza State Technological University, Russia. 440039, Penza, Baydukova Passage / Gagarin Street, 1a/11,

Abstract

The paper discusses the possibility of simulation modelling the

control nodes using the example of a task manager included in a

reconfigurable computing system using modern hardware on a

modern element base. The purpose of the paper is to conduct

experiments to study the control nodes of a reconfigurable

computing system for digital signal processing by means of

hardware equipment. The object of development and research

in this paper is a device consisting of 4 reconfigurable

processors implemented on the basis of a FPGA.

Reconfigurable computing systems today are promising

developments in the field of high performance computing. The

paper proposes a block diagram of the device, and a printed

circuit board, according to which a prototype of the

reconfigurable system was created. To the end, conclusions are

drawn from the work. The research of the operation principles

of the reconfigurable system was carried out in CAD

ModelSim-Altera 10.0c Starter Edition, which allows assessing

the correct operation of the device without building physical

prototypes. To check the results obtained on the models, a full-

scale experiment was carried out on a laboratory bench, which

includes an AKIP-9101 logic analyser and a prototype of the

reconfigurable system. The effective implementation of the

system under consideration is ensured due to the fact that the

dispatching and scheduling subsystem is implemented as an

independent coprocessor device. This solution unloads the CPU

from task scheduling operations and increases overall system

performance. The results obtained in the paper can be used in

medicine, geographic information systems, and also specialized

systems.

Keywords: reconfigurable computing system, high

performance system, simulation modelling, scheduler, task

manager, hardware implementation, FPGA.

I. INTRODUCTION

The development and enhancement of logic in modern FPLDs

of FPGA-type allows for more complex algorithms that can be

programmed in a microcircuit. Interfacing this FPGA type with

a modern processor (CPU) via a high-speed bus such as PCI

Express allows the configurable logic to act as a coprocessor

rather than a peripheral. This has led to reconfigurability in high

performance computing. Reconfigurable computing systems

(RCS) are promising developments in the field of high

performance computing [1, 2, 3]. To obtain the necessary

functional dependences of the characteristics in the developed

and investigated systems on certain parameters, it is necessary

to apply abstract mathematical models based on the

mathematical relation language [4, 5]. Basically, the choice of

the structure of a computing system is based on the study of the

task flows entering and leaving the system for processing, the

lengths of queues in front of the servicing devices, and the

durations of the waiting times for service. The main research

methods in this area are imitation, analytical, and experimental.

The paper discusses an experimental method based on

measuring the indicators of computational processes performed

in real systems and devices, and processing the measurement

results in order to determine the values required for research.

Experimental studies provide more accurate data, but the results

are usually particular.

I.I Theory

This paper is by and large an exploratory one. When studying

the subject area, the literature sources [6 - 10] were analysed in

connection with the search for little-studied and unsolved

problems. Of course, certain issues related to the simulation

modelling of control nodes in a reconfigurable computing

system using hardware means are rather poorly reflected in

published works, but nevertheless, these issues are partially

considered in the publications [11-13], [14-17] and [18-21].

The main goal of this paper is to conduct experiments to

investigate the control nodes of a reconfigurable computing

system for digital signal processing using hardware means. The

designated issue is relevant today due to the widespread

informatisation of society and the almost widespread processing

of colossal volumes of data of a diverse level. To achieve the

above goal, the work solves a number of problems to study the

previously created [22, 23] prototype of the device and the

principles of its functioning.

In this paper, the reconfigurable computing system is a device

that consists of 4 reconfigurable CPUs implemented on the

basis of a FPGA. The creation of such a system on the basis of

the FPGA provides an opportunity for reconfiguring (resetting)

the device for various classes of digital signal processing tasks

and processing large amounts of data. Figure 1 shows a block

diagram of the described reconfigurable computing system.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4636

Figure 1. Block diagram of the reconfigurable computing system

A schematic diagram, a printed circuit board diagram (Figure 2), the printed circuit board itself (Figure 3, a) and a prototype of the device

(Figure 3, b) were developed on the basis of the given block diagram.

Figure 2. Schematic diagram of the printed circuit board for a reconfigurable computing system prototype

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4637

а b

Figure 3. Printed circuit board of the reconfigurable computing system prototype (a), the reconfigurable computing system

prototype (b)

The embedded real-time reconfigurable computing system

consists of the following components:

- 5 FPGAs Cyclone 4 EP4CE10E22I7N from Intel FPGA: 4

FPGAs are used to implement soft-microprocessor cores Nios II;

one FPGA is dedicated to be a unit comprising control nodes of

the system;

- 5 configuration devices for FPGA EPCS4SI8N from Intel

FPGA to store the configuration data of each FPGA;

- 4 SDRAM MT48LC16M16A2 from Micron, 64 MB RAM

blocks.

When creating a reconfigurable computing system, development

engineers face the main problem associated with reducing the

time losses when planning processes and flows within the

system. At the operating system (OS) level, the assignment of

processes (flows) to processor nodes is performed by the task

dispatching function.

While fast enough, the software implementation in user space is

complex, since 3 semaphores (counters) are required for the

synchronization procedure. The first counter counts the number

of places occupied by processes ready for processing, the second

counts the number of active processors, and the third counter

counts the mutex for the mutual exclusion function, which

prevents some free processors from simultaneously accessing one

queue, which is a shared system resource. To resolve this issue,

the method of synchronization in the kernel space is used, but the

increased time consumption entails a rather strong decrease in the

performance of the reconfigurable computing system [24].

The optimal solution to the above problems lies in the hardware

implementation of the process synchronization function

(including the planning and task scheduling subsystem), since

this removes the responsibility for performing these functions

from the processors, increases the OS performance and

reliability. The proposed method is based on the fact that the task

manager (TM) function will be performed by an independent

specialized CPU as part of the reconfigurable computing system

[25].

Let's move on to considering a possible hardware implementation

of the task manager, the block scheme of which is shown in

Figure 4. Based on it, an algorithm for functioning in the Quartus

II CAD system in VHDL language was developed. According to

the presented block scheme of the task manager, it includes the

following units: a task queue control unit, a FIFO unit, a free

processor control unit, and a synchronizing unit.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4638

Figure 4. The task manager block scheme

The task queue control unit receives the identifiers of the

incoming tasks. Then it determines whether there is a vacancy in

the task queue and if there is free space, it sends the identifier of

the new task to the FIFO queue unit. It also fetches the task

identifier from the queue for processing in the free CPU.

In accordance with the request signal from the queue control unit,

the FIFO unit places the identifier of the new task at the end of

the list or fetches the identifier of the task from the head of the list

for forwarding it to the CPU.

The synchronizing unit is the main unit in the device. Its

functioning consists in the analysis of information about whether

there are pending requests in the reconfigurable computing

system, and whether there are free CPUs that can be assigned to

service these requests. The synchronizing unit facilitates

interaction with any CPU in the reconfigurable computing system

under consideration and is responsible for broadcasting the task

identifier to the free CPU assigned for processing [4].

Below there is a listing of the VHDL synchronizing unit code.

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

entity block_dispetcher is

 port

 (

 clk : in std_logic;

 rst : in std_logic;

 s_task_in_queue : in std_logic;

 s_proc_free : in std_logic;

 v_q_fifo_in : in std_logic_vector(15 downto 0);

 s_proc_sel_1 : in std_logic;

 s_proc_sel_2 : in std_logic;

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4639

 s_proc_sel_3 : in std_logic;

 s_proc_sel_4 : in std_logic;

 s_proc_pzapr_1 : in std_logic;

 s_proc_pzapr_2 : in std_logic;

 s_proc_pzapr_3 : in std_logic;

 s_proc_pzapr_4 : in std_logic;

 s_proc_prinyal_1 : in std_logic;

 s_proc_prinyal_2 : in std_logic;

 s_proc_prinyal_3 : in std_logic;

 s_proc_prinyal_4 : in std_logic;

 s_fifo_read_out : out std_logic;

 v_task_id_for_proc : out std_logic_vector(15 downto 0);

 s_task_ready_1 : out std_logic;

 s_task_ready_2 : out std_logic;

 s_task_ready_3 : out std_logic;

 s_task_ready_4 : out std_logic;

 s_proc_zapr_1_o : out std_logic;

 s_proc_zapr_2_o : out std_logic;

 s_proc_zapr_3_o : out std_logic;

 s_proc_zapr_4_o : out std_logic

);

end block_dispetcher;

architecture block_dispetcher_arch of block_dispetcher is

signal reg_task_id : std_logic_vector(15 downto 0);

 type state_upr is(init, zapros_proc, p_zapros_proc, read_task,task_in_proc, wait_proc_read_task);

signal state : state_upr;

signal state_next : state_upr;

signal s_proc_zapr_1 : std_logic;

signal s_proc_zapr_2 : std_logic;

signal s_proc_zapr_3 : std_logic;

signal s_proc_zapr_4 : std_logic;

signal s_proc_g_1 : std_logic;

signal s_proc_g_2 : std_logic;

signal s_proc_g_3 : std_logic;

signal s_proc_g_4 : std_logic;

signal cnt: std_logic_vector(3 downto 0):="0000";

begin

 s_proc_zapr_1_o<=s_proc_zapr_1;

 s_proc_zapr_2_o<=s_proc_zapr_2;

 s_proc_zapr_3_o<=s_proc_zapr_3;

 s_proc_zapr_4_o<=s_proc_zapr_4;

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4640

process(rst)

begin

 if rst='1' then

 state<=init;

 else

 state<=state_next;

 end if;

end process;

process (clk)

begin

 if (clk'event and clk='1') then

 case state_next is

 when init =>

 s_proc_zapr_1<='0';

 s_proc_zapr_2<='0';

 s_proc_zapr_3<='0';

 s_proc_zapr_4<='0';

 s_task_ready_1<='0';

 s_task_ready_2<='0';

 s_task_ready_3<='0';

 s_task_ready_4<='0';

 s_proc_g_1<='0';

 s_proc_g_2<='0';

 s_proc_g_3<='0';

 s_proc_g_4<='0';

 v_task_id_for_proc<=x"0000";

 reg_task_id<=x"0000";

 state_next <=zapros_proc;

 when zapros_proc =>

 if s_task_in_queue='1' and s_proc_free='1' and s_proc_sel_1='1' then

 s_proc_zapr_1<='1';

 state_next <=p_zapros_proc;

 elsif s_task_in_queue='1' and s_proc_free='1' and s_proc_sel_2='1' then

 s_proc_zapr_2<='1';

 state_next <=p_zapros_proc;

 elsif s_task_in_queue='1' and s_proc_free='1' and s_proc_sel_3='1' then

 s_proc_zapr_3<='1';

 state_next <=p_zapros_proc;

 elsif s_task_in_queue='1' and s_proc_free='1' and s_proc_sel_4='1' then

 s_proc_zapr_4<='1';

 state_next <=p_zapros_proc;

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4641

 end if;

 when p_zapros_proc =>

 if (s_proc_zapr_1 and s_proc_pzapr_1)='1' then s_proc_g_1<='1'; s_fifo_read_out<='1'; state_next

 <=read_task;

 elsif (s_proc_zapr_2 and s_proc_pzapr_2)='1' then s_proc_g_2<='1'; s_fifo_read_out<='1'; state_next

 <=read_task;

 elsif (s_proc_zapr_3 and s_proc_pzapr_3)='1' then s_proc_g_3<='1'; s_fifo_read_out<='1';state_next

 <=read_task;

 elsif (s_proc_zapr_4 and s_proc_pzapr_4)='1' then s_proc_g_4<='1'; s_fifo_read_out<='1'; state_next

 <=read_task;

 end if;

 when read_task =>

 s_fifo_read_out<='0';

 if cnt="0010"then

 cnt<="0000";

 reg_task_id<=v_q_fifo_in;

 state_next <=task_in_proc;

 else

 cnt<=cnt+'1';

 end if;

 when task_in_proc =>

 v_task_id_for_proc<=reg_task_id;

 if s_proc_g_1='1' then s_task_ready_1<='1';state_next <=wait_proc_read_task;

 elsif s_proc_g_2='1' then s_task_ready_2<='1'; state_next <=wait_proc_read_task;

 elsif s_proc_g_3='1' then s_task_ready_3<='1';state_next <=wait_proc_read_task;

 elsif s_proc_g_4='1' then s_task_ready_4<='1'; state_next <=wait_proc_read_task;

 end if;

 when wait_proc_read_task =>

 if (s_proc_g_1 and s_proc_prinyal_1)='1' then v_task_id_for_proc<=x"0000"; s_task_ready_1<='0';

state_next <=init;

 elsif (s_proc_g_2 and s_proc_prinyal_2)='1' then v_task_id_for_proc<=x"0000"; s_task_ready_2<='0';

state_next <=init;

 elsif (s_proc_g_3 and s_proc_prinyal_3)='1' then v_task_id_for_proc<=x"0000"; s_task_ready_3<='0';

state_next <=init;

 elsif (s_proc_g_4 and s_proc_prinyal_4)='1' then v_task_id_for_proc<=x"0000"; s_task_ready_4<='0';

state_next <=init;

 end if;

 end case;

 end if;

end process;

end block_dispetcher_arch;

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4642

I.II Experimental research

Simulation units were created for modelling the proposed task

manager model in an experimental study with the use of 4

CPUs and a task generating unit. The simulation modelling was

carried out using the ModelSim-Altera 10.0c Starter Edition

software. After compilation, the project was simulated. Based

on the simulation modelling results, time diagrams (Figure 5)

for the operation of the reconfigurable computing system with

the task manager were obtained.

Figure 5. Time diagrams for the reconfigurable computing system in the ModelSim-Altera 10.0c Starter Edition software

From the shown time diagrams, it is clear that the fourth CPU is

assigned to be first to serve the current task, followed by the

third, etc. For example, the task identifier EDAF was accepted

for servicing by the fourth CPU (taskp4), after which the CPU

sent a signal that the task was being processed (tp4). The CPU

number 4 was busy, so the next task ID EDB5 was accepted for

service by the third CPU. Like the fourth CPU, it sets a signal

(tp3) that it has started serving the task. This principle of

assigning tasks is due to the scheme of priorities of the task

execution in the system, i.e. from the fourth CPU to the first one

[19, 20].

Typically, simulation modelling results do not always

correspond to the results obtained with their hardware

implementation. To verify the task manager operation

algorithm presented in the work and timing diagrams obtained

in ModelSim-Altera 10.0c Starter Edition, a full-scale

experiment was carried out on the basis of a laboratory stand,

which includes the AKIP-9101 logic analyser and a prototype

of the proposed reconfigurable computing system (Figure 6).

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4643

Figure 6. The stand for the full-scale experiment

Figure 7 shows the timing diagrams of the reconfigurable computing system operation, which were obtained in the real mode of

operation.

Figure 7. Timing diagrams of the reconfigurable computing system, which were obtained in the real mode of operation

Table 1 shows comparisons and descriptions of signals in the

ModelSim-Altera 10.0c Starter Edition software and during

operation of the AKIP-9101 logic analyser. Due to the fact

that the logic analyser has a 16-bit bus, only the main signals

are displayed for analysis: the task identifier presented in

sequential form, the designation of the first and last identifier

bits, the CPU task processing signal, the beginning of a new

task flow, and the clock signal.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4644

Table 1. Comparisons and descriptions of signals in the ModelSim-Altera 10.0c Starter Edition software and during operation of the

AKIP-9101 logic analyser

ModelSim-

Altera 10.0c

signals

AKIP-

9101

signals

Signal assignment

clk B5 50 MHz clock signal

pr1 A0 Task ID 1 in sequential form

b1 B1 Designation of the first and last bit of the CPU1 identifier

pw1 A4 CPU1 task processing signal

taskp1 - Parallel CPU1 Task ID (Hexadecimal code)

pr2 A1 CPU2 task identifier in sequential form

b2 B2 Designation of the first and last bit of the CPU2 identifier

pw2 A5 CPU2 task processing signal

taskp2 - Parallel CPU2 Task ID (Hexadecimal code)

pr3 A2 CPU3 task identifier in sequential form

b3 B3 Designation of the first and last bit of the CPU3 identifier

pw3 A6 CPU3 task processing signal

taskp3 - Parallel CPU3 Task ID (Hexadecimal code)

pr4 A3 CPU4 task identifier in sequential form

b4 B4 Designation of the first and last bit of the CPU4 identifier

pw4 A7 CPU4 task processing signal

taskp4 - Parallel CPU 4 Task ID (Hexadecimal code)

e_t B0 Starting a new task flow

vqfi - The task flow going to the task manager for its allocation to the CPUs

According to the results of the experiment carried out using the

stand, we can say that the algorithm of the task manager fully

corresponds to its model in the ModelSim-Altera 10.0c Starter

Edition environment, this can be seen from the timing diagrams

of the CPU (pw1 signal, A4 signal in Figures 5 and 7,

respectively) which is 256 clock counts or 2560 ns.

II. CONCLUSIONS

The hardware implementation of the task manager completely

removes the problem of time losses taking place during the

distribution and synchronization of processes in the

reconfigurable computing system under consideration. Based

on the experiment carried out, it was found that the task

manager is quite capable of accepting and assigning to service

all tasks entering the system. It is not overloaded in any way

and is able to handle a higher flow of incoming requests to be

processed.

It is also necessary to note such an advantage of this

development, which is associated with the implementation of a

reconfigurable computing system with a modern element base

(FPGA).

The application area for the results obtained in the paper is

computing systems, where it is important to increase

productivity and efficiency (processing of graphic information

in medicine (X-ray, ultrasound, MRI, etc.), digitization and

processing of maps in geographic information systems,

specialized intelligent security systems).

ACKNOWLEDGEMENTS

The paper is published with the support of the scholarship

of the President of the Russian Federation for young

scientists and graduate students for 2018-2020 (SP-

68.2018.5).

REFERENCES

[1] Kalyaev IA, Levin II, Semernikov EA, Dordopulo AI.

Reconfigurable computing systems based on FPLDs of

the VIRTEX-6 family. Bulletin of the Ufa State Aviation

Technical University. 2011;15(5(45)):148-154.

[2] Levin II, Dordopulo AI, Kalyaev IA, Gudkov VA. High-

performance reconfigurable computing systems based on

FPLD VIRTEX-7. Parallel computing technologies

(PAVT'2014): Proceedings of the International Scientific

Conference. 2014:131-139.

[3] Martyshkin AI, Martens-Atyushev DS. Review of modern

domestic reconfigurable computing systems. Modern

methods and means of processing space-time signals:

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4635-4645

© International Research Publication House. http://www.irphouse.com

4645

Collection of papers of the XV All-Russian scientific and

technical conference. 2017:65-69.

[4] Mayorov SA, Novikov GI, Aliev TI, Makharev EI,

Timchenko BD. Fundamentals of the computing systems

theory: textbook. Edited by S.A. Mayorov. - M.: Higher

school. 1978:- 408 p.

[5] Aliev TI. Basics of the simulation modelling of discrete

systems. SPb.: SPbGU ITMO. 2009:- 363 p.

[6] Tanenbaum E, Bos H. Modern operating systems. - SPb.:

Peter. 2015:- 1120 p.

[7] Rumyantsev AS. Organization and tools of reconfigurable

computing systems. Scientific and technical bulletin of

information technologies, mechanics and optics.

2012;4:79-84.

[8] Platunov AE. Embedded control systems. Control

Engineering. Russia. 2013;43(1):16-24.

[9] Jozwiak L, Nedjah N. Modern architectures for embedded

reconfigurable systems–A survey. J. of Circuits, Systems,

and Computers. 2009;18(2):209-254.

[10] Jozwiak L, Nedjah N, Figueroa M. Modern development

methods and tools for embedded reconfigurable systems:

A survey. Integration, the VLSI J. 2010;43(1):1-33.

[11] Martens-Atyushev DS, Martyshkin AI. Development and

research of a reconfigurable system for digital signal

processing. International student scientific bulletin.

2016;3-1:86-88.

[12] Martyshkin AI, Martens-Atyushev DS. Development of a

subsystem for planning and assigning tasks of a

reconfigurable computing system for digital signal

processing. Modern methods and means of processing

space-time signals: collection of papers of the XIV All-

Russian Scientific and Technical Conference. Edited by

I.I. Salnikov. 2016: 115-119.

[13] Martyshkin AI, Martens-Atyushev DS. Mathematical

modelling and calculation of the probabilistic and

temporal characteristics of a planning subsystem and

assignment of tasks for a reconfigurable computing

system intended for digital signal processing. Modern

technologies in science and education - STNO-2017:

collection of works of the II International scientific-

technical and scientific-methodological conference: in 8

volumes. Ryazan State Radio Engineering University.

2017:210-215.

[14] Martyshkin AI. Mathematical simulation modelling of

Tasks Managers with the strategy of separation in space

with a homogeneous and heterogeneous input flow and

finite queue. ARPN Journal of Engineering and Applied

Sciences. 2016;11(19):11325-11332.

[15] Martyshkin Alexey I, Martens-Atyushev Dmitry S.

Experimental study of a reconfigurable system with

hardware task manager and a distributed queue. Journal of

Computational and Theoretical Nanoscience.

2019;16(7):3040-3045.

[16] Martyshkin AI, Martens-Atyushev DS. Mathematical

modelling and evaluation of the characteristics of

specialized reconfigurable systems based on a common

bus at the stage of synthesis of the system configuration.

Journal of Advanced Research in Dynamical and Control

Systems. 2019;11(8):2852-2860.

[17] Martyshkin Alexey I. Study of Distributed Task Manager

Mathematical Models for Multiprocessor Systems Based

on Open Networks of Mass Servicing. AD Alta-Journal of

Interdisciplinary Research. 2018;8(1):309-314.

[18] Martens-Atyushev DS, Martyshkin AI. Development and

research of the module for the dispatching subsystem of

tasks of a reconfigurable computing system for digital

signal processing. International student scientific bulletin.

2017;4-9:1411-1414.

[19] Martyshkin AI, Martens-Atyushev DS, Markin EI. On the

issue of building a reconfigurable computing system

based on FPLD for digital signal processing. Modern

innovative technologies for training engineering personnel

for the mining industry and transport. 2017;4:433-439.

[20] Martens-Atyushev DS. Development and research of a

subsystem for dispatching tasks of a reconfigurable

computing system for digital signal processing.

Information technologies in economic and technical

problems: Collection of scientific papers of the

International Scientific and Practical Conference.

2016:247-250.

[21] Martyshkin AI. Investigation of the characteristics of the

subsystem for assigning tasks of a reconfigurable

computing system for digital signal processing. Models,

systems, networks in economics, technology, nature and

society. 2017;1(21):142-149.

[22] Martyshkin AI. Implementation of a prototype of a

reconfigurable computing system for digital signal

processing based on programmable logic integrated

circuits. New information technologies and systems:

collection of scientific papers of the XIV International

Scientific and Technical Conference dedicated to the 70th

anniversary of the Department of Computing Machinery

and the 30th anniversary of the Department of Systems

computer-aided design". Penza. 2017:243-246.

[23] Martens-Atyushev DS, Martyshkin AI. Experimental

study of a planning subsystem of a reconfigurable

computing system for digital signal processing.

International student scientific bulletin. 2017;4-9:1408-

1410.

[24] Biktashev RA, Knyazkov VS. Multiprocessor systems.

Architecture, topology, performance analysis. Tutorial. -

Penza: Publishing House of the Penza State University.

2004: - 107 p.

[25] Martyshkin AI. Mathematical modelling of task

dispatchers in multiprocessor computing systems on the

basis of stochastic queuing networks: abstract of the thesis

for a degree of a candidate of engineering sciences:

05.13.18. Penza State Technological University. Penza.

2013:- 23 p.

