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1. Introduction 

The study of differential equation with fractional order has 

great attention in recent years. This concept is not new and is 

very much as old as classical differential equations but no one 

has the answer at that time. Nowadays fractional calculus is 

the area which deals about it and we notice that fractional 

derivative means, the derivative of arbitrary order. Fractional 

differential equation is considered to be an alternate model for 

nonlinear differential equations. Therefore, it get more 

attention to study. There are many authors discussed the 

existence results of fractional differential equations using 

various fixed point theorems. For example, one can refer the 

monographs of Kilbas et al. [12], Miller and Ross [16], 

Podulbny [17], Diethelm et al. [5, 6], Benchora [3] and so on. 

Obviously, the differential equations of fractional order has 

been proved to be a valuable tool in the modeling of many 

phenomena in various fields of science and engineering. 

Indeed, one can find many applications in electromagnetic, 

control, electrochemistry etc. (see [7]- [9]).  

On the otherhand, the stability concept is widely studied on 

functional equations. But the analysis of stability concepts of 

fractional differential equations has been very slow and there 

are only countable numbers of works. In 2009, Li [14], first 

proposed the Mittag-Leffler stability and in 2010 [15], the 

fractional Lyapunov’s second method. In the next year, Li and 

Zhang [13] have been given a brief overview on the stability 

of the fractional differential equations. However, there are 

only few works available on the local stability and Mittag-

Leffler stability for fractional differential equations and very 

rare works on the Ulam stability of fractional differential 

equations. 

In 2011, Wang [21] carried out a pioneering work on the 

Hyers-Ulam stability and data dependence for fractional 

differential equations with Caputo derivative. Wang [22] 

proved the Hyers-Ulam stability of fractional differential 

equation of order 0 < 𝛼 < 1 via a generalized fixed point 

approach, by adopting some part idea of Wang et al. [21], 

Cadariu and Radu [4] and Jung [11] in the next year. 

Particularly, there are very rare works on the Hyers-Ulam 

stability of fractional differential equations with boundary 

conditions. Recently, Rabha [10], have given Ulam stabilities 

with boundary conditions in the interval(0, 1). For more 

information on functional equations and their stability 

problems, see [18]- [20]. 

In this paper, the Hyers-Ulam stability of the following 

fractional boundary value problem is proven. 

 𝐶𝐷𝛼𝑥(𝑡) = 𝑓(𝑡, 𝑥(𝑡)),       0 < 𝑡 < 1,       1 < 𝛼 < 2       (1.1) 

  𝑥(0) = 0,         𝑥(1) = 𝑎 ∫ 𝑥(𝑠)𝑑𝑠,    0 < 𝜇 < 1   
𝜇

0
          (1.2) 

Where  𝐶𝐷𝛼  denotes the caputo fractional derivative of order 

𝛼, 𝑓 ∶ [0, 1] × 𝑋 → 𝑋 is continuous, and 𝑎 ∈ 𝑅 is such that 

𝑎 ≠
2

𝜇2. 

This paper is organized as follows: In Section 2, basic 

definitions and notations are given. In Section 3, the 

Generalised Hyers-Ulam stability of the above fractional 

boundary value problem is proved. In section 4, the Hyer-

Ulam stability of given boundary value problem is proved. 

 

2. Preliminaries 

Throughout this paper, we assume that 𝑌 is a normed space 

and 𝐼 = [0, 𝑇] is a given interval.  

Definition 2.1 [3] 

Given an interval [a, b] of R. The fractional order integral of a 

function ℎ ∈ 𝐿1([𝑎, 𝑏], 𝑅) of order 𝛼 ∈ 𝑅+ is defined by 

𝐼𝑎+
𝛼 ℎ(𝑡) =

1

Γ( 𝛼)
∫(𝑡 − 𝑠)𝛼−1ℎ(𝑠)𝑑𝑠

𝑡

𝑎

 

Where Γ is the gamma function. 

 

Definition 2.2 [3] 

For a function h given on the interval [a, b], the Caputo 

fractional order derivative of h, is defined by 

( 𝐶𝐷𝑎+
𝛼 ℎ)(𝑡) =

1

Γ( 𝑛 − 𝛼)
∫(𝑡 − 𝑠)𝑛−𝛼−1ℎ𝑛(𝑠)𝑑𝑠

𝑡

𝑎

 

Where 𝑛 = [𝛼] + 1. 
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Lemma 2.4 [1] 

A unique solution of the boundary value problem (1.1) is given by  

𝑥(𝑡) =
1

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 −
2𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

+ 
2𝑎𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

𝑓(𝑚, 𝑥(𝑚))𝑑𝑚)
𝜇

0

𝑑𝑠 

Definition 2.5 [22] 

A function 𝑑: 𝑋 × 𝑋 → [0, ∞] is called a generalized metric on X if and only if d satisfies 

(A1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 

(A2) 𝑑(𝑥, 𝑦) =  𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

(A3) 𝑑(𝑥, 𝑧)  ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋;  

 

Theorem 2.1 [4] 

Let (X, d) be a generalized complete metric space. Assume that Λ: 𝑋 → 𝑋 is a strictly contractive operator with the Lipschitz 

constant L<1. If there exists a nonnegative integer k such that 𝑑(Λk+1, Λkx) < ∞ for some 𝑥 ∈ 𝑋, then for following are true: 

(a) The sequence {Λ𝑛𝑥} converges to a fixed point 𝑥∗ of Λ. 

(b) 𝑥∗ is the unique fixed point of Λ in 𝑥∗ =  {𝑦 ∈ 𝑋 | 𝑑(Λkx, y) < ∞} ; 

(c) If 𝑦 ∈  𝑋∗ then 𝑑(𝑦, 𝑥∗) =
1

1−𝐿
𝑑(Λ𝑦, 𝑦). 

 

3. Hyers-Ulam-Rassias stability 

In this section, we first prove the generalized Hyers-Ulam stability of the fractional differential equation (1.1) with given integral 

boundary condition (1.2) using Theorem (2.1). 

 

Theorem 3.1 

Let 𝐼 = [0, 𝑇] be a closed interval. Assume that 𝑓: 𝐼 × 𝑅 → 𝑅 is a continuous function which satisfies the standard Lipschitz 

condition  

|𝑓(𝑡, 𝑦) − 𝑓(𝑡, 𝑧)| < 𝐿|𝑦 − 𝑧|                         (3.1) 

for all 𝑡 ∈ 𝐼 and 𝑦, 𝑧 ∈ 𝑅. If a continuously differential function 𝑥: 𝐼 → 𝑅 satisfies  

| 𝑐𝐷𝛼𝑥(𝑡) − 𝑓(𝑡, 𝑥(𝑡))| < 𝜑(𝑡)                                    (3.2) 

for all 𝑡 ∈ 𝐼, where 𝜑: 𝐼 → (0, ∞) is a continuous function with  

| 
1

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝜑(𝑠)𝑑𝑠| < 𝐾1𝜑(𝑡)                                                                                 (3.3) 

 |
1

Г(𝛼)
∫ 𝜑(𝑠)𝑑𝑠

𝜇

0

| <  𝐾2𝜑(𝑡)                                                                               (3.4)
  

for all 𝑡 ∈ 𝐼, then there exists  a  unique continuous function 𝑥0: 𝐼 → 𝑅 such that  

𝑥0(𝑡) =
1

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 −
2𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 

+ 
2𝑎𝑡

(2−𝑎𝜇2)Г(𝛼)
∫ (∫ (𝑠 − 𝑚)𝛼−1𝑠

0
𝑓(𝑚, 𝑥(𝑚))𝑑𝑚)

𝜇

0
𝑑𝑠                                                     (3.5) 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4679-4685 

© International Research Publication House.  http://www.irphouse.com 

4681 

and  

|𝑥(𝑡) − 𝑥0(𝑡)| ≤
𝐾1

1 − (𝐿𝐾1 +
2𝑡𝐿𝐾1

(2 − 𝑎𝜇2)
+

2𝑎𝑡𝐿𝐾1𝐾2

(2 − 𝑎𝜇2)
)

𝜑(𝑡)                                                                                               (3.6) 

for all 𝑡 ∈ 𝐼. 

Proof 

Let us define a set 𝑋of all continuous functions F: 𝐼 → 𝑅 by 

𝑋 = {𝐹: 𝐼 → 𝑅 |𝐹 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}                                                                                                 (3.7) 

Introduce a generalized complete metric on 𝑋 as follows 

𝑑(𝐹, 𝐺) = inf {𝐶 ∈ [0, ∞]| |𝐹(𝑡) − 𝐺(𝑡)| < 𝐶𝜑(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝐼}                                                          (3.8) 

Define an operator 𝛬: 𝑋 → 𝑋 by 

(𝛬𝐹)(𝑡) =   
1

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 −
2𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

+
2𝑎𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

𝑓(𝑚, 𝑥(𝑚))𝑑𝑚) 𝑑𝑠
𝜇

0

                                                                                      (3.9) 

for all 𝐹 ∈ 𝑋. 

Since  F  and  f are continuous functions, it is easy to see that Λ is well defined.  

To achieve our aim, we need to prove that Λ is strictly contractive 𝑋. 

For any 𝐹, 𝐺 ∈ 𝑋, let 𝐶𝐹𝐺 ∈ [0, ∞] be an arbitrary constant with 𝑑(𝐹, 𝐺) < 𝐶𝐹𝐺  

That is by (3.7), we have  

|𝐹(𝑡) − 𝐺(𝑡)| < 𝐶𝐹𝐺𝜑(𝑡)                                      (3.10) 

for all 𝑡 ∈ 𝐼. 

It then follows from (3.1), (3.3), (3.7), (3.9) and (3.10) that 

|(𝛬𝐹)𝑡 − (𝛬𝐺)𝑡| 

        ≤    
1

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

|𝑓(𝑠, 𝐹(𝑠)) − 𝑓(𝑠, 𝐺(𝑠))|𝑑𝑠 +
2𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

|𝑓(𝑠, 𝐹(𝑠)) − 𝑓(𝑠, 𝐺(𝑠))|𝑑𝑠

+
2𝑎𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

|𝑓(𝑚, 𝐹(𝑚)) − 𝑓(𝑚, 𝐺(𝑚))|𝑑𝑚)
𝜇

0

𝑑𝑠 

      ≤  
𝐿

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

|𝐹(𝑠) − 𝐺(𝑠)|𝑑𝑠 +
2𝑡𝐿

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

|𝐹(𝑠) − 𝐺(𝑠)|𝑑𝑠 

                              +
2𝑎𝑡𝐿

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

|𝐹(𝑚) − 𝐺(𝑚)|𝑑𝑚)
𝜇

0

𝑑𝑠 

  ≤   
𝐿𝐶𝐹𝐺

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝜑(𝑠)𝑑𝑠 +
2𝑡𝐿𝐶𝐹𝐺

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

𝜑(𝑠)𝑑𝑠 +
2𝑎𝑡𝐿𝐶𝐹𝐺

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

𝜑(𝑚)𝑑𝑚)
𝜇

0

𝑑𝑠 

   ≤ 𝐿𝐾1𝐶𝐹𝐺𝜑(𝑡) +
2𝑡𝐿𝐾1𝐶𝐹𝐺𝜑(𝑡)

(2 − 𝑎𝜇2)
+

2𝑎𝑡𝐿𝐾1𝐾2𝐶𝐹𝐺𝜑(𝑡)

(2 − 𝑎𝜇2)
                               

≤ (𝐿𝐾1 +
2𝑡𝐿𝐾1

(2 − 𝑎𝜇2)
+

2𝑎𝑡𝐿𝐾1𝐾2

(2 − 𝑎𝜇2)
) 𝐶𝐹𝐺𝜑(𝑡)                                              

for all 𝑡 ∈ 𝐼.  
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That is, 

𝑑(𝛬𝐹, 𝛬𝐺) ≤  (𝐿𝐾1 +
2𝑡𝐿𝐾1

(2 − 𝑎𝜇2)
+

2𝑎𝑡𝐿𝐾1𝐾2

(2 − 𝑎𝜇2)
) 𝐶𝐹𝐺 

Hence we can conclude that 

𝑑(𝛬𝐹, 𝛬𝐺) ≤  (𝐿𝐾1 +
2𝑡𝐿𝐾1

(2 − 𝑎𝜇2)
+

2𝑎𝑡𝐿𝐾1𝐾2

(2 − 𝑎𝜇2)
) 𝑑(𝐹, 𝐺) 

for all F, 𝐺 ∈ 𝑋, where we note that 0 < (𝐿𝐾1 +
2𝑡𝐿𝐾1

(2−𝑎𝜇2)
+

2𝑎𝑡𝐿𝐾1𝐾2

(2−𝑎𝜇2)
)< 1. 

It follows from (3.7) and (3.9) that for an arbitrary 𝑔0 ∈ 𝑋, there exists a constant  0 < 𝐶 < ∞ with  

|(𝛬𝑔0)(𝑡) − (𝑔0)(𝑡)|

≤ |
1

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 −
2𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

𝑓(𝑠, 𝑥(𝑠))𝑑𝑠        

+
2𝑎𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

𝑓(𝑚, 𝑥(𝑚))𝑑𝑚)
𝜇

0

− 𝑔0(𝑡)| 

                                 ≤ 𝐶𝜑(𝑡)  

for all𝑡 ∈ 𝐼, since  𝑓(𝑡, 𝑔0(𝑡)) and 𝑔0(𝑡) are bounded on 𝐼 and min
𝑡∈𝐼

𝜑(𝑡) > 0 

Thus (3.8) implies that 𝑑(𝛬𝑔0, 𝑔0) < ∞ 

Therefore, according to Theorem (2.1), there exists a continuous function 𝑥0: 𝐼 → 𝑅 such that 𝛬𝑛𝑔0 → 𝑥0 in  (X,d) and 𝛬𝑥0 = 𝑥0, 

that is, 𝑥0 satisfies (3.5) for every 𝑡 ∈ 𝐼. 

We will now verify that {𝑔 ∈ 𝑋 / 𝑑(𝑔0, 𝑔) < ∞} = 𝑋. 

For any 𝑔 ∈ 𝑋, since 𝑔 and 𝑔0 are bounded on 𝐼 and min
𝑡∈𝐼

𝜑(𝑡) > 0, there exists a constant 

0 < 𝐶𝑔 < ∞ such that |𝑔0(𝑡) − 𝑔(𝑡)| ≤ 𝐶𝑔𝜑(𝑡). 

Hence, we have 𝑑(𝑔0, 𝑔) < ∞ for all 𝑔 ∈ 𝑋, that is {𝑔 ∈ 𝑋/𝑑(𝑔0, 𝑔) < ∞} = 𝑋. 

Hence in view of Theorem (2.1), we conclude that 𝑥0 is the unique continuous function with the property (3.5). On the other hand, 

it follows from (3.2) that 

                                    −𝜑(𝑡) ≤  𝐶𝐷𝛼𝑥(𝑡) − 𝑓(𝑡, 𝑥(𝑡)) ≤ 𝜑(𝑡) 

for all 𝑡 ∈ 𝐼. 

If we integrate each term in the above inequality and substitute the boundary conditions, then we obtain 

|𝑥(𝑡) −  
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

0
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 +

2𝑡

(2−𝑎𝜇2)Г(𝛼)
∫ (1 − 𝑠)𝛼−11

0
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 −

2𝑎𝑡

(2−𝑎𝜇2)Г(𝛼)
∫ (∫ (𝑠 −

𝑠

0

𝜇

0

𝑚)𝛼−1 𝑓(𝑚, 𝑥(𝑚))𝑑𝑚)𝑑𝑠| ≤
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

0
𝜑(𝑠)𝑑𝑠  

for all 𝑡 ∈ 𝐼. 

Thus by (3.3) and (3.9) we get 

                                              |𝑥(𝑡) − (𝛬𝑥)(𝑡)| ≤ 𝐾1𝜑(𝑡) 

for each 𝑡 ∈ 𝐼, which implies that 

𝑑(𝑥, 𝛬𝑥) ≤ 𝐾1𝜑(𝑡)         (3.11) 

Finally, Theorem (2.1) and  (3.11) imply that  

             𝑑(𝑥, 𝑥0) ≤  
1

1 − (𝐿𝐾1 +
2𝑡𝐿𝐾1

(2 − 𝑎𝜇2)
+

2𝑎𝑡𝐿𝐾1𝐾2

(2 − 𝑎𝜇2)
)

𝑑(𝑥, 𝛬𝑥) 

                             ≤
𝐾1

1 − (𝐿𝐾1 +
2𝑡𝐿𝐾1

(2 − 𝑎𝜇2)
+

2𝑎𝑡𝐿𝐾1𝐾2

(2 − 𝑎𝜇2)
)

𝜑(𝑡) 

which implies the validity of (3.6) for each 𝑡 ∈ 𝐼 
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4. Hyers-Ulam stability 

In this section we will prove the Hyers-Ulam stability of  (1.1) with boundary conditions (1.2). 

Theorem 4.1 

Let 𝐼 = [0, 𝑇] be a closed interval. Assume that 𝑓: 𝐼 × 𝑅 → 𝑅 is a continuous function which satisfies a Lipschitz condition (3.1) 

for all 𝑡 ∈ 𝐼 and 𝑦, 𝑧 ∈ 𝑅, where 𝐿 is a constant. If a continuously differentiable function 𝑥: 𝐼 → 𝑅 satisfying the differential 

inequality  

| 𝑐𝐷𝛼𝑥(𝑡) − 𝑓(𝑡, 𝑥(𝑡))| < 𝜀                                                                       (4.1) 

for all 𝑡 ∈ 𝐼and for some 𝜀 ≥ 0, then there exists a unique continuous function 𝑥0: 𝐼 → 𝑅 satisfying (3.5) and 

|𝑥(𝑡) − 𝑥0(𝑡)| ≤
𝜀

1 − 𝐿 (1 +
2

(2 − 𝑎𝜇2)
+

2𝑎𝜇𝛼+1

(2 − 𝑎𝜇2)(𝛼 + 1)
 )

                                                                                        (4.2) 

for all 𝑡 ∈ 𝐼. 

Proof 

Let us define a set 𝑋of all continuous functions 𝐹: 𝐼 → 𝑅 by 

                                                    𝑋 = {𝐹: 𝐼 → 𝑅 |𝐹 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}                                

Introduce a generalized complete metric on 𝑋 as follows 

𝑑(𝐹, 𝐺) = inf {𝐶 ∈ [0, ∞]| |𝐹(𝑡) − 𝐺(𝑡)| < 𝐶 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝐼}                                         (4.3) 

Define an operator 𝛬: 𝑋 → 𝑋 by (3.9) 

We now assert that Λ is strictly contractive on 𝑋. 

For all F, 𝐺 ∈ 𝑋, let  𝐶𝐹𝐺 ∈ [0, ∞] be an arbitrary constant with 𝑑(𝐹, 𝐺) ≤ 𝐶𝐹𝐺  that is, let us assume that  

|𝐹(𝑡) − 𝐺(𝑡)| ≤ 𝐶𝐹𝐺                         

for any  𝑡 ∈ 𝐼. It then follows from (3.1), (3.9) and (4.3) that  

|(𝛬𝐹)𝑡 − (𝛬𝐺)𝑡| 

          ≤  
1

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

|𝑓(𝑠, 𝐹(𝑠)) − 𝑓(𝑠, 𝐺(𝑠))|𝑑𝑠 +
2𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

|𝑓(𝑠, 𝐹(𝑠)) − 𝑓(𝑠, 𝐺(𝑠))|𝑑𝑠 

          +
2𝑎𝑡

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

|𝑓(𝑚, 𝐹(𝑚)) − 𝑓(𝑚, 𝐺(𝑚))|𝑑𝑚)
𝜇

0

𝑑𝑠 

          ≤  
𝐿

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

|𝐹(𝑠) − 𝐺(𝑠)|𝑑𝑠 +
2𝑡𝐿

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

|𝐹(𝑠) − 𝐺(𝑠)|𝑑𝑠 

           +
2𝑎𝑡𝐿

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

|𝐹(𝑚) − 𝐺(𝑚)|𝑑𝑚)
𝜇

0

 

           ≤  
𝐿𝐶𝐹𝐺

Г(𝛼)
∫(𝑡 − 𝑠)𝛼−1

𝑡

0

𝑑𝑠 +
2𝑡𝐿𝐶𝐹𝐺

(2 − 𝑎𝜇2)Г(𝛼)
∫(1 − 𝑠)𝛼−1

1

0

𝑑𝑠                                                

           +
2𝑎𝑡𝐿𝐶𝐹𝐺

(2 − 𝑎𝜇2)Г(𝛼)
∫ (∫(𝑠 − 𝑚)𝛼−1

𝑠

0

𝑑𝑚)
𝜇

0

𝑑𝑠 

           ≤  
𝐿𝐶𝐹𝐺

Г(𝛼 + 1)
+

2𝐿𝐶𝐹𝐺

(2 − 𝑎𝜇2)Г(𝛼 + 1)
+

2𝑎𝜇𝛼+1𝐿𝐶𝐹𝐺

(2 − 𝑎𝜇2)Г(𝛼 + 2)
                                                     

           ≤
𝐿𝐶𝐹𝐺

Г(𝛼 + 1)
(1 +

2

(2 − 𝑎𝜇2)
+

2𝑎𝜇𝛼+1

(2 − 𝑎𝜇2)(𝛼 + 1)
 )                                                       

      for all 𝑡 ∈ 𝐼. That is 

              𝑑(𝛬𝐹, 𝛬𝐺) ≤
𝐿𝐶𝐹𝐺

Г(𝛼 + 1)
(1 +

2

(2 − 𝑎𝜇2)
+

2𝑎𝜇𝛼+1

(2 − 𝑎𝜇2)(𝛼 + 1)
 ) 
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Thus it follows that  

𝑑(𝛬𝐹, 𝛬𝐺) 

≤
𝐿

Г(𝛼 + 1)
(1 +

2

(2 − 𝑎𝜇2)
+

2𝑎𝜇𝛼+1

(2 − 𝑎𝜇2)(𝛼 + 1)
 ) 𝑑(𝑓, 𝑔) 

for all 𝑓, 𝑔 ∈ 𝑋, and we note that 0 <
𝐿𝐶𝐹𝐺

Г(𝛼+1)
(1 +

2

(2−𝑎𝜇2)
+

2𝑎𝜇𝛼+1

(2−𝑎𝜇2)(𝛼+1)
 ) < 1 

Analogously to the proof of Theorem (2.1), we can show that 

each 𝑔0 ∈ 𝑋 satisfies the property 𝑑(𝛬𝑔0, 𝑔0) < ∞. 

Therefore, Theorem (2.1) implies that there exists a 

continuous function 𝑥0: 𝐼 → 𝑅 such that 𝛬𝑛𝑔0 → 𝑥0 in (𝑋, 𝑑) 

as 𝑛 → ∞, and such that 𝑥0 = 𝛬𝑥0, that is, 𝑥0 satisfies the 

equation (3.4) for all 𝑡 ∈ 𝐼. 

If 𝑔 ∈ 𝑋, then 𝑔0 and 𝑔 are continuous functions defined on a 

compact interval 𝐼. Hence, there exists a constant 𝐶 > 0 with 

|𝑔0(𝑡) − 𝑔(𝑡)| < 𝐶 for all 𝑡 ∈ 𝐼. This implies that 𝑑(𝑔0, 𝑔) <
∞ for every g∈ 𝑋. Therefore, according to Theorem (2.1), 𝑥0 

is a unique continuous function with property (3.4). 

Furtheremore, it follows from (4.1) that  

−𝜀 ≤  𝐶𝐷𝛼𝑥(𝑡) − 𝑓(𝑡, 𝑥(𝑡)) ≤ 𝜀 

for all 𝑡 ∈ 𝐼. If we integrate each term of the above inequality 

and applying the boundary conditions, we have 

|𝑦(𝑡) −  
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

0
𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 −

2𝑡

(2−𝑎𝜇2)Г(𝛼)
∫ (1 −

1

0

𝑠)𝛼−1 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠 +
2𝑎𝑡

(2−𝑎𝜇2)Г(𝛼)
∫ (∫ (𝑠 −

𝑠

0

𝜇

0

𝑚)𝛼−1 𝑓(𝑚, 𝑥(𝑚))𝑑𝑚)𝑑𝑠| ≤
1

Г(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑡

0
𝜀𝑑𝑠  

Thus by and we get, 

|𝑥(𝑡) − 𝛬𝑥(𝑡)| ≤
𝜀

Г(𝛼 + 1)
 

for all 𝑡 ∈ 𝐼, that is, it holds that 𝑑(𝑥, 𝛬𝑥) ≤
𝑡𝛼

Г(𝛼+1)
𝜀  

It now follows from Theorem (2.1) that 

𝑑(𝑥, 𝑥0) 

≤  
1

1 −
𝐿

Г(𝛼 + 1)
(1 +

2
(2 − 𝑎𝜇2)

+
2𝑎𝜇𝛼+1

(2 − 𝑎𝜇2)(𝛼 + 1)
 )

𝑑(𝑦, 𝛬𝑦) 

      ≤
𝜀

1 − 𝐿 (1 +
2

(2 − 𝑎𝜇2)
+

2𝑎𝜇𝛼+1

(2 − 𝑎𝜇2)(𝛼 + 1)
 )

 

 

which implies the validity of (4.2) for each 𝑡 ∈ 𝐼. 
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