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Abstract 

The present work concerns the geometrically non-linear 

forced vibration of fully clamped functionally graded skew 

plates (FGSP). The functionally graded materials possess the 

best qualities of their constituents, i.e. strength and toughness 

from the metal and excellent heat resistance from the ceramic. 

The theoretical model based on Hamilton’s principle and 

spectral analysis previously applied to obtain the non-linear 

mode shapes and resonance frequencies of thin straight 

structures, such as beams, plates and shells is used. A 

homogenization technique has been developed to reduce the 

FGSP problem under consideration to that of an isotropic 

homogeneous skew plate. The material properties of the skew 

plate examined herein are assumed to be graded in the 

thickness direction of the plate according to the power-law 

distribution in terms of volume fractions of the constituents. 

Results are given for the linear and non-linear fundamental 

frequency and associated mode shape of fully clamped FGSP, 

considering different parameters such as the skew angle, the 

intensity of the excitation force, the vibration amplitude and 

the plate aspect ratio. The results showed, as may be expected 

due to the membrane forces induced by the large vibration 

amplitudes, a non linearity of the hardening type with a shift 

to the right of the bent frequency response function, in the 

neighborhood of the fundamental mode. Also, the hardening 

effect is more accentuated for FGSP than that obtained for 

similar homogeneous plates. The effects of the various 

parameters mentioned above have been examined and the 

comparison between the results obtained and those available 

in previous studies showed a good agreement. 

Keywords Non-linear vibrations, FGM skew plate, 

Homogenization technique, Forced vibration, Stress. 

 

I. INTRODUCTION (12 BOLD) 

Classical composite materials are used in many industrial 

fields but may not be appropriate for use under high-

temperature conditions. The functionally graded materials 

possess the best qualities of their constituents, i.e. strength and 

toughness from the metal and excellent heat resistance from 

the ceramic. Since these materials are non homogeneous, they 

offer a possible decrease in the in-plane and through-the 

thickness transverse stresses in addition to the improved 

thermal behavior owing to low thermal conductivity of the 

ceramic component. The FGM are actually used in various 

fields such as medicine, civil engineering, aeronautic and 

aerospace. The vibration of rectangular FG plates has been 

investigated by many researchers but the nonlinear vibrations 

of FGSP have been less investigated. Fazzolari and Carrera 

[1] developed a fully coupled thermo-elastic formulation to 

deal with the free vibration analysis of anisotropic composite 

plates and isotropic/sandwich FG plates. The thermo-elastic 

coupling was investigated in terms of natural frequencies and 

the effect of stacking sequence and length-to-thickness ratio 

for lower and higher modes was discussed. Zhang, and Zhou 

[2] presented a theoretical analysis of FG thin plates, based on 

the physical neutral surface. The physical neutral surface of a 

FG plate was determined by the classical thin plate theory in 

an easy way, similar to that generally used for homogeneous 

isotropic plates; the validity of this theory was verified by 

comparison with related publications. Belabed and his co-

author [3] presented an efficient and a simple higher order 

shear and normal deformation theory for FG plates. By 

dividing the transverse displacement into bending, shear and 

thickness stretching parts, the number of unknowns and 

governing equations was reduced, significantly facilitating the 

engineering analysis especially for predicting simply the 

bending and the free vibration response of FG plates. Prakash, 

Singha and Ganapathi [4] investigated the large flexural 

vibration amplitude characteristics of FG plates using a shear 

flexible finite element approach. The non-linear equations of 

motion were solved using Newmark’s time integration 

technique. This work was dealing with the non-linear flutter 

characteristics of FG plates under high supersonic airflow 

accounting for both the geometric and aerodynamic non-

linearities.  Dinh Duc and Hong Cong [5] presented an 

analytical investigation on the nonlinear post buckling of 

imperfect eccentrically stiffened thin FG plates under a 

temperature effect and resting on elastic foundations using a 

simple power-law distribution (P-FGM). The formulation was 

based on the classical plate theory taking into account the 

geometrical nonlinearity, the initial geometrical imperfection, 

temperature-dependent properties and the Lekhnitsky smeared 

stiffeners technique with Pasternak type elastic foundation.  

Birman and Byrd [6] presented a review of the principal 

developments in FGMs with an emphasis on the recent works 

published since 2000. Diverse areas relevant to various 

aspects of theory and applications of FGM were reflected in 

this paper. They included homogenization, heat transfer 

issues, stress, stability and dynamic analyses, testing, 

manufacturing and design applications, and fracture. The 

critical area where further research was needed for a 

successful implementation of FGM in design was outlined in 

the conclusions. Xia and Shen [7] studied nonlinear vibration 
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and dynamic response of a shear deformable FG plate with 

surface-bonded piezoelectric fiber reinforced composite 

actuators (PFRC) in thermal environments. The formulation 

was based on the higher order shear deformation plate theory 

and general von Kármán-type equations that include thermo-

piezoelectric effects. The results revealed that the effect of 

control voltage on the natural frequency of an FG plate with 

PFRC actuators is larger than that of the plate with monolithic 

piezoelectric actuators. Sundararajan, Prakash and Ganapathi 

[8] studied the free vibration characteristics of FG rectangular 

and skew plates subjected to thermal environment. The 

effective material properties were estimated from the volume 

fractions and the material properties of the constituents using 

Mori–Tanaka homogenization method. The nonlinear 

governing equations obtained using Lagrange’s equations of 

motion were solved using the finite element procedure 

coupled with the direct iteration technique. The results 

obtained revealed that the temperature field and gradient 

index have significant effect on the nonlinear vibration of the 

FG plate. Boukhzer et al [9] presented a homogenization 

technique for the non-linear free vibrations analysis of FG 

rectangular plates. A homogenization technique has been 

developed to reduce the FGRP problem under consideration to 

that of an isotropic homogeneous rectangular plate. The 

theoretical model proposed was based on the classical plate 

theory and the Von Karman relationships, and the amplitude 

equation was derived in the form of a set of non-linear 

algebraic equation using Hamilton’s principle and a 

multimode approach. Jaberzadeh et al [10] investigated the 

thermal buckling of functionally graded skew and trapezoidal 

plates using the free element Galerkin method. The effects of 

the aspect and thickness ratios, the gradient index and the 

skew angle on the critical buckling temperature difference 

were examined. This research showed that the EFG method is 

very efficient computationally and constitutes a very simple 

procedure for modeling skew and trapezoidal plates with 

various boundary conditions. Upadhyay and Shukla [11] 

presented geometrically nonlinear static and dynamic analyses 

of FGSP. Higher order shear deformation theory and von-

Karman's nonlinearity were considered in the problem 

formulation. The post-buckling response of skew plates was 

investigated for different types of in-plane compressive 

loadings. The effects of the skew angle, the lamination 

scheme, the core thickness and the face to core material 

property ratio of the sandwich plate on the buckling and Post 

buckling response have been studied in detail. The effect of 

transverse shear was observed for highly skewed plates. 

Geometrically non-linear free and forced vibration of fully 

clamped FGSP is examined here using a homogenization 

technique, in order to investigate the effect of non-linearity on 

the amplitude dependent non-linear resonance frequency and 

associated non-linear fundamental mode shape at large 

vibration amplitudes. The non-linear resonance frequency 

ratio nl/l is determined for various values of the plate skew 

angle and a wide range of vibration amplitudes.  Large 

deflection responses of functionally graded rectangular plates 

under transverse loads is investigated by using a semi-

analytical approach and compared with previous results. 

 

II.GEOMETRICALLY NON-LINEAR VIBRATION OF 

FULLY CLAMPED FGSP 

II.1. Constitutive Equation of a FGSP at Large Deflections 

Consider the FGSP shown in Fig. 1 with a skew angle  and a 

plate thickness H. Metal and ceramics are the two isotropic 

materials constituting the skew plate, with a composition 

varying from the plate top surface (Z=H/2), which is ceramic 

rich, to the bottom surface (Z=-H/2), which is metal rich. The 

plate thickness is considered to be sufficiently small so as to 

avoid the effects of shear deformation. The skew plate has the 

following characteristics:  a, b, S: length, width and area of 

the plate; x-y: plate co-ordinates in the length and the width 

directions; -η: Skew plate co-ordinates. 

 

 

Fig.1. FGSP in x-y and -η co-ordinate system 

 

The elastic material properties vary through the plate 

thickness according to the volume fractions of the 

constituents. The variation of material properties is described 

by a Power-law distribution expressed as: 

 P(z) = (Pc − Pm)Vc(z) + Pm  (1) 

 Vc(z) = (
z

h
+

1

2
)

n

(0 ≤ n ≤ ∞)    (2) 

Where P represent the material property, Pm and Pc 

represents the properties of the metal and ceramic, 

respectively; Vc is the volume fraction of the ceramic and n is 

the volume fraction exponent. The Young’s modulus E and 

the mass density  vary according to Eq. 1 and Eq. 2 but 

Poisson’s ratio  is assumed to be constant. The power-law is 

used as a simple mixture rule to express the variation of the 

effective properties of the ceramic–metal in the thickness 

direction of the FGSP. The temperature is assumed to be equal 

to 300 (° K) and the materials used are Zirconia (ZrO2) on the 

top and aluminum on the bottom.  The Young’s modulus and 

mass density are given in Table 1. 
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Table 1: Material properties of the metal and ceramic 

constituents of the FGSP. 

Material E (GPa )  (Kg/m3)  

Ceramic 

(Zirconia) 
151 3000 0.3 

Metal 

(Aluminum) 
71 2707 0.3 

Ti-6Al-4V 

(Titanium) 
122 4512 0.28 

 

Consider transverse vibrations of the plate shown in fig 1. 

From the classical plate theory, the strain-displacement 

relationships at large deflections are given by: 

            {ε} = {ε0} + z {k} + {0}      (3)  

In which {ε0} , {k} and {0} are respectively the column 

matrix of strains due to the in-plane displacements u, v, w, the 

column matrix of bending or twisting and the column matrix 

of strains induced by large displacements W  given by: 

{ε0} =

[
 
 
 
 

∂U

∂x
∂V

∂y

∂U

∂y
+

∂V

∂x]
 
 
 
 

.  {k} = [

kx

ky

kxy

]  =

[
 
 
 
 

− ∂2W

∂x2

− ∂2W

∂Y2

−2 ∂2W

∂xy ]
 
 
 
 

.  {0} = [

x
0

y
0

xy
0

] =

[
 
 
 
 
 
1

2
(
∂W

∂x
)
2

1

2
(
∂W

∂y
)
2

∂W

∂x
 
∂W

∂y ]
 
 
 
 
 

    (4-6) 

U, V and W are the displacements of the plate mid-plane, in 

the x, y and z directions respectively. The stresses can be 

expressed as: 

 {σ} = [Q]{ε}       (7) 

In which   {σ}T = [σxσyσxy ]  and the terms of the matrix [Q] 

of transformed stiffness can be obtained by: 

 [Q] =
E(z)

1−2 [

1  0
 1 0

0 0
1−

2

]                             (8) 

The in-plane forces N and bending moments M in the plate 

are given by: 

 [
N
M

] = [
 A  B 
B  D

] [
{ε0} + {0}

{k}
]                         (9) 

A, B and D are the extensional, coupling and bending stiffness 

coefficients given in term of symmetric matrices by Eq. 10. 

 (Aij, Bij, Dij) = ∫ Qij(1, z, z2)
H

2⁄

−H
2⁄

dz     (10) 

Here the Qij  are the reduced stiffness coefficients in the plate 

co-ordinates. The axial displacements u and v are neglected 

considering the analysis made in reference [13]. The 

expression for the bending strain energy Vb, the membrane 

strain energy Vm, the coupling strain energy Vc and the 

kinetic energy T are given in rectangular coordinate in 

reference [9]. The skew co-ordinates are related to the 

rectangular co-ordinate (,) by: =x-y tan ; =y/cos. So, 

the strain energy due to bending Vb, the membrane strain 

energy Vm, the coupling strain energy Vc and the kinetic 

energy T are given below. In order to simplify the expressions 

and reduce the problem to that of a homogeneous skew plate, 

the change of variable z1=z-c is made, With c =
B11

A11
. 

Consequently, the coupling term Vc vanishes and the bending 

strain and the membrane strain energy expressions are written 

in the -η co-ordinate system as: 

 

Vb =
D11A11−B11

2

2A11
∫ [

1

cos4θ
(

∂2w

∂2
+

∂2w

∂η2 − 2sinθ
∂2w

∂ ∂η
)

2

+
∙

A

2(1−)

cos2θ
((

∂2w

∂ ∂η
)

2

− (
∂2w

∂2
∂2w

∂η2))] dA      (11) 

 

Va =
𝐴11

8
∫ [

1

cos4θ
((

∂w

∂
)

2

+ (
∂w

∂η
)

2

− 2sinθ
∂2w

∂ ∂η
)

2

]
∙

A
dA    (12) 

 

T =
1

2
∫ ρ(z)dz.

H/2

−H
2⁄

∫ (
∂w

∂t
)

2∙

A
dA    (13) 

Where: dA=cos dd and W (, η, t) is the transverse 

displacement function. 

 

II.2 Numerical Model for the Non-Linear Mode Shapes 

and Resonance Frequency of Fully Clamped FGM Skew 

Plates  

The FGSP transverse displacement function W may be written 

as in references [9] in the form of a double series: 

 

     W = {Ak}
T{W} sinkωt                                               (14) 

 Where {Ak}
T = {a1

k, a2
k, … , an

k} is the matrix of coefficients 

corresponding to the kth time harmonic,   {W}T =
{w1, w2, … , wn}  is the basic spatial functions matrix, k is the 

number of harmonics taken into account, and the usual 

summation convention on the repeated index k is used. As in 

reference [9], only the term corresponding to k=1 has been 

taken into account, which has led to the displacement function 

series reduced, to only one harmonic: i.e., 

 

W = ai wi(x, y)sinωt                                          (15) 

Here, the usual summation convention for the repeated indices 

i is used. The index i is summed over the range 1 to n, with n 

being the number of basic functions considered. The 

discretization of the strain and kinetic energy expressions can 

be carried out, leading to: 

Vb =
1

2
sin2(ωt)aiajkij .   Va =

1

2
sin4(ωt)aiajakalbijkl .  T =

1

2
ω2cos2(ωt)aiajmij 

  (16-18) 
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In which mij, kij and bijkl are the mass tensor, the rigidity 

tensor and the geometrical non-linearity tensor respectively. 

The expressions for these tensors are: 

kij =
D11A11−B11

2

2A11
.

1

cos3θ
∫ [

∂2wi

∂2
∂2wj

∂2
+

∂2wi

∂η2

∂2wj

∂η2 +
∂2wi

∂2
∂2wj

∂η2 +
°

A

∂2wi

∂η2

∂2wj

∂2
− 2sinθ (

∂2wi

∂2
∂2wj

∂∂η
+

∂2wi

∂η2

∂2wj

∂∂η
+

∂2wi

∂∂η

∂2wj

∂2
+

∂2wi

∂∂η

∂2wj

∂η2 ) + 4sin2θ
∂2wi

∂∂η

∂2wj

∂∂η
+ 2(1 − )cos2θ (

∂2wi

∂∂η

∂2wj

∂∂η
−

∂2wi

∂2
∂2wj

∂η2 )] ddη                                                                (19) 

bijkl = 

A11

8
.

1

cos3θ
∫ [

∂wi

∂

∂wj

∂
+

∂wi

∂η

∂wj

∂η
-2sinθ

∂wi

∂η

∂wj

∂
] [

∂wk

∂

∂wl

∂
+

°

A

∂wk

∂η

∂wl

∂η
-2sinθ

∂wk

∂η

∂wl

∂
] ddη    (20)  

mij = ρHcosθ ∫ wi
°

A
wjddη       (21) 

The non-dimensional formulation of the non-linear vibration 

problem has been carried out as follows. 

wi(, η) = Hwi
∗ (



a
,
η

b
) = Hwi

∗(∗, η∗)                 (22) 

Where ∗
and η∗are non-dimensional co-ordinates  

 ∗ =


a
 and η∗ =

η

b
 . One then obtains: 

kij =
aH4A11

2b3cosθ3 kij
∗ .   bijkl =

aH4A11

2b3cosθ3 bijkl
∗ .   mij =

∫ ρ(z)dz.
H/2

−H
2⁄

H2abcosθmij
∗    (23) 

Where the non-dimensional tensors m*ij, k*ij and b*ijkl are 

given in terms of integrals of the non-dimensional basic 

function wi*. Upon neglecting energy dissipation, the 

equation of motion derived from Hamilton’s principle is: 

              𝛿 ∫ (𝑉 − 𝑇)
2𝜋

0
= 0              (24) 

Where V=Va+Vb. Insertion of Eq. 16, Eq. 17 and Eq. 18 into 

Eq. 26, and derivation with respect to the unknown constants 

ai, leads to the following set of non-linear algebraic equations: 

2aikir
∗ + 3aiajakbijkr

∗ − 2ω∗aimir
∗ = 0,   r=1…n      (25)                        

 These have to be solved numerically. To complete the 

formulation, the procedure developed in reference [13] is 

adopted to obtain the first non-linear mode. As no dissipation 

is considered here, a supplementary equation can be obtained 

by applying the principle of conservation of energy, which 

can be written as: 

        Vmax = Tmax                                   (26)                                                      

 

This leads to the equation: 

ω∗2 =
aiajkij

∗ +(3/2)aiajakalbijkl
∗

aiajmij
∗                            (27) 

This expression for ω*2 is substituted into Eq. 37 to obtain a 

system of n non-linear algebraic equations leading to the 

contribution coefficients ai, i=1 to n. ω and ω* are the non-

linear frequency and the non-dimensional non-linear 

frequency parameters related by: 

ω2 =
D

b4cos4θ
ω∗2

                                                         (28) 

To obtain the first non-linear mode shape of the skew plate 

considered, the contribution of the first basic function is first 

fixed and the other basic functions contributions are 

calculated via the numerical solutions of the remaining (n-1) 

non-linear algebraic equations. 

In this section, a fully clamped laminate skew plate excited by 

a concentrated harmonic force Fc applied at the point (0,0); 

or by a distributed harmonic uniform force Fd, distributed 

over the surface  of the plate S are considered.  Fc and Fd may 

be written using the Dirac function  as: 

Fc(,, t) = Fc (− 
0
) ( − 

0
)sinωt     (29) 

 

Fd(,, t) = Fdsinωt if (,) ∈ S      (30)  

 

  Fd(,, t) = 0 if (,) ∉ S                                 (31)  

 

The corresponding generalized forces Fic(t) and Fid(t) in the 

beam function basis (BFB) are given by: 

Fi
c(t) = Fcwi(x0, y0)sinωt = fi

csinωt                (32)  

Fi
d(t) = Fdsinωt ∫ wi(x0, y0)

dxdy = fi
dsinωt       (33)  

Adding the forcing term to the right hand side of  

equation (25) leads to: 

2aikir
∗ + 3aiajakbijkr

∗ − 2ω∗aimir
∗ = fr

∗, r = 2,3, … ,18     (34) 

Where fi
∗c and  fi

∗d corresponding, respectively to the 

dimensionless generalized concentrated force Fc at point 

(0,0); and to the uniformly distributed force Fd over the 

surface  of the plate; The expressions obtained are: 

fi
∗c = Fc b3

aEH4 wi
∗c(

0
∗ ,

0
∗)                       (35) 

fi
∗d = Fd b4

EH4 ∬ wi
∗(

0
∗ ,

0
∗)


                      (36)                                      

 

II.3 Bending stress analysis 

The bending stress associated to the fundamental non-linear 

mode shape was examined, which allows a quantitative 

understanding of the non-linearity effects. The maximum 

file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx
file:///F:/02-Articles%20rédigés/Communication%20CMSS%202017/A046%20Geometrically%20Non-Linear%20Free%20Vibration%20of%20Fully%20Clamped%20FGM%20Skew%20Plates.docx


International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4693-4700 

© International Research Publication House.  http://www.irphouse.com 

4697 

bending strains b and b obtained are given by: 

εb =
z

2
(
∂2W

∂2
) .   εb =

z

2
(
∂2W

∂2

1

cosθ
−

2tanθ

cosθ

∂2W

∂ ∂
+

∂2W

∂2
tan2θ)  (37-38) 

For the FGSP, the associated stresses b and b can be 

obtained by applying the plane stress Hooke’s law as: 

b =
E(z).z

2(1−2)
(

∂2W

∂2
+  (

∂2W

∂2

1

cosθ
−

2tanθ

cosθ

∂2W

∂∂
+

∂2W

∂2
tan2θ))  (39) 

b =
E(z).z

2(1−2)
(
∂2W

∂2

1

cosθ
−

2tanθ

cosθ

∂2W

∂∂
+

∂2W

∂2
tan2θ + 

∂2W

∂2
)  (40) 

In terms of the non-dimensional parameters defined in the 

previous section, the non- dimensional stresses *b and *b 

are then given by: 

∗
b = z∗. (2 ∂2W∗

∂∗2 +  (
∂2W∗

∂∗2

1

cosθ
− 

2tanθ

cosθ

∂2W∗

∂∗ ∂∗
+ 2 ∂2W∗

∂∗2 tan2θ)) (41) 

∗
b = z∗. (

∂2W∗

∂∗2

1

cosθ
− 

2tanθ

cosθ

∂2W∗

∂∗ ∂∗
+ 2 ∂2W∗

∂∗2 tan2θ + 2 ∂2W∗

∂∗2 )  (42) 

The relationships between the dimensional and non 

dimensional stresses are: 

              =
E(z)H2

2(1−2)b2 
∗                                    (43) 

 

III. RESULTS AND DISCUSSION 

The aim of this section is to apply the theoretical model 

presented above to analyze the geometrical non-linear free 

and forced dynamic response of fully clamped FGSP in order 

to investigate the effect of non-linearity on the non-linear 

resonance frequencies and non linear fundamental mode shape 

at large vibration amplitudes. Convergence studies were 

carried out, and the results are compared with those available 

from the literature through a few examples of FGSP. 

Calculation was made by using 18 functions corresponding to 

three symmetric beam functions in the  direction and three 

symmetric beam functions in the η direction, and three anti-

symmetric beam functions in the  direction and three anti-

symmetric beam functions in the η direction, which contribute 

significantly to the first non linear mode of the fully clamped 

skew plate. Table 2 shows the linear results for a fully 

clamped FG square plate for N=0 and skew angle =0° 

obtained using only 18 well-chosen plate functions. A good 

convergence is obtained. 

Table 2 shows the linear results of a fully clamped FGSP for 

different values of volume fraction N and a skew angle =0° 

and an aspect ratio =1. It can be noticed that the 

adimensional frequencies decreases with values of volume 

fraction N.  

 

 

 

Table 2: Adimensional linear frequencies of fully clamped 

FGM square plate for different values of volume fraction N 

N *linear 

0 64,20 

0,5 57,71 

1 52,78 

2 46,10 

5 35,09 

10 26,94 

 

Table 3 shows the adimensional nonlinear frequencies results 

of a fully clamped FGSP for different values of volume 

fraction N and different adimensional non-linear maximum 

displacement W*max . It can be noticed that the adimensional 

nonlinear frequencies ratio increase with values of volume 

fraction N and with adimensional non-linear maximum 

displacement W*max, it’s hardening type of vibration. 

 

Table 3: Adimensional nonlinear frequencies ratio of fully 

clamped FGM square plate for different values of volume 

fraction N and for different adimensional non-linear 

maximum displacement W*max 

 
*nl/*l 

W*max N=0 N=0,5 N=1 N=2 N=5 N=10 

0 1 1 1 1 1 1 

0,2 1,0051 1,0063 1,0075 1,0098 1,0169 1,0285 

0,4 1,0201 1,0249 1,0296 1,0387 1,0659 1,1095 

0,6 1,0448 1,0551 1,0655 1,0851 1,1430 1,2328 

0,8 1,0783 1,0961 1,1139 1,1470 1,2429 1,3871 

1 1,1199 1,1466 1,1731 1,2219 1,3605 1,5633 

1,2 1,1688 1,2054 1,2416 1,3076 1,4918 1,7547 

1,4 1,2241 1,2715 1,3180 1,4022 1,6334 1,9570 

1,6 1,2849 1,3436 1,4010 1,5040 1,7829 2,1671 

 

Fig 2 shows the adimensional non-linear maximum 

displacement W*max of FG square plate (N=0, =0° and 

=1) versus nonlinear frequency ratio. The comparison was 

made between the results obtained in reference [9] and the 

present results, and good agreement is noticed.  

It can be seen that result from reference [9] was bigger than 

present result, because of the in plane displacement taken into 

the account in reference [9]. 
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Fig.2. Adimensional non-linear maximum displacement 

W*max of  FG square plate (N=0, =0° and =1) versus 

nonlinear frequency ratio 

 

Fig 3 shows the adimensional non-linear maximum 

displacement W*max of FG square plate (N=1, =0° and 

=1) versus nonlinear frequency ratio. The comparison was 

made between the results obtained in reference [9] and the 

present results, and good agreement is noticed.  

 

 

Fig. 3. Adimensional non-linear maximum displacement 

W*max of  FG square plate (N=1, =0° and =1) versus 

nonlinear frequency ratio 

 

Fig 4 shows the adimensional non-linear maximum 

displacement W*max of FG square plate under uniform 

adimensional pressure f1*d =100 in terms of the adimensional 

non linear frequency ratio and for different values of the 

volume fraction exponent. It can be seen that the non linearity 

increase with the volume fraction exponent. Fig 3 shows also 

the jump phenomena noted in the forced vibration. 

 

 

Fig.4. Effect of the volume fraction exponent on the vibration 

of fully clamped FGM square plate subjected to harmonic 

distributed force f1*d=100 

 

Fig 5 shows the effect of the skew angle on the non linear 

vibration of fully clamped FGM skew plate subjected to 

harmonic distributed force f1*d=100 with a volume fraction 

exponent N=2. It can be seen that the nonlinearity decreased a 

little with the skew angle. 

 

 

Fig.5. Effect of the skew angle on the non linear vibration of 

fully clamped FGM skew plate subjected to harmonic 

distributed force f1*d=100 with a volume fraction exponent 

N=2 

 

Fig 6 shows the effect of the volume fraction exponent on the 

vibration of fully clamped FGM skew plate (θ=30°) subjected 

to harmonic distributed force f1*d=100. It can be seen that the 

nonlinearity increase with the volume fraction exponent. 
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Fig.6. Effect of the volume fraction exponent on the vibration 

of fully clamped FGM skew plate (θ=30°) subjected to 

harmonic distributed force f1*d=100 

 

The non-dimensional bending stress distribution associated 

with the FGSP first non-linear mode is plotted in Fig 7 and 

Fig 8 for the non-dimensional maximum amplitude vibration 

W*
max=2 respectively for the case of a skew angle =30(°) and 

=45(°) and an aspect ratio =0.6 along the section 

corresponding to *=0.5 and *=0.5 for different values of Z*. 

It can be shown that the maximum value of the stress occurs 

at the centre of the top surface of the plate. 

 

 

 

Fig. 7. Non-dimensional bending stress distribution associated 

with the fundamental non-linear mode of a fully clamped 

FGSP for =30(°) and =0.6 for different edge surfaces for N 

= 2, T=300(° K) along the section *=0.5. 

 

 

Fig. 8. Non-dimensional bending stress distribution associated 

to the fundamental non-linear mode of a fully clamped FGM 

skew plate for =45(°) and =0.6 on different edge surfaces 

for N = 2, T=300(° K) along the section *=0.5. 

 

IV. CONCLUSION 

The theoretical model established and applied to beams, plates 

and shells [13], has been successfully applied to calculate the 

first non-linear mode shape of fully clamped FGSP using the 

homogenization technique was applied for geometrical non-

linear, steady state, periodic forced vibration of FGM skew 

plates for various volume fraction exponent and various skew 

angle. Static and dynamic response was investigated. The 

present formulation has been verified with the results 

available in the literature. The effect of the volume fraction 

index N, the skew angle  has been discussed. Good results 

were found using a single and multimode approach to 

determine the amplitude frequency dependence in the centre 

of the plate by varying skew angle and volume fraction 

exponent. It can be seen that the skew angle reduce the effect 

of the nonlinearity, also the increasing volume fraction 

exponent decrease the nonlinearity. Good agreement between 

the present results and those found in literature has been 

achieved. The present study reveals a hardening type of 

nonlinearity and the nonlinearity in general decreases with the 

increase in the skew angle and in volume fraction exponent. 

Further work is needed to investigate the behavior of higher 

modes, the effects of temperature and the porosity of fully 

clamped FGSP. 
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