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Abstract :

The purpose of this work is to present a bifurcation control
of a coupled Hodgkin-Huxley model. The structure of
the model is like a master-slave mechanism where two
neurons are coupled by an electrical synaptic conductance.
Fundamental aim is to stop the bursts generated due to Hopf
bifurcations arisen from the injection of external current to
the master (first) neuron. The bifurcations are analyzed and
detected using the MATLAB based MATCONT toolbox and
various Andronov-Hopf conditions are detected. The synaptic
conductance appears to affect the occurrence of the Hopf
conditions. Higher conductances lead to lesser number of
Hopf points. The control of these bifurcations are performed
by washout filter aided by linear quadratic projective control
theory. The washout filter processes the membrane potentials
only and projective control generates a gain to transform the
filtered output to a current injection to the slave neuron. A
detailed numerical example for one case and summary of all
cases are presented. Simulations and graphical results are
presented for the detailed example. Success of other cases
are summarized as a table. It appears that, too small synaptic
conductance values renders it difficult to attain a stable control
of the bifurcations. However, one has a successful outcome for
most conductance values.

Keywords: Hodgkin-Huxley neurons; Electrical synapses;
Andronov-Hopf bifurcations; Washout filters; Linear quadratic
regulators; Projective control

1. INTRODUCTION

The Hodgkin-Huxley Model [16] of the real neurons one
of the biggest challenges in the electrophysiology field in
the near history. The cell membrane potential is modeled
using the basic circuit theory and some chemical kinetics.
As a result, a fourth order highly, nonlinear differential
equation is obtained. This model possesses a rich set of
bifurcations due to the additional current injection as described
by [25] and external electric field [18, 26]. Bifurcation are
problematic is biological neural networks since the diseases
such as Parkinson’s [19], epilepsy [21] and schizophrenia
[2, 20] have some connections with the instabilities in the
neural cell dynamic. In addition, various cardiac and muscle
diseases possess chaotic behaviors [14] during the course of
a particular disease. Because of that, controlling bifurcation

in the neuron dynamics may bring some new insights in the
treatment of some neurological disorders. Local bifurcation
analysis is an important branch of the nonlinear system theory
where the properties of the equilibrium points of a nonlinear
system changes due to a single parameter deviation [6]. One
of the mostly met bifurcation type is Hopf type bifurcation
where the equilibrium point loses its stability as a result of
a single pair of purely complex eigenvalues arising from a
parameter drift. There are also other critical points such as
the saddle point where there is a real pair of eigenvalues one
of which is on the left hand side and the other is the right hand
side of the complex plane (with equal values). In order to
solve the stability issue in such a case, several studies have
been proposed. Some of those methods are the linear delayed
feedback [4, 5], nonlinear feedback [1] and washout filters
[23, 24, 15]. The advantage of the washout filters is that
they do not change the equilibrium points of the uncontrolled
(open loop) nonlinear system. The washout filter is originally
a high-pass filter which does not pass steady state inputs (only
allows the transients). An application of the washout filters for
the Hodgkin-Huxley type nerve cell dynamics are presented
in [25] for the bifurcations existent in the neuron model where
the variable parameter is the possible external current injection
(from the cell environment) into the nerve cell. That attempts
to control the bifurcations by applying an external current
stimulus.

This work is an extension of the previous studies [11, 9, 10,
12, 8]. Its purpose is to perform a bifurcation control for a
coupled Hodgkin-Huxley neuron pair instead of a single one.
The feedback will be received from the membrane potentials
of both neurons but the control will be applied only to one of
them.

First of all, we will use the MATCONT toolbox [7] on
MATLAB to detect the possible one parameter bifurcation
points in the coupled Hodgkin-Huxley dynamics. Secondly
a washout filter is developed that is to process the membrane
potentials. The output of the filter will be fed back to one of
the neurons as an external current. The stable operation of the
washout filter and neural dynamics combination will require a
linear gain to be inserted between the filter’s output and input
of the neural dynamics. This gain will be evaluated using linear
quadratic projective control approach. [27]. Simulations are
performed to assess the closed loop performance.

4720



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4720-4733
c©International Research Publication House. http://www.irphouse.com

2. MATERIALS AND METHODS

2.1. The Hodgkin-Huxley Model of the Squid Giant Axon

The traditional Hodgkin-Huxley model in [16] is a highly nonlinear 4th order model aiming at the quantitative description of a
single neuron membrane or more truly speaking, the giant axon of the European squid. It includes the dynamical properties of the
membrane potential and the permeabilities of the sodium, potassium and leakage (mainly chloride) ion channels. That also has
one external input which represents the current due to a possible stimulus or a test input (voltage clamp etc.). One can define it
mathematically as:

C
dv

dt
= Iext − gNam3h(v − vNa)− gKn4(v − vK)− gL(v − vL)

dm

dt
= αm(v)(1−m)− βm(v)m

dn

dt
= αn(v)(1− n)− βn(v)n

dh

dt
= αh(v)(1− h)− βh(v)h

(1)

where v is the membrane potential in mV, m and h are the activation and inactivation variables of the sodium channel respectively
and n is the activation of the potassium channel. The variables m,n, h are dimensionless and varies in the range [0, 1]. The
model can be externally stimulated by an input current represented by Iext. In the above equation there are also three conductance
parameters gNa, gK and gL which represents the lumped conductances of sodium, potassium and leakage channels respectively.
In addition all channels have an equilibrium potential that are represented by vNa, vK and vL for sodium, potassium and leakage
channels respectively. αj and βj are nonlinear functions in sigmoidal forms. As we are interested in the coupled Hodgkin-Huxley
equations, the details together with the synaptic coupling will be discussed in the next section.

2.2. The Coupled Hodgkin-Huxley Models

In this work, we are dealing with a coupled neural model formed by synaptically coupling two identical Hodgkin-Huxley neurons.
Here, the synapse is represented by an electrical conductance gc and the coupling is performed through electrical current inputs.
As a result, one can express the coupled Hodgkin-Huxley equations as:

C1
dv1

dt
= I1 − gNa1

m
3
1h1(v1 − vNa)− gK1

n
4
1(v1 − vK)− gL1

(v1 − vL)− gc(v1 − v2)

C2
dv2

dt
= I2 − gNa2

m
3
2h2(v2 − vNa)− gK2

n
4
2(v2 − vK)− gL2

(v2 − vL)− gc(v2 − v1)

dm1

dt
= αm(v1)(1−m1)− βm(v1)m1

dm2

dt
= αm(v2)(1−m2)− βm(v2)m2

dn1

dt
= αn(v1)(1− n1)− βn(v1)n1

dn2

dt
= αn(v2)(1− n2)− βn(v2)n2

dh1

dt
= αh(v1)(1− h1)− βh(v1)h1

dh2

dt
= αh(v2)(1− h2)− βh(v2)h2

(2)

where,

αn(vi) =
0.1− 0.01vi

exp(1− 0.1vi)− 1

αm(vi) =
2.5− 0.1vi

exp(2.5− 0.1vi)− 1

αh(vi) = 0.07 exp

{−vi
20

}
βn(vi) = 0.125 exp

{−vi
80

}
βm(vi) = 4 exp

{−vi
18

}
βh(vi) =

1

exp(3− 0.1vi) + 1

(3)

The definitions of the state variables in (2) can be seen in Table 1. The definitions of the physical parameters and their nominal
values are available in Table 2.
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Table 1: The definitions and units of the state variables and inputs in (2)

Variable Definition Unit
v1 The membrane potential of the master neuron mV
v2 The membrane potential of the slave neuron mV

m1
Represents the proportion of the activating molecules of the sodium channels on the

membrane of the master neuron Dimensionless and varies between 0 and 1

m2
Represents the proportion of the activating molecules of the sodium channels on the

membrane of the slave neuron Dimensionless and varies between 0 and 1

n1
Represents the proportion of the activating molecules of the potassium channels on the

membrane of the master neuron Dimensionless and varies between 0 and 1

n2
Represents the proportion of the activating molecules of the potassium channels on the

membrane of the slave neuron Dimensionless and varies between 0 and 1

h1
Represents the proportion of the inactivating molecules of the sodium channels on the

membrane of the master neuron Dimensionless and varies between 0 and 1

h2
Represents the proportion of the inactivating molecules of the sodium channels on the

membrane of the slave neuron Dimensionless and varies between 0 and 1

I1 External current injection to master neuron µA/cm2

I2 External current injection to slave neuron µA/cm2

Table 2: The definitions and units of the state variables and inputs in (2)

Variable Definition Value Unit
C1 Membrane capacitance of the master neuron 0.91 µF/cm2

C2 Membrane capacitance of the slave neuron 0.91 µF/cm2

gNa1 Lumped conductance of the sodium channels of the master neuron 120 mS/cm2

gNa2 Lumped conductance of the sodium channels of the slave neuron 120 mS/cm2

gK1 Lumped conductance of the potassium channels of the master neuron 36 mS/cm2

gK2 Lumped conductance of the potassium channels of the slave neuron 36 mS/cm2

gL1 Lumped conductance of the leakage channels of the master neuron 0.3 mS/cm2

gL2 Lumped conductance of the leakage channels of the slave neuron 0.3 mS/cm2

vNa1 Lumped equilibrium potential of the sodium channels of the master neuron 115 mV

vNa2 Lumped equilibrium potential of the sodium channels of the slave neuron 115 mV

vK1 Lumped equilibrium potential of the potassium channels of the master neuron -12 mV

vK2 Lumped equilibrium potential of the potassium channels of the slave neuron -12 mV

vL1 Lumped equilibrium potential of the leakage channels of the master neuron 10.6 mV

vL2 Lumped equilibrium potential of the leakage channels of the slave neuron 10.6 mV

gc Conductance of the electrical synapse 0.3 (varied) mS

In Figures 1 and 2, one can see a typical response pattern of the model in (2) with nominal parameters in Table 2.
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Figure 1: A typical response of the model in (2) with nominal
parameters in Table 2. Here, the inputs are I1 = 0 and I2 = 0. This

is the membrane potential of the master neuron v1(t).
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Figure 2: A typical response of the model in (2) with nominal
parameters in Table 2. Here, the inputs are I1 = 0 and I2 = 0. This

is the membrane potential of the master neuron v2(t).
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2.3. Bifurcation Phenomenon

Bifurcations are the qualitative changes in the dynamical
properties of a nonlinear system due to a parameter drift [6]. In
bifurcation theory, there are two general types of bifurcations:

Local Bifurcations: These are analysed entirely through
changes in the local stability properties of equilibria,
periodic orbits or other invariant sets as parameters cross
through critical thresholds.

Global Bifurcations: This may appear when larger invariant
sets of the system ’collide’ with each other, or with
equilibria of the system. It is not easy to detect them
just by the stability analysis of fixed points (equilibria).

In this work we will discuss the local bifurcations of the
equilibrium points of the coupled Hodgkin-Huxley model in
(2). Consider a general nonlinear system of the following
form:

ẋ = f(x, p) (4)

with xe being its equilibrium i.e. f(xe, p) = 0 and p is a
parameter. The Jacobian of (4) will be:

A(xe, p0) =
∂f(x, p)

∂x

∣∣∣∣
x=xe,p=p0

(5)

Note that, the above derivative is evaluated at the equilibrium
x = xe and the parametric setting p = p0. The local
bifurcations in continuous time dynamical systems may appear
in the following forms:

Andronov-Hopf Bifurcation (H): Hopf bifurcation [3] a
condition where a limit cycle erupts from an equilibrium
in dynamical systems generated by ODEs. In this type
of a bifurcation, the equilibrium changes stability via a
pair of purely imaginary eigenvalues. In other words
λ[A(xe, p0)] should at least have one pair of ±jω. In
that case, p0 becomes the Hopf bifurcating parameter.

Limit Point (LP): A limit point or saddle-node bifurcation
[17] appears when two equilibria in a dynamical system
collide and disappear. Mathematically speaking, this
occurs when the critical equilibrium has one zero
eigenvalue. In other words λ[A(xe, p0)] should have one
0. In that case, p0 becomes the Limit Point bifurcating
parameter.

Neutral Saddle (NS): Though not considered as a
bifurcation, most bifurcation software such as
MATCONT detects this as a critical point. A saddle
point [22] is a situation where there are two eigenvalues
of the Jacobian at the respective equilibrium point
appear with opposite signs. In other words λ[A(xe, p0)]
should at least have one pair of ±γ where γ ∈ R.

The detection of above conditions by analytical derivations is
a very cumbersome task. Because of that, we prefer numerical
approaches. One can numerically solve the equilibrium points,

evaluate the Jacobian matrices and trace the eigenvalues
against varying parameter (p) in a particular range of values.
Software packages such as AUTO [13] or MATCONT [7]
can successfully achieve this goal. In this work we will
employ MATCONT package as it is very easy to integrate with
MATLAB.

2.4. Washout Filter Design

The washout filters are of high – pass nature which only allows
the transient portions of the input signals. Consider the linear
system below:

ż = Awz +Bwξ
ψ = Awz +Bwξ

(6)

where z ∈ Rp, ψ ∈ Rp, ξ ∈ Rp, Aw ∈ Rp×p, andBw ∈
Rp×p. Here, ξ is the input of the filter. If the above dynamics
is expressed in the Laplace domain the following result can be
obtained:

G (s) =
ψ (s)

ξ (s)
= Aw [sIp×p −Aw]

−1
Bw +Bw (7)

where G (s) is the multi-input and multi-output transfer
function from input ξ to output ψ. It is clearly noted here that
the following limit tends to zero.

lim
s→0

G (s)→ 0 (8)

The above result means that the system in (6) blocks the steady
state inputs. This property is the core part of the control
mechanisms aided with a washout filter. When combined with
a nonlinear system, washout filters should retain its original
equilibrium points.

2.5. Linear Quadratic Projective Control Theory

The projective control approach [27] is a linear control
technique that approximates an output feedback controller
from an equivalent full state feedback design. This is
performed through a transformation from full state feedback
eigenspace to that of the output feedback by orthogonal
projection. Before going into the details one needs to review
a full state feedback control technique. In this work, we will
prefer linear quadratic full state feedback technique. Consider
a linear system depicted by:

ẋ = Ax+Bu (9)

where x ∈ Rn, u ∈ Rm, A ∈ Rn×n, B ∈ Rn×m. If one
designs a full state feedback controller as u = −Kx the closed
loop dynamics will be ẋ = (A−BK)x. Here K ∈ Rm×n.
A practical way to derive the full state feedback controller
gain K is to apply linear quadratic full state feedback (LQSF)
control. That is the minimization of a quadratic performance
index defined below:

J =

∫ ∞
0

(
xTQx+ uTRu

)
dt (10)

by an input defined as u = −Kx. In the above Q ∈ Rn×n and
R ∈ Rm×m. The solution to the above problem is obtained
using the positive definite symmetric solution P ∈ Rn×n of
the following Algebraic Riccati Equation (ARE):

ATP + PA− PBR−1BTP +Q = 0 (11)
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The control gain K can be evaluated by the following:

K = R−1BTP (12)

MATLAB can solve the above problem using the command
K=lqr(A,B,Q,R). The eigenspectrum of this closed loop
dynamics is defined by the equation shown below:

(A−BK)V = V Λ (13)

where Λ is the diagonal matrix with the entries of eigenvalues
of the closed loop dynamics (or the eigenvalues A−BK) and
V is the matrix of the corresponding eigenvectors. If one is
thinking of making a static output feedback from y = Fx with
F ∈ Rq×n, y ∈ Rq as u = −Koy = −KoFx. If this feedback
is assumed to retain q eigenvalues out of Λ(denote this as Λe
and corresponding eigenvectors from V as Vq) the following
should also be written:

(A−BKF )Vq = VqΛq (14)

Combining (13) and (14) the following can be written:

(A−BK)V = (A−BKoF )Vq (15)

This allows one to solve for Ko as:

Ko = KVqFV
−1
q (16)

For the nonlinear systems a linearization approach should
be applied first to obtain a linear model. In local
bifurcation analysis generally this will be a Jacobian based
linearization. Application to the washout filter theory requires
the augmentation of the linearized model in the bifurcated state
and the washout filter in (6). Consider a non-autonomous
nonlinear system in the following form:

ẋ = f(x, p) +Bu (17)

and its Jacobian linearized form at bifurcated equilibrium x =
xb and parameter p = pb will be:

˙̂x = Abx̂+Bu (18)

where u ∈ R is an input to (17) and x̂ = x − xb. In (18) can
be evaluated by:

Ab =
∂f(x, p)

∂x

∣∣∣∣
x=xb,p=pb

(19)

When one augments (18) by (6) the following can be written:

d

dt

[
x̂
z

]
=

[
Ab 0
Bw Aw

] [
x̂
z

]
+

[
B
0

]
u (20)

The above assumes that we are washout filtering the state
vector of the bifurcated system (i.e. ξ = x̂). The output of
the filter should also be taken into account:

ψ = Awz +Bwx̂ =
[
Bw Aw

] [x̂
z

]
(21)

In the view of projective control theory, one should have a
feedback from ψ to u as u = −Koψ.

2.6. Application to Coupled Hodgkin-Huxley Model

In order to apply the theory developed so far to our coupled
Hodgkin-Huxley model, we should first obtain the Jacobian of
the model in (2). This can be performed from the following:

Ab =



∂v̇1
∂v1

∂v̇1
∂v2

∂v̇1
∂m1

∂v̇1
∂m2

∂v̇1
∂n1

∂v̇1
∂n2

∂v̇1
∂h1

∂v̇1
∂h2

∂v̇2
∂v1

∂v̇2
∂v2

∂v̇2
∂m1

∂v̇2
∂m2

∂v̇2
∂n1

∂v̇2
∂n2

∂v̇2
∂h1

∂v̇2
∂h2

∂ṁ1

∂v1
∂ṁ1

∂v2
∂ṁ1

∂m1

∂ṁ1

∂m2

∂ṁ1

∂n1

∂ṁ1

∂n2

∂ṁ1

∂h1

∂ṁ1

∂h2
∂ṁ2

∂v1
∂ṁ2

∂v2
∂ṁ2

∂m1

∂ṁ2

∂m2

∂ṁ2

∂n1

∂ṁ2

∂n2

∂ṁ2

∂h1

∂ṁ2

∂h2
∂ṅ1

∂v1
∂ṅ1

∂v2
∂ṅ1

∂m1

∂ṅ1

∂m2

∂ṅ1

∂n1

∂ṅ1

∂n2

∂ṅ1

∂h1

∂ṅ1

∂h2
∂ṅ2

∂v1
∂ṅ2

∂v2
∂ṅ2

∂m1

∂ṅ2

∂m2

∂ṅ2

∂n1

∂ṅ2

∂n2

∂ṅ2

∂h1

∂ṅ2

∂h2

∂ḣ1

∂v1
∂ḣ1

∂v2
∂ḣ1

∂m1

∂ḣ1

∂m2

∂ḣ1

∂n1

∂ḣ1

∂n2

∂ḣ1

∂h1

∂ḣ1

∂h2

∂ḣ2

∂v1
∂ḣ2

∂v2
∂ḣ2

∂m1

∂ḣ2

∂m2

∂ḣ2

∂n1

∂ḣ2

∂n2

∂ḣ2

∂h1

∂ḣ2

∂h2


(22)

The partial derivatives in (22) are available in Appendix A. In
the application we will filter the membrane potentials v1 and
v2 but apply the input to one of the neurons only. If we apply
the input to the second neuron (i.e. I2 is the input):

B =



0
1
C2

0
0
0
0
0
0


(23)

The linearized form of the neuron model will be then:

d

dt



v̂1
v̂2
m̂1

m̂2

n̂1
n̂2
ĥ1
ĥ2


= Ab



v̂1
v̂2
m̂1

m̂2

n̂1
n̂2
ĥ1
ĥ2


+BI2 (24)

As we filter both membrane potentials, we will need a second order washout filter which can be expressed as shown below:[
ż1
ż2

]
=

[
aw11 aw12

aw21 aw22

] [
z1
z2

]
+

[
bw11 bw12

bw21 bw22

] [
v1
v2

]
= Aw

[
z1
z2

]
+Bw

[
v1
v2

]
[
y1
y2

]
= Aw

[
z1
z2

]
+Bw

[
v1
v2

] (25)

Concerning stability, one should ensure that Aw should be Hurwitz. One needs to augment the linearized model in (24) with the
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second order washout filter in (25) and form the following:

d

dt



v̂1
v̂2
m̂1

m̂2

n̂1
n̂2
ĥ1
ĥ2
z1
z2


=



∂v̇1
∂v1

∂v̇1
∂v2

∂v̇1
∂m1

∂v̇1
∂m2

∂v̇1
∂n1

∂v̇1
∂n2

∂v̇1
∂h1

∂v̇1
∂h2

0 0
∂v̇2
∂v1

∂v̇2
∂v2

∂v̇2
∂m1

∂v̇2
∂m2

∂v̇2
∂n1

∂v̇2
∂n2

∂v̇2
∂h1

∂v̇2
∂h2

0 0
∂ṁ1

∂v1
∂ṁ1

∂v2
∂ṁ1

∂m1

∂ṁ1

∂m2

∂ṁ1

∂n1

∂ṁ1

∂n2

∂ṁ1

∂h1

∂ṁ1

∂h2
0 0

∂ṁ2

∂v1
∂ṁ2

∂v2
∂ṁ2

∂m1

∂ṁ2

∂m2

∂ṁ2

∂n1

∂ṁ2

∂n2

∂ṁ2

∂h1

∂ṁ2

∂h2
0 0

∂ṅ1

∂v1
∂ṅ1

∂v2
∂ṅ1

∂m1

∂ṅ1

∂m2

∂ṅ1

∂n1

∂ṅ1

∂n2

∂ṅ1

∂h1

∂ṅ1

∂h2
0 0

∂ṅ2

∂v1
∂ṅ2

∂v2
∂ṅ2

∂m1

∂ṅ2

∂m2

∂ṅ2

∂n1

∂ṅ2

∂n2

∂ṅ2

∂h1

∂ṅ2

∂h2
0 0

∂ḣ1

∂v1
∂ḣ1

∂v2
∂ḣ1

∂m1

∂ḣ1

∂m2

∂ḣ1

∂n1

∂ḣ1

∂n2

∂ḣ1

∂h1

∂ḣ1

∂h2
0 0

∂ḣ2

∂v1
∂ḣ2

∂v2
∂ḣ2

∂m1

∂ḣ2

∂m2

∂ḣ2

∂n1

∂ḣ2

∂n2

∂ḣ2

∂h1

∂ḣ2

∂h2
0 0

bw11 bw12 0 0 0 0 0 0 aw11 aw12

bw21 bw22 0 0 0 0 0 0 aw21 aw22





v̂1
v̂2
m̂1

m̂2

n̂1
n̂2
ĥ1
ĥ2
z1
z2


+



0
1
C2

0
0
0
0
0
0
0
0


I2

= ˙̂xp = Apx̂p +BpI2

(26)

The filter’s output equation should also be taken into account:

[
y1
y2

]
=

[
bw11 bw12 0 0 0 0 0 0 aw11 aw12

bw21 bw22 0 0 0 0 0 0 aw21 aw22

]



v̂1
v̂2
m̂1

m̂2

n̂1

n̂2

ĥ1

ĥ2

z1
z2


= y = Fpx̂p

(27)

The filter output should be further processed by a linear gain
and supplied to the input of the neuron model in (25). As we
apply the control to the second input I2 one has:

I2 = −Koy = −
[
ko1 ko2

] [y1
y2

]
(28)

whereKo is found as a result of projective control operation in
Section 2.5. In the application one should substitute A = Ap,
B = Bp and F = Fp in the equations (9), (13), (14), (15) and
(16).

3. NUMERICAL APPLICATION

In this section we will present a numerical example on the
application of the theory presented up to this section. We will
first present the bifurcation analysis results of the model in (2)
using MATCONT with the parametric settings given in Table
2. After that, one is eligible to see a worked example for one
of the cases. Finally we will present the brief results for all
the detected cases. The results will be in both tabulated and
graphical forms.

3.1. The Bifurcation Analysis of Coupled HH Model

The coupled Hodgkin-Huxley model in (25) with the nominal
parameters presented in Table 2 has the following equilibrium

point:

v1(∞) = 0.00362066881426504

v2(∞) = 0.00362066881426504

m1(∞) = 0.0529550868130468

m2(∞) = 0.0529550868130468

n1(∞) = 0.317732399760811

n2(∞) = 0.317732399760811

h1(∞) = 0.595994124739176

h2(∞) = 0.595994124739176

(29)

The result shows that a very little current flows from one
neuron to other due to small steady state membrane potentials.
Running MATCONT continuer module starting from the
above steady states for each parameter in Table 2 will yield
the results presented in Table 3. As a detailed example one
can choose the case with gc = 0.3 mS. In this case one has two
bifurcations with the following equilibrium values (Current
injection I1 is also given for convenience):

I1 = 14.847857 I1 = 152.501844
v1(∞) = 6.540453 v1(∞) = 21.529094
v2(∞) = 1.236544 v2(∞) = 3.477715
n1(∞) = 0.420835 n1(∞) = 0.638219
m1(∞) = 0.110655 m1(∞) = 0.408833
h1(∞) = 0.366123 h1(∞) = 0.073653
n2(∞) = 0.336785 n2(∞) = 0.372046
m2(∞) = 0.061175 m2(∞) = 0.079055
h2(∞) = 0.552325 h2(∞) = 0.471831

(30)

An uncontrolled neural dynamics with I2 = 0 and I1 =
14.847857 µA/cm2 will yield the responses shown in Figures
3-10.
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Figure 3: Uncontrolled response of (25) when
I1 = 14.847857 µA/cm2 and I2 = 0. The membrane potential v1 of

the master neuron.
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Figure 4: Uncontrolled response of (25) when
I1 = 14.847857 µA/cm2 and I2 = 0. The membrane potential v2 of

the slave neuron.
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Figure 5: Uncontrolled response of (25) when
I1 = 14.847857 µA/cm2 and I2 = 0. The sodium channel activation

m1 of the master neuron.
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Figure 6: Uncontrolled response of (25) when
I1 = 14.847857 µA/cm2 and I2 = 0. The sodium channel activation

m2 of the slave neuron.
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Figure 7: Uncontrolled response of (25) when
I1 = 14.847857 µA/cm2 and I2 = 0. The potassium channel

activation n1 of the master neuron.
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Figure 8: Uncontrolled response of (25) when
I1 = 14.847857 µA/cm2 and I2 = 0. The potassium channel

activation n2 of the slave neuron.
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Figure 9: Uncontrolled response of (25) when
I1 = 14.847857 µA/cm2 and I2 = 0. The sodium channel

inactivation h1 of the master neuron.
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Figure 10: Uncontrolled response of (25) when
I1 = 14.847857 µA/cm2 and I2 = 0. The sodium channel

inactivation h2 of the slave neuron.

Table 3: Detected bifurcations/critical points and their associated equilibria when there is an external current injection I1 to the
master neuron. Information about the headings: H: Hopf, NS: Neutral Saddle, LP: Limit Point, Value: Value of the effected

parameter I1. The results are presented for different synaptic conductance values. It appears that, external current injection leads
to Hopf bifurcations.

gc v1(∞) v2(∞) n1(∞) m1(∞) h1(∞) n2(∞) m2(∞) h2(∞) Value Type
0.001 5.255025 0.008116 0.400335 0.096297 0.409347 0.317801 0.052983 0.595837 9.539644 H
0.001 21.924066 0.022362 0.643033 0.419208 0.070495 0.31802 0.053072 0.595339 154.217281 H
0.005 21.918011 0.096427 0.64296 0.419048 0.070542 0.319156 0.053537 0.592745 154.193624 H
0.01 21.910463 0.18705 0.642868 0.41885 0.070601 0.320547 0.054112 0.589564 154.163631 H
0.05 5.58047 0.228802 0.405527 0.099776 0.398213 0.321189 0.054378 0.588097 10.680526 H
0.05 21.850976 0.844242 0.642147 0.417284 0.071068 0.33069 0.058444 0.566322 153.911338 H
0.1 5.85971 0.450684 0.409981 0.102845 0.388757 0.324605 0.055814 0.580277 11.741288 H
0.1 21.779144 1.534038 0.641273 0.415396 0.071636 0.341424 0.063322 0.541667 153.582469 H
0.3 6.540453 1.236544 0.420835 0.110655 0.366123 0.336785 0.061175 0.552325 14.847857 H
0.3 21.529094 3.477715 0.638219 0.408833 0.073653 0.372046 0.079055 0.471831 152.501844 H
0.8 6.802367 2.444945 0.425007 0.113787 0.357587 0.355716 0.070315 0.508908 17.587794 H
0.8 21.331211 6.174167 0.635786 0.403653 0.075292 0.414996 0.106394 0.378225 155.743859 H
1.5 6.597305 3.266742 0.421741 0.111329 0.364262 0.368701 0.077196 0.47938 18.433365 H
1.5 22.106992 8.505227 0.645244 0.424027 0.069082 0.452024 0.135941 0.304745 177.975522 H
3 6.218991 4.027507 0.415711 0.106908 0.376734 0.380779 0.084081 0.452258 18.835379 H
3 23.786192 11.647292 0.66497 0.468506 0.057474 0.50092 0.185416 0.221266 227.573322 H
10 5.65089 4.810824 0.40665 0.100543 0.395819 0.393252 0.091713 0.424723 19.009216 H
10 24.479281 16.654449 0.672813 0.486882 0.053332 0.57429 0.287578 0.127447 284.652612 H
20 5.466247 5.019982 0.403705 0.098543 0.402107 0.396587 0.093848 0.417458 19.025163 H
30 5.397554 5.093747 0.402609 0.097808 0.404456 0.397763 0.094611 0.414907 19.028261 H
50 5.339721 5.154305 0.401686 0.097192 0.406438 0.398729 0.095241 0.412816 19.02988 H

3.2. Bifurcation Control of Coupled Hodgkin-Huxley Model

The next step is to derive the Jacobian of the coupled Hodgkin-Huxley neuron’s in (22) and (23). These are shown below:

Ab =



−1.9656 0.3297 −218.6639 192.3526 19.3785 0.0000 0.0000 0.0000
0.3297 −1.1850 0.0000 0.0000 0.0000 −80.0118 93.0265 3.4345
0.0032 0.0000 −0.1989 0.0000 0.0000 0.0000 0.0000 0.0000
0.0370 0.0000 0.0000 −3.1274 0.0000 0.0000 0.0000 0.0000
−0.0045 0.0000 0.0000 0.0000 −0.1379 0.0000 0.0000 0.0000
0.0000 0.0029 0.0000 0.0000 0.0000 −0.1856 0.0000 0.0000
0.0000 0.0283 0.0000 0.0000 0.0000 0.0000 −3.9778 0.0000
0.0000 −0.0043 0.0000 0.0000 0.0000 0.0000 0.0000 −0.1191


(31)

Bb =



0.0000
1.0989
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000


(32)
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Now, one needs to construct a washout filter as guided by (25). For the sake of simplicity Aw can be chosen as a diagonal but
Hurwitz matrix. So one can propose a second order washout filter of the form:[

ż1
ż2

]
=

[
−0.1 0

0 −0.1

] [
z1
z2

]
+

[
1 0
0 1

] [
v1
v2

]
[
y1
y2

]
=

[
−0.1 0

0 −0.1

] [
z1
z2

]
+

[
1 0
0 1

] [
v1
v2

] (33)

Now the augmented linearized system as shown in (20) and (21) will be obtained as:

Ap =



−1.9656 0.3297 −218.6639 192.3526 19.3785 0.0000 0.0000 0.0000 0.0000 0.0000
0.3297 −1.1850 0.0000 0.0000 0.0000 −80.0118 93.0265 3.4345 0.0000 0.0000
0.0032 0.0000 −0.1989 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0370 0.0000 0.0000 −3.1274 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
−0.0045 0.0000 0.0000 0.0000 −0.1379 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0029 0.0000 0.0000 0.0000 −0.1856 0.0000 0.0000 0.0000 0.0000
0.0000 0.0283 0.0000 0.0000 0.0000 0.0000 −3.9778 0.0000 0.0000 0.0000
0.0000 −0.0043 0.0000 0.0000 0.0000 0.0000 0.0000 −0.1191 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.1000 0.0000
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.1000



Bp =



0
1.0989

0
0
0
0
0
0
0
0


Fp =

[
1 0 0 0 0 0 0 0 −0.1 0
0 1 0 0 0 0 0 0 0 −0.1

]

(34)

One needs to apply a linear quadratic design on Ap and Bp as
discussed in (9), (10), (11) and (12). This can be done using
MATLAB’s lqr(Aw,Bw,Q,R) command. Here, one can
choose a diagonal Q and R matrices for the sake of simplicity.
For example:

Q = 100I10×10

R = 1
(35)

When one invokes the MATLAB’s lqr command with the
above settings ((34) and (35)), the following full state feedback
gain K is obtained:

K =

 6.2992 10.0357 993.6238 275.3479 −109.0120

−70.7955 63.0255 3.0168 1.1181 8.6447


(36)

The above feedback will generate the following closed loop
eigenvalues of (Ap −BpK):

−0.0999999999999999 + j0.00000000000000
−0.109788467900073 + j0.649031197939546
−0.109788467900073− j0.649031197939546
−0.119137469271643 + j0.00000000000000
−0.144962621418435 + j0.00000000000000
−0.185519318403883 + j0.00000000000000
−1.01251661131442 + j0.00000000000000
−3.85311621948766 + j0.00000000000000
−5.22045764353346 + j0.00000000000000
−11.2701812870012 + j0.00000000000000

(37)

As we receive the output y from a second order washout
filter (namely, we have two outputs), one can only retain 2
eigenvalues from the above. If we attempt to retain the last
two (i.e. λq = [−5.22045764353346,−11.2701812870012])
we will need to use the corresponding eigenvector block Vq as

shown in the following:

Vq =



−0.98063 0.03859
0.03662 −0.99526
0.00062 −0.00001
0.01732 −0.00018
−0.00087 0.00002
−0.00002 0.00026
−0.00083 0.00386
0.00003 −0.00038
0.19151 −0.00346
−0.00715 0.08910


(38)

Applying (16) using F = Fp will yield the projected feedback
gain Ko as:

Ko =
[
0.5573 8.801

]
(39)

When this gain applied as I2 = −Koy with y defined in
(28), the output feedback closed loop eigenvalues should be
obtained as:

−11.2701812870012 + j0.00000000000000
−5.22045764353346 + j0.00000000000000
−3.62452553259496 + j0.00000000000000
−0.0374010987824154 + j0.656505366266219
−0.0374010987824154− j0.656505366266219
−0.0170171483163279 + j0.00000000000000
−0.197312057426063 + j0.00000000000000
−0.144979527546607 + j0.00000000000000
−0.100000000000000 + j0.00000000000000
−0.119368771442084 + j0.00000000000000

(40)

The first two eigenvalues above are the retained ones (so
the projection operation worked as expected). The other
eigenvalues are obtained at stable locations. So we have
a successful outcome in linear domain. In order to have
a realistic test, we will need to perform a simulation with
the original nonlinear model in (25). When one performs a
simulation with original coupled HH dynamics in (25), the
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washout filter in (33) and the feedback gain in (39) one will be
able to see the results in Figures 11-18. One can also see the
required level of the current I2 in Figure 19.
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Figure 11: Controlled variation of membrane potential of the master
neuron v1 with the washout filter in (33) and the feedback gain in

(39).
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Figure 12: Controlled variation of membrane potential of the slave
neuron v2 with the washout filter in (33) and the feedback gain in

(39).
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Figure 13: Controlled variation of sodium channel activation of the
master neuron m1 with the washout filter in (33) and the feedback

gain in (39).
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Figure 14: Controlled variation of sodium channel activation of the
slave neuron m2 with the washout filter in (33) and the feedback

gain in (39).
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Figure 15: Controlled variation of potassium channel activation of
the master neuron n1 with the washout filter in (33) and the feedback

gain in (39).

0 100 200 300 400 500 600 700
t (ms)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

n 2(t
)

Figure 16: Controlled variation of potassium channel activation of
the slave neuron n2 with the washout filter in (33) and the feedback

gain in (39).

4729



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4720-4733
c©International Research Publication House. http://www.irphouse.com

0 100 200 300 400 500 600 700
t (ms)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
h 1(t

)

Figure 17: Controlled variation of sodium channel inactivation of
the master neuron h1 with the washout filter in (33) and the feedback

gain in (39).
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Figure 18: Controlled variation of sodium channel inactivation of
the slave neuron h2 with the washout filter in (33) and the feedback

gain in (39).
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Figure 19: The required level of current injection to the slave neuron
I2 with the washout filter in (33) and the feedback gain in (39).

The final state of the membrane potentials, activations and
inactivations are obtained from simulation as:

v1(∞) = 6.5405

v2(∞) = 1.2365

m1(∞) = 0.11066

m2(∞) = 0.061175

n1(∞) = 0.42083

n2(∞) = 0.33678

h1(∞) = 0.36612

h2(∞) = 0.55233

(41)

Comparing with (30), one can deduce that our washout filter
design worked qıuite successfully and retained the original
equilibrium points of bifurcation when I1 = 14.848.

3.3. Results of Bifurcation Control for Other Cases

In this section, we will present the brief results of bifurcation
control for all other cases in Table 3 (i.e. all cases other than
the example in Section 3.2). The results are presented in Table
4. One can see, which cases are successful and the Q and R
settings that leads to a successful result. In addition the Q
matrix is formed mostly as a more generic diagonal form as
shown below:

Q =



q1 0 0 0 0 0 0 0 0 0
0 q2 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


(42)

In the case of other options such asQ = qI10×10 it is indicated
in the table.

4. DISCUSSION & CONCLUSION

In this research a method is presented to develop a control
algorithm for stabilizing the bifurcations existing in a coupled
Hodgkin-Huxley dynamics. The two neurons are coupled by
an electrical synaptic conductance. The bifurcations are due
to an injection of external current to the master (first) neuron.
In order to detect all the bifurcations we first employed the
MATCONT software (a free MATLAB toolbox by [7]) and
it revealed that we have one or two Andronov-Hopf cases
depending on the strength of the synapse (i.e. the level of
synaptic conductance). Very high synaptic conductance such
as gc > 20 mS leads to a single occurrence of a Hopf
phenomenon (see Table 3). However, in most of the cases
one has two cases with one small external current injection
in the range 9 < I1 < 20 µA/cm2 and with one higher
current injection in the range 150 < I1 < 300 µA/cm2.
Concerning the bifurcation control attempts one can state that,
lower conductance values such as gc = 0.001 mS leads to
problems in stabilization of the neural couple. In the case of
gc = 0.05 mS and gc = 0.1 mS there exists a small level
of chattering (or oscillations). When the conductance gc has
higher values, it seems much easier to find stable controls. In
addition to all those, having gc > 0.8 mS leads to a stable
outcome with the sameQ andR settings regardless of the value
of gc.
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Table 4: Brief results of bifurcation control of coupled Hodgkin-Huxley neurons in (25). The bifurcating parameter is the
external current injection to master neuron (I1). The control is applied to slave neuron (to I2). The order of cases are same as that

of Table 3. The linear quadratic matrix settings are also given (Q,R). In all cases R = 1 unless otherwise noted.

gc Settings forQ andR Success?
0.001 Not Found No. Very difficult to stabilize. Oscillations does not cease.
0.001 Not Found No. Very difficult to stabilize. Oscillations does not cease.
0.005 DiagonalQ = 100I10×10 Yes. Works with slight level of chattering at the steady state.
0.01 DiagonalQ = 100I10×10 andR = 0.1 Yes. Works with slight level of chattering at the steady state.
0.05 Q as (42) with q1 = 10000, q2 = 100 Yes
0.05 Q as (42) with q1 = 20000, q2 = 100 Yes
0.1 Q as (42) with q1 = 5000, q2 = 100 Yes
0.1 Q as (42) with q1 = 20000, q2 = 100 Yes
0.3 Q as (42) with q1 = 10000, q2 = 100 Yes
0.3 Q as (42) with q1 = 10000, q2 = 100 Yes
0.8 Q as (42) with q1 = 10000, q2 = 100 Yes
0.8 Q as (42) with q1 = 5000, q2 = 100 Yes
1.5 Q as (42) with q1 = 5000, q2 = 100 Yes
1.5 Q as (42) with q1 = 5000, q2 = 100 Yes
3 Q as (42) with q1 = 5000, q2 = 100 Yes
3 Q as (42) with q1 = 5000, q2 = 100 Yes
10 Q as (42) with q1 = 5000, q2 = 100 Yes
10 Q as (42) with q1 = 5000, q2 = 100 Yes
20 Q as (42) with q1 = 5000, q2 = 100 Yes
30 Q as (42) with q1 = 5000, q2 = 100 Yes
50 Q as (42) with q1 = 5000, q2 = 100 Yes
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∂ṁ2

∂v2
=

2m2 e
− v2

18

9
+

m2 − 1

10
(
e
5
2
− v2

10 − 1
) +

e
5
2
− v2

10
( v2

10 −
5
2

)
(m2 − 1)

10
(
e
5
2
− v2

10 − 1
)2

∂ṁ2
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∂ṅ1

∂v1
=
n1 e

− v1
80

640
+

n1 − 1

100
(
e1−

v1
10 − 1

) +
e1−

v1
10
( v1
100 −

1
10

)
(n1 − 1)

10
(
e1−

v1
10 − 1

)2

∂ṅ1

∂v2
= 0

∂ṅ1
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∂ṅ1

∂m2

= 0

∂ṅ1
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∂ḣ1

∂v1
=

7 e−
v1
20 (h1 − 1)

2000
−

h1 e
3− v1

10

10
(
e3−

v1
10 + 1

)2

∂ḣ1
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∂ḣ2

∂n2

= 0

∂ḣ2
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