
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4746-4750

© International Research Publication House. http://www.irphouse.com

4746

Soak Testing of Web Applications Based on Automatic Test Cases

Rijwan Khan1, Ayman Qahmash2 and Mohammad Rashid Hussain3

1Professor, Department of Computer Science and Engineering, ABES Institute of Technology, Ghaziabad, Affiliated to AKTU,

Lucknow, India. ORCID: 0000-0003-3354-3047.
2Assistnat Professor, Department of Information Systems, King Khalid University, Abha, Saudi Arabia.
3Assistnat Professor, Department of Information Systems, King Khalid University, Abha, Saudi Arabia

Abstract

Software testing is a procedure of ensuring to deliver fault free

software. Different types of testing are applied in the software

industries to insure the reliability of the software. In this paper

our main focus is on performance testing. The performance

testing is also a kind of software testing in which the different

areas have been covered like load testing, smoke testing, soak

testing and stress testing etc. In this article soak testing has been

performed on different parameters. The core performance is

considered when businesses are at its highest (peak) by its hits.

Keywords: Software Testing, Performance Testing, Test Cases,

Load Test, Soak Testing, Smoke Testing

I. INTRODUCTION

Nowadays, all the people want a very fast web application but

at the same time for each web application they also concern

about its reliability. On clicking any web application, it will go

to its web page. When the business is on the peak, then there

are so many facts about the web application. At the peak hours

of the business so many people access the web application so it

also concerns the system performance. How much load can be

put on a web application? How many people can be permitted

to access the web application at same time? The heap execution

gives out the reaction seasons of all the significant business

basic exchanges in a web application. In the event that the

information base, application worker, and so forth are

additionally checked, and afterward this basic test would itself

be able to point towards any bottlenecks in the application

programming load testing is normally directed in a test climate

indistinguishable from the creation climate before the product

framework is allowed to go live. The performance testing is

concerned with load, smoke, stress and drench testing [1, 2, 10,

11].

II. PERFORMANCE TESTING TYPES

A different kind of performance testing is proposed in research

[5, 6, 7, 8, 9]. When someone checks the performance testing

then these given below types of the testing are discussed.

II.I Smoke or Sanity Tests

After the test load profile is made, a 'Smoke or Sanity tests' on

the contents will be executed to guarantee if the contents and

the application setup are done accurately. This is a must for any

sort of execution test. Any deformities recognized in the dry-

run will be fixed during this stage. Smoke test or sanity tests

are run with 1 client for each content unexpectedly. In the case

of everything looks great, at that point a genuine remaining task

at hand is joined to see whether the application is steady under

pre-characterized load.

II.II Load Test

In load testing the number of the users are suggested by the

client or it can also decide by the performance team depending

on the number of transactions to be achieved. While the test is

running then for the load testing the following thing should be

monitored in different levels e.g. tool level, application server

level, database server level. Load testing is observed through

controllers and these observations are noted for every test

conducted [1, 2, 3].

II.III Stress Tests

Stress testing is one sort of testing. Stress testing is additionally

a type of performance testing which used to decide the

maximum furthest reaches of limit inside the application. [1, 2,

4].

II.IV Soak Tests

Soak Testing, otherwise called perseverance testing, is

generally done to decide whether the framework can support

the ceaseless anticipated burden. The douse testing screen

memory usage. The throughput and reaction season of the

framework is resolved from start to finish of the application run.

II.V Fail Over Tests

After the significant load, stress and soak tests are performed,

failover tests are led which decides when the application

smashed does and this occurs in a joint effort with the creation

of uphold groups and information base teams [10, 11].

II.VI Scalability Tests

Scalability testing is a kind of testing where it has been

observed that application is steady under the guaranteed load,

when clients are thusly expanded.

III. METHODOLOGY

The approach received for the performance testing can be

shifted generally yet the goal for performance test continues as

before. All the most significant level performance testing is

quite often led to address at least one danger identified with cost,

opportunity costs, progression and additionally corporate

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4746-4750

© International Research Publication House. http://www.irphouse.com

4747

standing [12, 13, 14, 15, 16]. The center performance testing

exercises are given in figure 1.

Fig 1. Process for Performance Testing

IV. TEST TOOL AND UTILITY

The test tools and their performance are given in table 1

Table 1. Tools and Utilities

Tools Performance

Load Runner

11.0

The tool is utilized to

•Captures end-client business measures and
makes a robotized execution testing content,
otherwise called a virtual client content.

•Organize, drive, oversee, and screen the heap
test.

•Create the heap by running virtual clients
(VUsers)

• View, analyze, and think about the

exhibition results.

HP ALM To schedule and run the test for customer's

prerequisites for different clients.

Perceiver To analyse the performance bottlenecks, if

any. This would be used to monitor CPU and

memory utilizations, other counters that

would be monitored would be Disk

utilization, process queues, JVM out of
memory exceptions etc.

Quality Center
10.0

To raise performance defects and to manage
them.

Perfmon Logs To analyse the hits on the server for each
request

CA Wiley To break down the exhibition bottlenecks,
assuming any. This would be utilized to screen
CPU and memory usages, different counters
that would be observed would be Disk use,
measure lines, JVM out of memory special
cases and so on.

V. EXPERIMENTAL SETUP

V.I Soak Run

The target of this soak test is to execute 24 hours throughout

the day test for the application under test with application

groups running all the cluster loads, measure occupations that

run during the creation run of the application and decide any

presentation bottlenecks like high CPU usage, memory use or

any equipment issues. Likewise, disappointments would be

additionally thought about and would guarantee that

application is steady all through the 24 hours term. In this

period, spikes accordingly times and CPU usage in workers

would be passed on to application groups. The test would run

with the same client heap of 160 clients.

Table 2. Soak Test Transaction Response Time

Transaction

Name

Average

Transaction

Response

Time

90%

Response

Time

Passed Failed

Case

Creation
Submit

3.234 3.851 2183 5

View Note
Final

2.312 2.987 2778 17

Edit Note
Final

3.998 4.211 3195 1

Increase

Counter
Submit

2.331 2.734 5211 4

Reduce

Counter
Submit

2.988 3.129 5216 0

Close Case

Final Submit

4.453 4.811 2010 2

Display Page
View

3.4 3.654 3113 4

View Alerts
Info

4.112 4.42 365 1

File View
Image

0.965 1.341 92132 156

Scan Report 0.413 0.521 1 0

Manual
Report

0.312 0.432 1 0

Print Report 0.212 0.255 1 0

Alerts Report 1.256 1.656 1 0

Page Report 1.525 1.721 1 0

Cases Report 1.012 1.318 1 0

V.II Observations

Average exchange reaction times and 90 percentile reaction

occasions were under the SLA (administration level

arrangement) of 5 seconds.

 All the focused-on volumes for every business

usefulness were accomplished.

 Load Balancing to every worker (2) were similarly

conveyed (affirmed by the worker groups).

 All the disappointments were because of Data Issues

however since the disappointments were under 10%,

so it was under worthy cutoff points.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4746-4750

© International Research Publication House. http://www.irphouse.com

4748

 Central processor Utilization on the application

worker, which was prior an issue with the smoke test,

got settled and use was ideal for the heap test.

Table 3. Soak Test Transaction Load Balancing

Server Number of Requests

Application Server 1 130232

Application Server 2 134515

Table 4. Soak Test CPU Utilization

Server Avg. CUP
Utilization

Max CPU

Utilization
Application Server 1 50.08 69.05

Application Server 2 48.98 88.61

Database Server 70.12 82.23

Table 5. Soak Test Memory Utilization

Server Avg. CUP
Utilization

Max

CPU

Utilizat

ion

Application Server 1 51.38 89.05

Application Server 2 54.68 76.88

Database Server 45.15 70.34

V.III Performance Statistic

The table vi features the exhibition screen logs arranged on the

application workers to recreate the heap test results features to

coordinate the tally accomplished during the testing.

Table 5. Load Test Performance Monitor Table

Label

H
it

s

A
v

g

M
in

M
a

x

A
ct

i
ve

A
v

g

A
ct

i
ve

/RMC/ClosedTic

ket.jsp

1888 924 180 1908 18 13

/RMC/Filenet/Im

age/src

9991

2

5123

0

189

0

9998

9

139

0

100

/RMC/Case/Crea

te.jsp

6123 3443 189 6442 27 12

/RMC/Increment

.jsp

2898 2101 24 3212 23 3

/RMC/Redue.jsp 2991 1890 198 3001 45 9

/RMC/Blank.jsp 2313

14

1786

54

304

32

2344

56

987

0

230

/RMC/Index.jsp 3009

8

2132

1

980 3123

4

344 24

/RMC/goCount.j

sp

1312

3

1023

1

134

0

1289

7

30 30

/RMC/ChangeSt

atus.go.jsp

2345 1234 32 2567 18 10

/RMC/Controller

.ms.jsp

1488 1010 10 1879 8 2

/RMC/Details.go 1648 1001 18 1890 10 1

V.IV Load Runner Analysis of Graphs

In figure 2 soak test with virtual users are mentioned with the

graph. Every user run the system successfully when even peak

hours. The application performed all needed activities during

the soak testing. Run all business functions that it is intended to

do. Now it is Soak Test Vusers ramp up minutes.

Fig 2. Soak Test Vusers ramp up

V.V Throughput

In figure 3 the server returns a number of bytes during soak

testing. In figure 3 a graph shows the stability of the test during

soak test period when no spikes are placed. Few spikes were

seen during the soak test which was though not sharp, so it was

acceptable.

Fig 3. Soak Test Throughput Pattern

V.VI Hits Per Second Graph

The graph given in figure 4 is for performance testing. Soak

testing hits per second pattern is shown in figure 4. Here

consistency with the throughput is measured. Once all the users

are completely ramped up then the pattern becomes stable. On

an average, 17 hits per second were observed.

Fig 4. Soak Test Hits Per Second Pattern

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4746-4750

© International Research Publication House. http://www.irphouse.com

4749

V.VII Server Inbound Message Rate

Please find below the server-inbound message rate which

shows at the peak the server addressed more than 1100

messages at a time for Filenet requests as it is targeted for more

volumes adjusted for soak test (less volume targeted) and more

users were taken to test this functionality.

Fig 5. Soak Test Server Inbound Message Rate

V. VIII Server Outbound Message Rate

Please find below the server-outbound message rate which

shows at the peak the server responded more than 1100

messages at a time which is in sync with what we have

observed in our inbound messages graphs. So, no pending

messages were seen during the test so no hung threads were

observed.

Fig 6. Soak Test Server Outbound Message Rate

V. IX Web sphere Report-Hung Threads

As it can be seen 0 hung threads were observed during the test.

So, the test ran fine without any issues.

Fig 7. Soak Test Server Thread Pool Concurrent Hung Threads

VI. CONCLUSIONS

In this paper all processes for load testing have been done

without any issue. The load test went fine during the soak

testing or load testing. The average response times or pass/fail

percentages of load tests went fine. More than 10% failed

transactions count as the failed test but we did not observe

such issues in our load test either, so we got the go ahead from

the application teams to go for the SOAK test. Though we

certainly observed more CPU and memory utilization but it

was accepted and approved by maintenance, application, and

server teams since they executed many other things parallel to

the soak test like running batch loads, maintenance and clean-

up jobs which occupied high CPU and memory.

ACKNOWLEDGEMENT

We would like to express our gratitude to Deanship of Scientific
Research, King Khalid University, Kingdom of Saudi Arabia
for funding this work.

REFERENCES

[1]. Zhu, Kunhua, Junhui Fu, and Yancui Li. "Research the

performance testing and performance improvement

strategy in web application." 2010 2nd International

Conference on Education Technology and Computer.

Vol. 2. 2010.

[2]. Hislop, Helen, Dale Avers, and Marybeth Brown.

Daniels and Worthingham's muscle testing: Techniques

of manual examination and performance testing.

Elsevier Health Sciences, 2013.

[3]. Beizer, Boris. Black-box testing: techniques for

functional testing of software and systems. John Wiley

& Sons, Inc., 1995.

[4]. Beizer, Boris. Software testing techniques. Dreamtech

Press, 2003.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 12 (2020), pp. 4746-4750

© International Research Publication House. http://www.irphouse.com

4750

[5]. Kit, Edward, and Susannah Finzi. Software testing in the

real world: improving the process. ACM Press/Addison-

Wesley Publishing Co., 1995.

[6]. Hetzel, William C., and Bill Hetzel. The complete guide

to software testing. John Wiley & Sons, Inc., 1991.

[7]. Kuhn, D. Richard, Dolores R. Wallace, and Albert M.

Gallo Jr. "Software fault interactions and implications

for software testing." Software Engineering, IEEE

Transactions on 30.6 (2004): 418-421.

[8]. Pearl, Judea. "Heuristics: intelligent search strategies for

computer problem solving." (1984).

[9]. Verbauwhede, Ingrid, Patrick Schaumont, and Henry

Kuo. "Design and performance testing of a 2.29-GB/s

Rijndael processor." Solid-State Circuits, IEEE Journal

of 38.3 (2003): 569-572.

[10]. Weyuker, Elaine J., and Filippos I. Vokolos.

"Experience with performance testing of software

systems: issues, an approach, and case study." IEEE

transactions on software engineering 12 (2000): 1147-

1156.

[11]. Ward, C. L., et al. "Design and performance testing of

quantitative real time PCR assays for influenza A and B

viral load measurement." Journal of Clinical Virology

29.3 (2004): 179-188.

[12]. Menascé, Daniel. "Load testing of web sites." Internet

Computing, IEEE 6.4 (2002): 70-74.

[13]. Zhao, Nai Yan, and Mi Wan Shum. "Technical Solution

to Automate Smoke Test Using Rational Functional

Tester and Virtualization Technology."Computer

Software and Applications Conference, 2006.

COMPSAC'06. 30th Annual International. Vol. 2. IEEE,

2006.

[14]. DeMillo, Richard A., et al. "An extended overview of

the Mothra software testing environment." Software

Testing, Verification, and Analysis, 1988., Proceedings

of the Second Workshop on. IEEE, 1988.

[15]. Mahajan, Manish, Sumit Kumar, and Rabins Porwal.

"Applying genetic algorithm to increase the efficiency

of a data flow-based test data generation approach."

ACM SIGSOFT Software Engineering Notes 37.5

(2012): 1-5.

[16]. Khan, Rijwan, and Mohd Amjad. "Automatic generation

of test cases for data flow test paths using K-means

clustering and generic algorithm." International Journal

of Applied Engineering Research 11.1 (2016): 473-478.

