
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

191

Design and Implementation of an Intelligent Gaming Agent Using A*

Algorithm and Finite State Machines

Adekanmi Adeyinka Adegun1, Roseline Oluwaseun Ogundokun2, *, Samuel Ogbonyomi3 and Peter O. Sadiku4

1, 2, 3Department of Computer Science, Landmark University Omu Aran, Kwara State, Nigeria.
4Department of Computer Science, University of Ilorin, Kwara State, Nigeria.

*ORCID: 0000-0002-2592-2824

Abstract

The last decade has seen Artificial Intelligence (AI) seep into

the game development industry, mainly for the purpose of

developing more human-like non-player characters (NPCs) to

improve player experience. This study focuses on solving the

problem of player experience with respect to AI controlled

gaming agents. The main aim of the study is to develop an

intelligent gaming agent by implementing A* Pathfinding and

Finite State Machines. For the implementation,

Mixamo/Adobe Fuse was used to model the 3D characters

(PC and NPCs), the A* Pathfinding component was

implemented using a Unity 3D plugin known as

“Arongranberg’s A* Pathfinding Project”. The FSM

component on the other hand was implemented via C# scripts.

Unity IDE was used to compile scripts and simulate the game.

The end product of this project is a 3rd Person survival shooter

3D game which fully implements the concepts of A*

Pathfinding and Finite State Machines. Potentially, this

project could be used as a guide to developing games of the

same or different genre. With little improvements, the end

product of this project (the game) could be made retail ready.

Keywords: A*, Pathfinding, Artificial Intelligent, Game

Agent, Finite State Machine, 3D, Mixamo/Adobe Fuse, C#,

Unity IDE, FSM

INTRODUCTION

Game evolution/design is the procedure of producing a video

game. Game evolution has evolved in recent years. No longer

does making a game involve writing simple lines of code by

an average programmer. Now it requires a team of specialists

in disciplines such as Fine art, Graphics Modelling and

Design, Software Programming, Music, Network

Programming, Artificial Intelligence Programming and so on.

Games have protracted happened to be an accepted field of

Artificial Intelligence (AI) research, which is for a respectable

motive. They are problematic nevertheless stress-free to

validate, hence making it feasible to establish novel AI

techniques, compute in what way they are functioning, and

displays that machineries are qualified of extraordinary

conduct usually alleged to necessitate cleverness exclusive of

placing person breathes or property at jeopardy (Miikkulainen
et al, 2006).

Artificial Intelligence (AI) is the field within Computer

Science that seeks to explain and to emulate some or all

aspects of human intelligence through mechanical or

computational processes. Included among these aspects of

intelligence are the ability to interact with the environment

through sensory means and the ability to make decisions in

unforeseen circumstances without human intervention.

Typical areas of research in AI include game playing, natural

language understanding and synthesis, computer vision,

problem solving, learning, and robotics (Restu, 2015). Over

the years, there has been an increase in the need for Artificial

Intelligence in Game Development. Implementing AI in a

game will give the users the illusion that they are playing

intelligent agents. From the definition of Intelligent Agents in

Artificial Intelligence, we can say an intelligent agent is

anything that can perceive/observing its immediate

environment and take action with respect to its observation,

hence we can say an intelligent gaming agent is capable of

learning/observing what goes on in the gaming environment

and also act on its observation.

This research study focuses majorly on how Artificial

Intelligence is implemented in Game Development, taking

into consideration the A* Path-finding Algorithm and Finite

State Machines and it was implemented in C#.

LITERATURE REVIEW

INTELLIGENT GAME AGENTS

In most games, the purpose of AI is to create an intelligent

agent sometimes referred to as Non-player Character (NPC).

This agent may act as an opponent, an ally, or as a neutral

entity in the game world. Since the majority of game AI

focuses around the agent, it is very helpful to study game AI

from this perspective.

An agent has three key steps through which it continually

loops. The steps are commonly known as the sense-think-act
cycle. In addition to these three steps, there is an optional

learning or remembering step that may also take place during

this loop. In practice, most game agents do not take this extra

step, but this is slowly changing because of the added

challenge and playability that is leveraged as a result. The

game agent must have information about the current state of

the world to make good decisions and to act on those

decisions. Since the game world is represented entirely inside

the program, perfect information about the state of the world

is always available

mailto:ogundokun.roseline@lmu.edu.ng

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

192

Agent interaction with the Environment (Nareyek, 2002).

FSM representing the brain of a game agent (Bevilaqua, 2013).

A* PATHFINDING

Pathfinding normally means finding the shortest path amid

two termination outlets. Early clarifications to the problematic

pathfinding in computer games, such as depth first search,

iterative deepening, breadth first search, Dijkstra’s algorithm,

best first search, A* algorithm, and iterative deepening A*,

remained overwhelmed by the sheer exponential advance in

the intricacy of the game. Extra competent results are

necessitated so as to be competent to elucidate pathfinding

difficulties on an additional complex setting with restricted

time and resources (Cui, and Shi, 2011).

 A* path-finding is referred to as a system applied for

discovery of inexpensive route through a location.

Specifically, it is a search algorithm that is directed to exploit

knowledge about a destination to guide the search intelligently

and engaging in this minimized the process requires to find a

solution. A* is regarded as the fastest algorithm used in

finding the absolute cheapest path when compared to other

search algorithms (Rabin, 2009).

A* can also be regarded as a generic search algorithm, which

can be utilized to discover solutions for numerous glitches and

pathfinding just one of them. For pathfinding, A* algorithm

continually assesses the greatest promising unfamiliar position

it has realized. After a position is sightseen, the algorithm is

completed if that position foreseen is the goal; else, it makes

note of all that position's neighbors for advance consideration

(Cui, and Shi, 2011).

A* Pseudo-code:

1. Create the rootNode.

- Set its x and y according to the startPoint

- Set its parent to NULL

- Set its finalCost to givenCost + heuristicCost

2. Push the rootNode onto the open list

3. While the open list is not empty

A) Pop the node with the lowest finalCost from open and

assign it to currentNode

B) If currentNode’s x and y correspond to the goalPoint then

-Break from step 3

C) For every nearbyPoint around the currentNode

a) If this nearbyPoint is in a spot that is impassable then

- Skip to the next nearbyPoint

b) Create the successorNode

- Set its x and y according to nearbyPoint

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

193

- Set its parent to currentNode

- set its finalCost to givenCost + heuristicCost

c) If a node for this nearbyPoint has been created before then

- if successorNode is better than oldNode then

 - pop the oldNode and delete it

- else

 - skip to next nearbyPoint

d) Push the successorNode onto the open list

D) Push the currentNode onto the closed list

4. If the while loop exists without finding the goal, goalPoint

must be unreachable (Rabin, 2009).

THE GAME

The game in which the AI techniques will be implemented

will be of the following genre;

1. Orthogonal (Camera View)

2. Single-player

3. 3rd Dimensional (3D)

4. Survival Shooter

1. Orthographic (Camera View): The orthographic

camera view is of the 3rd Person camera view form. What

this means is that, players can see all of the PC during

gameplay.

2. Single-player: Only one player can control the PC and

play the game at a time.

3. 3rd Dimensional: The game will be rendered and played

with respect to all three coordinates (X, Y and Z axis).

4. Survival Shooter: Players will have unlimited ammo.

The gamed is scored with respect to the number of NPCs

killed. The game is over when the PC dies (that is PC

Health=0).

Basically, the game involves the PC (wielding a gun) moving

around the game environment shooting and evading the NPCs.

The PC will be controlled by whomever is playing the game

using the computer’s keyboard and mouse. The NPCs on the

other hand will be controlled by the AI components which

include A* Pathfinding and FSMs.

1. Unity IDE: Unity is a cross-platform game engine

developed by Unity Technologies and used to develop video

games for PC, consoles, mobile devices and websites. First

announced only for OS X, at Apple's Worldwide Developers

Conference in 2005, it has since been extended to target 27

platforms.

Unity allows specification of texture compression and

resolution settings for each platform that the game engine

supports and provides support for bump mapping, reflection

mapping, parallax mapping, screen space ambient occlusion

(SSAO), dynamic shadows using shadow maps, render-to-

texture and full-screen post-processing effects.

Unity is notable for its ability to target games to multiple

platforms. Within a project, developers have control over

delivery to mobile devices, web browsers, desktops, and

consoles. Supported platforms include Android, Apple TV,

BlackBerry 10, iOS, Linux, Nintendo 3DS line, macOS,

PlayStation 4, PlayStation Vita, Unity Web Player (including

Facebook), Wii, Wii U, Windows Phone 8, Windows, Xbox

360, and Xbox One (Wikipedia, 2017).

Figure 1. Image of the Unity IDE.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

194

2. Xamarin Studio/MonoDevelop: MonoDevelop (also

known as Xamarin Studio) is an open source integrated

development environment for Linux, macOS, and Windows.

Its primary focus is development of projects that use Mono

and .NET frameworks. MonoDevelop integrates features

similar to those of NetBeans and Microsoft Visual Studio,

such as automatic code completion, source control, a

graphical user interface (GUI) and Web designer.

MonoDevelop integrates a Gtk# GUI designer called Stetic. It

supports Boo, C, C++, C#, CIL, D, F#, Java, Oxygene, Vala,

and Visual Basic.NET.

A customized version of MonoDevelop ships with Unity, the

game engine by Unity Technologies. It enables advanced C#

scripting, which is used to compile cross-platform video

games by the Unity compiler.

Figure 2 Image of Xamarin Studio/Mono Develop.

3. Adobe/Mixamo Fuse: Adobe Fuse CC (formerly

Fuse Character Creator) is a 3D computer graphics software

developed by Mixamo that enables users to create 3D

characters. Its main novelty is the ability to import and

integrate user generated content into the character creator.

Fuse is part of Mixamo's product suite and it is aimed at video

game developers, video game modders, and 3D enthusiasts.

Fuse is a client based product that lets users choose and

modify character components such as body parts in real-time.

Users can also customize their characters with clothing and

texture options provided by Allegorithmic. Fuse's main

novelty is the ability for users to import and automatically

integrate their own content into the character creation system,

leveraging all the features of pre-loaded content. Fuse

characters are rigged through Mixamo online service.

Characters have a bone driven rig and a blend shape based

facial rig for facial animation.

Figure 3. Image of Adobe/Mixamo Fuse.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

195

METHODOLOGY

In Game Development, there are numerous Game AI

methods/techniques through which intelligent agents can be

created some of which include; Navigation, Hunting, Path-

finding, Finite State Machines and so on.

This study will make use of Finite State Machines (for agents

to perceive their environment) and A* Path-finding (for

agents to act on their environment) to create the intelligent

agents. These Game AI techniques will be implemented using

C# Scripts on the Unity IDE. Because of the complexity of the

implementation of the A* pathfinding with respect to

programming know-how, a Unity 3D plugin known as

“Arongranberg’s A* Pathfinding Project” will be used for

implementing A* pathfinding.

CONCEPTUAL DEVELOPMENT PROCESS

Figure 4. Flowchart for the development process

In relation with the above flow chart, the first phase involves

the modelling of the 3D characters and the 3D environment.

The characters will be modelled using Adobe/Maximo Fuse

and the environment will be modelled on the Unity IDE.

The second phase is concerned with importing the already

made 3D characters alongside other downloaded 3D models

into the Unity IDE.

The third phase which is about Integration is concerned with

creating animation flows, writing scripts for PC movement,

specifying PC and NPC attributes and so on.

The fourth phase focuses mainly on the NPC. This is where

the NPCs will be made intelligent agents by applying A*

Pathfinding and FSMs respectively.

And finally, the fifth phase will involve combining all the

components and compiling all the scripts on the Unity IDE.

Modelling 3D Characters & Environment

Importing Models into Unity IDE

Integrating Models into Unity IDE

Integrating Intelligence into NPC Models

Compilation of Scripts & Simulation of

NPCs and PCs

Start

Stop

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

196

Player

AI INFLUENCED SURVIVAL GAME SYSTEM

NPC

PC

1

Using Mouse and Keyboard

Attack

Search

Idle
Using FSM

Using FSM

Using FSM

Using A*

Death

Using FSM

Figure 5. Image of System Use Case Diagram.

The above image is a simple description of the system using

Use Case. From the diagram we can deduce the following:

1. Player has one state which is taking control of the PC via

Mouse and Keyboard.

2. The PC also has two states; to attack as many NPCs as

possible and also die.

NPCs have four states; Idle, Death, Search and Attack. The

Idle, Death and Attack states are influenced only by the FSM

component while the Search state is influenced by both the

FSM component and the A* Pathfinding component.

NPC Behavior Pseudo-code:

1. START

2. If NPC health > 0

3. Go To 5

4. Else enter action state DEATH

5. Initialize PC Health to 100 (PC Health = 100)

6. Initialize Attack_Rate to 5 (Attack_Rate=5)

7. Enter action state IDLE

8. If PC is Visible

9. Enter action state SEARCH

10. Else

11. Go To 5

12. If PC is found and close enough to attack

13. Enter action state ATTACK

14. PC Health = PC Health – Attack_rate

15. Else

16. Go To 5

17. If PC Health != 0

18. Go To 11

19. Else

20. Go To 5 || STOP

NPC Behavior Flow Chart

The above flowchart was adopted from a typical A*

Pathfinding algorithm. The algorithm is a complex one, as a

result assistance will be needed for its implementation.

As stated earlier the implementation will be carried out using

Arongranberg’s A* Pathfinding Project. This software comes

as a plugin for the Unity IDE with two prominent versions

(Free and Pro). The Free version comes free of charge as well

as with constraints, one of which is being limited to the use of

Grid Graphs. The Pro version on the other hand requires

payment and gives full access to the plugin’s features.

Euclidean Distance Algorithm:

1 p: position(s) of seeker (Array)

2 q: position(s) of target (Array)

3 n: space/range of values

4 d: distance between seeker(p) and target(q)

5 a: difference of p and q

6 i: Index counter

7 p{n}

8 q{n}

9 for i = 0;i <n;i ++

10 a = (p[i] - q[i])

11 a-square = a * a

12 a-square = a-square + a-square

13 end for

14 d = square-root(a-square)

Manhattan Distance Algorithm:

1 p: position(s) of seeker (Array)

2 q: position(s) of target (Array)

3 n: space/range of values

4 d: distance between seeker(p) and target(q)

5 a: absolute difference of p and q

6 i: Index counter

7 p{n}

8 q{n}

9 for i = 0;i < n;i ++

10 a = abs(p[i] - q[i])

11 a = a + a

12 end for

13 d = a

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

197

Figure 6. Flowchart for A* Pathfinding Heuristics Algorithms

Start

Create Root Node

Add Root Node to Open List & Remove from Closed

List

Stop

Pop Node with lowest

FCost. Call It Current

Node

Is Open

List Null?

 Is adjacent

node in Closed

List?

Scan for all walkable

adjacent nodes.

 Current

Node=Root

Node?

No Yes

Yes

No

Ignore and go to next

adjacent node

No

 Is adjacent

node in

Open List?
No

Add To

Open List

Yes

Compute GCost and Set Current

Node to Parent Node

 Is GCost of

path to node

lower?
Yes

Compute GCost & FCost, update

Parent Node No

 Is Target

Node in Open

List?
Yes

No

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

198

RESULTS AND DISCUSSION

CHARACTER AND ENVIRONMENT MODELLING

This phase was done with Mixamo/Adobe Fuse and the Unity

IDE. The characters (that is NPCs and PCs) for the game were

modelled on Mixamo/Adobe Fuse modelling software after

which they (modelled characters) were rigged and animated

on the Mixamo animation website while the game

environment which the characters will interact in was

modelled on the Unity IDE. After animating the modelled

characters on the Mixamo animation website, the characters

were downloaded in (.fbx) format for the Unity IDE.

Figure 7. NPC Modelled on Mixamo/Adobe Fuse.

Figure 8. PC Modelled on Mixamo/Adobe Fuse.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

199

Figure 9. Mixamo/Adobe Fuse online rigging and animation webpage.

As for the environment modelling, environment prefabs were

downloaded from the internet, after which they were imported

into the Unity IDE. The environment was created using

Unity’s Terrain Component.

Figure 10. Environment Modelled on Unity.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

200

IMPORTING MODELS

In this phase of implementation, the previously modelled

characters were imported into the Unity IDE. Importing in

Unity is based on whether the assets (models) of Unity origin

or of Third party origin, as such, the process of importing is

different based on that (origin). Third party assets can be

imported simply by dragging the item into the “Project” tab

on the Unity IDE. Unity assets on the other hand can be

imported by clicking the “Assets” button by the top-left corner

of the Unity IDE. The Character models to be imported are of

third party origin so they were simply dragged into the

“Project” tab.

Figure 11. Image highlighting the "Assets" Button and "Project" Tab on Unity.

INTEGRATING MODELS AND COMPONENTS

This phase is concerned integrating the previously imported

characters into Unity based on what kind of game is to be

implemented. Necessary Unity components such as Animator,

Rigidbody, Capsule Collider, Sphere Collider, Character

Controller, Scripts and so on were integrated into the NPC and

PC.

For the PC, the following Unity components and scripts were

integrated;

1. Animator

2. Rigidbody

3. Capsule Collider

4. Player Movement (Script)

5. Weapon Attachment (Script)

6. Player Health (Script)

7. Mecanin Animator (Animation Controller)

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

201

Figure 12. Image highlighting PC Components.

For the NPCs, the following Unity components and scripts

were integrated;

1. Animator

2. Rigidbody

3. Capsule Collider

4. Sphere Collider

5. Character Controller

6. Enemy Health (Script)

7. A* Pathfinding Seeker (Script)

8. A* Pathfinding AI Path (Script)

9. Enemy Attack (Script)

Figure 13. Image highlighting NPC Components.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

202

For the Environment, two Unity components were created in

the “Hierarchy” tab;

1. Main Camera

2. Terrain

3. HUD Canvas

Main Camera: This Unity component is responsible for the

camera settings and the following sub components were

integrated into the Main Camera;

1. Camera

2. GUI Layer

3. Flare Layer

4. Camera Follow (Script)

Figure 14. Image highlighting Main Camera components.

Terrain: This Unity component is responsible for creating

and styling the environment. The following sub component

was integrated into the Terrain

1. Terrain (Editor)

2. Terrain Collider

Figure 15. Image highlighting Terrain components.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

203

HUD Canvas: This Unity component is responsible for the

Health UI and Damage Image. The following sub components

were integrated into the HUD Canvas;

1. Rect Transform

2. Canvas

3. Canvas Scaler (Unity Script)

4. Graphic Raycaster (Script)

5. Canvas Group

Figure 15. Image highlighting HUD Canvas components.

INTEGRATING INTELLIGENCE INTO NPCs

This phase is where the NPCs are made intelligent by

integrating A* Pathfinding and Finite States Machines into

them.

As mentioned earlier, a Unity plugin in the name of

“Arongranberg’s A* Pathfinding Project” was used to

implement the A* Pathfinding. FSMs on the other hand was

implemented by creating an Animation Controller (Mecanim

Animator) for the NPC and Scripts in C#

A* PATHFINDING INTEGRATION

The following steps should be and were taken to integrate the

A* Pathfinding plugin into Unity and into the NPCs;

1. Import the A* Pathfinding plugin by opening its Unity

package file and then select “Import” on the Unity

window that pops up.

2. Create an empty game object and named it.

3. Add the Pathfinding component by selecting

“Component” (Top-left corner of Unity UI), then

“Pathfinding”, and then “Pathfinder”. This opens up in

the “Inspector” tab.

4. Add a new graph by selecting “Graphs” and then “Grid

Graph”.

5. Input “Node Width”, “Node Depth” and “Node Size”.

6. Specify value of the “Mask” subfield under “Collision

Testing”.

7. Specify value of the “Ray Length” and “Mask” subfields

under “Height Testing”.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

204

8. Select the “Scan” button at the bottom of the “Inspector”

tab.

9. Attach “Seeker” and “AI Path” scripts to the NPC.

10. Under “AI Path” component, specify the “Target” game

object as the PC object.

Figure 16. Image highlighting A* Plugin interface.

FINITE STATE MACHINES INTEGRATION

As mentioned earlier, to integrate the FSMs, an Animation

Controller (Mecanim Animator) was created for all the

available animations of the NPC as well as C# Scripts. Some

of these scripts were embedded in the “AI Path” script gotten

from the A* Pathfinding plugin. The scripts can be seen in the

Appendix. The Mecanim Animator provided the platform to

specify the possible states (which are represented by the NPC

and PC animations) into which the NPCs and PC can enter. It

was also used to specify all the possible transitions and their

respective triggers.

NPC FINITE STATE MACHINE

For the NPC, the following states were created via their

respective Animations;

1. Zombie_run: represents SEARCH state.

2. Zombie_idle: represents IDLE state.

3. Zombie_attack: represents ATTACK state.

4. Zombie_dying: represents DEATH state.

The following Transitions were created;

1. Zombie_run ↔ Zombie_idle: NPC can move from

SEARCH to IDLE and vice versa with triggers

“PlayerDead” and “Running” respectively.

2. Zombie_run → Zombie_dying: NPC can move from

SEARCH to DEATH with trigger “Dead”.

3. Zombie_run → Zombie_attack: NPC can move form

SEARCH to ATTACK with trigger “Attack”.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

205

4. Zombie_attack → Zombie_dying: NPC can move from

ATTACK to DEATH with trigger “Dead”.

5. Zombie_attack → Zombie_idle: NPC can move from

ATTACK to IDLE with trigger “PlayerDead”.

Figure 17. Mecanim Animation FSM for NPC.

SCRIPT COMPILATION AND AGENTS SIMULATION

In this phase, all the Non Unity scripts handling the various

components of the game were all compiled and simulated

alongside the gaming agents (NPCs and PCs) in the “Game”

tab. These scripts include;

1. AI Path

2. EnemyAttack

3. EnemyHealth

4. PlayerHealth

5. PlayerMove

6. PlayerShooting

7. FSM

8. Score Manager

The process of compilation and simulation is to ensure the

correctness of the scripts and their cohesion with other scripts.

As such, this process was carried out more than once.

Figure 19. Image showing Agents Simulation.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 2 (2020), pp. 191-206

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.2.2020.191-206

206

CONCLUSION

With respect to the AI techniques used as well as the earlier

mentioned objectives of this project, it was found that some

level of agent intelligence, though not optimal could be

achieved by combining A* Pathfinding (or any other

equivalent) and Finite State Machines with the previously

specified states and transitions.

A higher level of intelligence could also be achieved by

improving the Finite State Machines component. This can be

done by adding to the number of possible states, transitions

and triggers (events). As for the A* Pathfinding, using a

NavMesh graph instead of Grid graph would make way for

Patrol waypoints which would make the agents even more

intelligent.

The major usefulness of this project can be realized in the

development of other survival based shooter games.

Following this approach would provide any game of the same

genre with the necessary level of agent intelligence required

for player satisfaction.

RECOMMENDATIONS

On the game development platform, this project can act as a

guide to developing games, and so, it is recommended to

entry-level game developers. On the gaming platform, this

project is recommended to gamers interested in the survival

shooter genre. It also helps to enhance logical reasoning and

strategic planning skills of players.

Finally, on the research platform, this project is recommended

to researchers or even game developers who seek to design

intelligent gaming agents.

CREDIT AUTHOR STATEMENT

Adekanmi A. Adegun: Supervision, Writng- Review &

Editing, Conceptualization, Project Admininstration, Roseline

O. Ogundokun: Writing- Original Draft, Visualization,

Validation, Resources, Samuel Ogbonyomi:

Conceptualization, Methodology, Software, Resources

FUTURE RESEARCH

Any further research on the aim and objectives of this project

would revolve around achieving a higher or even optimal

level of agent intelligence. Also, it could revolve around

making the end product (the game) retail ready.

In achieving a higher level of agent intelligence, the following

could be considered;

1. Different combination of AI techniques.

2. NavMesh graphs as an alternative to Grid graphs.

3. More FSM states and transitions.

4. Different game genre.

5. An alternative to A* Pathfinding and so on.

REFERENCES

[1] Bevilacqua, F. (2013, October 24). Finite State
Machines: Theory and Implementation. Retrieved

November 3, 2016, from

https://gamedevelopment.tutsplus.com/tutorials/finite-

state-machines-theory-and-mplementation--gamedev-

11867

[2] Cui X., Shi H. (2011, January). A*-based Pathfinding in
Modern Computer Games. International Journal of
Computer Science and Network Security. VOL.11 No 1,

pp. 125-130.

[3] Miikkulainen, R. et al, (2006). Computational intelligence

in games. Computational Intelligence: Principles and

Practice.

[4] Nareyek, A. (2002). Intelligent Agents for Computer
Games. Computers and Games, Second International
Conference, pp. 414-422.

[5] Rabin, S. (June 2009). Introduction to Game
Development. (2nd ed.), pp. 521-558. Boston, USA:

Course Technology.

[6] Restu, P. (2015, September 13). Artificial Intelligence.
Retrieved October 7, 2016, from

http://web.if.unila.ac.id/restupratiwi/2015/09/13/artificial-

intelligence/

[7] Unity (game engine). (n.d). In Wikipedia. Retrieved

February 24, 2017, from

https://en.wikipedia.org/wiki/Unity_(game_engine)

https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-mplementation--gamedev-11867
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-mplementation--gamedev-11867
https://gamedevelopment.tutsplus.com/tutorials/finite-state-machines-theory-and-mplementation--gamedev-11867
http://web.if.unila.ac.id/restupratiwi/2015/09/13/artificial-intelligence/
http://web.if.unila.ac.id/restupratiwi/2015/09/13/artificial-intelligence/
https://en.wikipedia.org/wiki/Unity_(game_engine)

