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Abstract 

This paper presents the elastic buckling analysis of thin 

rectangular plates using the Galerkin-Kantorovich method. 

The plate has two opposite simply supported edges x = 0 and x 
= a, and two clamped edges y = 0 and y = b where the origin 

is a corner and the uniform compressive load is applied at the 

simply supported edges. Mathematically, the problem is a 

boundary value problem (BVP) represented by a domain 

differential equation and boundary conditions. The buckling 

deflection function is assumed as an infinite series of an 

unknown function of y coordinate (G(y)) and a known 

function (of the x coordinate) that satisfies all the Dirichlet 

boundary conditions along the simply supported edges. The 

Galerkin-Kantorovich formulation of the BVP is an integral 

equation that further simplified to a homogeneous fourth order 

ordinary differential equation (ODE) in the unknown function 

G(y). The general solution of the ODE was achieved using 

trial function methods. The enforcement of the boundary 

conditions along the clamped edges resulted in a system of 

homogeneous equations in terms of the four integration 

constants. The condition for nontrivial solution is used to 

obtain the characteristic buckling equation as a transcendental 

equation which is solved for the elastic buckling load for each 

buckling mode using computer software based iteration 

methods. The critical elastic buckling load is found to 

correspond to the first buckling mode. The characteristic 

elastic buckling equation obtained is found to be the exact 

buckling equation for the problem and is identical with 

previously obtained equations. The elastic buckling loads 

obtained agree with the previous results from the literature. 

Keyword: Galerkin-Kantorovich method, elastic buckling 

load, characteristic elastic buckling equation, critical buckling 

equation, critical elastic buckling load, Kirchhoff plate. 

 

1. INTRODUCTION 

Plates are structural components extensively used to model 

aircraft wings, spacecraft panels, ship hulls and decks, 

building floors, bridge decks, roof slabs and offshore 

platforms. Though most plates perform satisfactorily under 

tensile forces, when they are subjected to in-plane 

compressive forces which may be uniform or non-uniform, 

they are prone to elastic buckling failures [1 – 13]. Usually, 

buckling of plates due to in-plane compressive forces which 

may be uniform or non-uniform is a nonlinear phenomenon 

which may occur suddenly leading to catastrophic structural 

failures. It is thus important to determine the load buckling 

capacities of plates as part of their design and analysis in order 

to avert premature failures. 

Plate buckling may be classified as elastic buckling or plastic 

(inelastic) buckling. The buckling is classified as elastic 

buckling when the critical buckling stress is less than the 

elastic limit of the plate material. In practical problems the 

plate may be stressed beyond the elastic limit of the material 

before the commencement of buckling, and the buckling 

problem is called plastic (inelastic) buckling problem. 

Navier derived the partial differential equation governing the 

elastic buckling problems of thin rectangular, isotropic, 

homogeneous plates under distributed transverse load and 

included the twisting term in the equation. Navier’s work was 

particularly significant at the time because it was found that 

the twisting term can remarkably reduce the transverse 

deflections under distributed transverse loads. Saint Venant 

later modified the Navier’s equation by including edge forces 

and shearing forces applied in the axial directions of the plate. 

The differential equations derived independently by Navier 

and Saint Venant provided the foundations for a significant 

part of the research work on the elastic buckling of thin 

rectangular plates subjected to uniaxial, biaxial and (uniform 

and/or non-uniform) compressive loads and shear forces 

applied at the edges. 

The basic problem of elastic buckling of plates is thus to find 

the minimum compressive forces/loads (buckling loads) and 

the associated shapes (buckling shapes) at which the plate 

would undergo unrestrained, excessive deformations when 

subjected to compressive loads (uniform or non-uniform) 

applied at the edges for known edge support conditions. The 

compressive loads may be applied uniaxially or biaxially or 

the loads may be shear forces [4, 10, 11, 12, 13, 14, 15, 16]. 

Elastic buckling problems can be solved in closed form or by 

approximate numerical methods. 
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Timoshenko [1, 2] solved the governing domain differential 

equation for the elastic buckling of thin rectangular isotropic 

homogeneous plates subjected to uniaxial uniform 

compressive load for different types of boundary conditions. 

He used the Navier’s double trigonometric series method and 

the total potential energy minimization method to obtain the 

characteristic buckling equations, which he solved to find the 

buckling loads. He thus obtained elastic buckling loads and 

buckling modal shapes. 

 

Kim et al [17] presented buckling analysis of isotropic and 

orthotropic plates using the two variable refined plate theory 

(RPT) which takes account of transverse shear deformation 

effects. The refined plate theory used by Kim et al [17] 

assumed a parabolic distribution of transverse shear strains 

through the plate thickness, thus obviating the necessity for 

the use of shear stress modification factors. They derived the 

governing equations using the principle of virtual 

displacements, and obtained closed-form solutions to the 

governing equations for a simply supported rectangular plate 

subjected to in-plane loads by the use of Navier’s double 

trigonometric series method. They compared their numerical 

results with classical thin plate theory solutions, first order 

shear deformable plate solutions, and previously obtained 

exact solutions; and found their solutions to be comparable to 

the first order shear deformable plate theory. 

Ibearugbulem [18] used the Ritz direct variational method to 

obtain the elastic buckling loads of thin rectangular flat plates 

subjected to uniaxial uniform compressive forces. He 

considered various boundary conditions for the plate (simply 

supported edges, clamped edges and plates with some edges 

clamped and the other edges simply supported). He derived 

one parameter shape functions for the various edge support 

conditions using the polynomial solution of deflections of 

Euler – Bernoulli beams with equivalent support conditions in 

the x Cartesian coordinate directions. By substitution of the 

one-parameter displacement shape function obtained into the 

total potential energy functional for the elastic stability 

problem, and minimization with respect to unknown 

displacement parameter, he obtained solutions that were 

comparable to other previously obtained solutions for the 

problem. 

Nwadike [19] also presented the Ritz method for the 

determination of the elastic buckling loads of isotropic, 

homogeneous, thin rectangular plates subjected to uniform 

compressive load in one coordinate direction. He considered 

various boundary conditions. He used the deflection functions 

for beams with equivalent end supports in the x and y 

Cartesian coordinates to generate one-parameter displacement 

functions for the plates for each considered boundary 

conditions. By substitution of the obtained one-parameter 

displacement functions into the total potential energy 

functional for the elastic stability problem, and minimization 

with respect to the unknown displacement parameter, he 

obtained solutions for the elastic buckling load for the 

boundary conditions considered. His solutions were 

comparable with previously obtained solutions, and the errors 

were not too big considering the simplification offered by the 

one-parameter displacement function used. 

Oguaghamba [20] analysed the buckling and post-buckling 

loads of thin rectangular plates made of isotropic 

homogeneous materials. Oguaghamba et al [21] studied and 

presented the buckling and post-buckling loads characteristics 

of thin rectangular clamped plates made of isotropic, 

homogeneous materials. 

Ibearugbulem et al [22] and Osadebe et al [23] used the 

truncated Taylor – Maclaurin’s series to obtain displacement 

shape functions which were used in Galerkin variational 

method to determine the elastic buckling loads of simply 

supported thin rectangular plates subjected to uniform in-

plane compressive loads applied in one direction. They 

obtained solutions comparable with previous results in the 

literature. 

Abodi [24] presented a finite difference method (FDM) for 

finding the elastic buckling loads of Kirchhoff plates 

subjected to in-plane patch loads. Shi [25] and Shi and Beziné 

[26] solved the elastic stability problem of orthogonally 

anisotropic thin rectangular plates using the boundary element 

method. 

Nwoji et al [14] determined the elastic buckling loads of 

simply supported thin isotropic rectangular plates subjected to 

uniform compressive loads applied at the two opposite edges. 

They used the two dimensional finite Fourier sine integral 

transform method in solving the domain partial differential 

equation (PDE] for the elastic buckling problem. They found 

that the two dimensional integral transformation converts the 

PDE to an integral equation, and ultimately to an algebraic 

problem that gives exact solutions for the elastic buckling 

loads for all the buckling modes and also gives exact buckling 

modal shape functions. 

Onah et al [15] used the one-dimensional finite Fourier sine 

integral transform method to determine the elastic buckling 

loads of Kirchhoff plate with two opposite edges clamped and 

the other two opposite edges simply supported with the two 

simply supported edges subjected to the uniform compressive 

force. They found that the one-dimensional integral sine 

transform converts the PDE representing the domain 

governing equation to an integral equation; which further was 

reduced to an ordinary differential equation. They obtained 

the general solution to the ODE and applied the boundary 

conditions along the clamped edges to express the problem as 

a system of homogeneous equations in terms of the four 

unknown integration constants. The condition for nontrivial 

solution of the homogeneous equations was used to obtain the 

characteristic buckling equations, which is a transcendental 

equation. They obtained the eigenvalues of the problem as the 

roots of the transcendental equation. Consequently, they 

obtained the exact solutions to the elastic buckling loads. 

Several other seminal research papers on the theme of elastic 

and inelastic buckling of plates of various shapes, subjected to 

different boundary and loading conditions are reported in the 

literature. Some of these research works are reported by 

Batford and Houbolt [27], Wang et al [28], Ullah et al [29], 

Xiang et al [30], Ullah et al [31], Abolghasemi et al [32], Ezeh 

et al [33] and Ibearugbulem and Eze [34]. 
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In this work, the Galerkin – Kantorovich method is used to 

obtain solutions for the elastic buckling loads of thin 

rectangular plates subjected to uniaxial uniform compressive 

force along the simply supported edges x = 0 and x = a and 

clamped along the edges y = 0 and y = b. 

 

2. THEORETICAL FRAMEWORK 

The elastic buckling problem of rectangular Kirchhoff plates 

with in-plane dimensions of length a and width b is expressed 

by the partial differential equation (PDE): 

4 4 4 2 2

4 2 2 4 2 2
2

     
     

      

( , ) ( , ) ( , ) ( , ) ( , )
x y

w x y w x y w x y w x y w x yD N N
x x y y x y

 

 
2

2 0



 

xy
wN

x y
      (1) 

where 0   ,x a  0   ,y b  x and y are the in-plane 

Cartesian coordinates 

w(x, y) is the deflection 

Nx is the uniform compressive force in the x direction 

Ny is the uniform compressive force in the y direction 

Nxy is the twist 

D is the flexural rigidity of the plate material expressed by: 

3

212 1


( )

EhD         (2) 

E is the Young’s modulus of elasticity of the plate material,  

is the Poisson’s ratio of the plate material, h is the plate 

thickness. 

For the thin rectangular plate considered in this work, with 

simply supported edges x = 0 and x = a, and edges y = 0 and y 
= b clamped, the boundary conditions are: 

0 0   ( , ) ( , )w x y w x a y       (3) 

0 0   ( , ) ( , )xx xxM x y M x a y      (4) 

0 0   ( , ) ( , )w x y w x y b       (5) 

0 0
 

   
 

( , ) ( , )
w wx y x y b
y y

     (6) 

 

3. METHODOLOGY 

By the Galerkin – Kantorovich methodology, the deflection 

function is chosen in the variable separable form: 

1






( , ) ( )sin

n

n xw x y G y
a

      (7) 

where G(y) is an unknown function of y that is sought such 

that Equation (7) satisfies the domain PDE and G(y) satisfies 

the boundary conditions along the edges y = 0 and y = b. 

In Equation (7) the sinusoidal function satisfies all the 

boundary conditions along the edges x = 0, and x = a. The 

elastic buckling problem considered is shown in Figure 1, 

 

 

Figure 1: Elastic buckling of thin rectangular SCSC plate 
under uniaxial uniform compressive force Nx along the simply 

supported edges x = 0 and x = a 

 

The governing PDE for the domain is a simplification of 

Equation (1) since 0  ,y xyN N  and we have: 

2
4

2
0


  



xN ww
D x

       (8) 

4 4 4 2

4 2 2 4 2
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    (9) 

where 
4 4 4

4

4 2 2 4
2

  
   

   x x y y
     (10) 

The Galerkin – Kantorovich variational integral statement of 

the problem is: 

2
4

2
1 10 0

0
 

 
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  
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         (11) 

Hence, 

2
4

2
1 0 0

0




   
  

 
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x

n
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         (12) 

Simplifying, 

4 2 2 4

2 4
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2
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Further simplification gives: 
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Let 

0

 
 sin sin

a

mn
n x m xI dx
a a

     (15) 
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Due to the orthogonality properties of the sine functions, 

0mnI  if  ;m n  /2mnI a  if m n   

For non zero values of Imn, m = n, and the problem simplifies 

to: 

2 4 24 2

4 2
1 0

2 0



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( ) ( )
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x
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         (16) 

Since 0 .mnI   

Equation (16) - holds only if: 

2 4 24 2
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         (17) 

Equation (17) is a fourth order homogeneous ordinary 

differential equation (ODE) in G(y). The solution to Equation 

(17) is sought for in the exponential form. 

Let ( ) expG y sy        (18) 

where s is an undetermined parameter sought. 

Then, the ODE becomes: 

2 4 2
4 2 02

                   
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expxNn n n sys s
a a D a

  (19) 

For nontrivial solutions 

0exp ,sy  and the fourth degree polynomial results: 

2 4 2
4 22 0
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The roots are found from: 

22 2
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The four roots are: 

1 21 22 2

1
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The general solution for G(y) is found as: 

1 1 2 1 3 2 4 2       ( ) cosh sinh cos sinG y c y c y c y c y  (24) 

 

4. RESULTS 

The four boundary conditions along the edges y = 0, and y = b 

are used in the expression for G(y) to set up a system of 

homogeneous equations. Hence from Equation (3) 

0 0 ( )G y         (25) 

0 ( )G y b         (26) 

0 0
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
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G y
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0

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
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
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         (29) 

Equation (25) gives 

1 3 0 c c          (30) 

Equation (27) gives: 

2 1 4 2 0   c c         (31) 

Hence, from Equation (30), we have: 

3 1 c c          (32) 

From Equation (31), we have: 

2 1
4

2


 



cc         (33) 

Equation (26) gives: 

1 1 2 1 3 2 4 2 0         ( ) cosh sinh cos sinG y b c b c b c b c b  

         (34) 

Equation (28) gives: 

1 1 1 2 1 1 3 2 2 4 2 2 0


            


( )
sinh cosh sin cos

y bG c b c b c b c b
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         (35) 

Using Equations (32) and (33) and rearranging of Equation 

(34) gives: 

1 2
1 1 2 2 1

2

0
  

        

sin
(cosh cos ) sinh

bc b b c b   (36) 

Similarly using Equations (32) and (33) and rearranging 

Equation (35) gives: 

1 1 1 2 2 2 1 1 1 2 0         ( sinh sin ) ( cosh cos )c b b c b b  

         (37) 

In matrix form, we have 

1
1 2 1 2 1

2
2

1 1 2 2 1 1 1 2

0

0

   
                              

(cosh cos ) sinh sin

( sinh sin ) ( cosh cos )

b b b b c
c

b b b b
 

         (38) 

For nontrivial solutions, 

1

2

0 
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 

c
c   

The characteristic elastic buckling equation is then: 
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1
1 2 1 2

2

1 1 2 2 1 1 2

0

 
        

        

(cosh cos ) sinh sin

( sinh sin ) (cosh cos )

b b b b

b b b b
  (39) 

Expansion of the determinant gives: 

2 1
1 1 2 1 2 1 2 2 2

2

0
 

              
(cosh cos ) sinh sin ( sinh sin )b b b b b b  

         (40) 

Further simplification gives the transcendental equation: 

1 2
1 2 1 2

2 1

2 1 0
  

          
( cosh cos ) sinh sinb b b b  (41) 

The elastic buckling loads are found by solving the 

transcendental equation using the computer based iteration 

methods. The solution to the transcendental equation for 

values of the plate aspect ratio (a/b) ranging from 0.4 to 2.0 

and for Poisson’s ratio  = 0.25 are calculated and presented 

in Table 1 in terms of the elastic buckling load coefficient 

k(a/b) defined in terms of the dimensionless critical buckling 

load crN  defined as: 

2

2

 
  
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x
cr

N baN k
b D

       (42) 

The critical buckling stress (xx)cr is found as: 

2

2

/

12 1

 
   

  

( )
( )

( )
xx cr

k a b E h
b

      (43) 

 

 

Table 1: Critical elastic buckling load coefficients ( / )( )crk a b N  of thin rectangular plates clamped along the edges y = 0,  

and y = b and subjected to uniform compressive load Nx along the simply supported edges x = 0, and x = a 

a/b 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

/ ( ) crk a b N  

 
2

2

 
 
 

xxN b
D

  
9.448 7.055 7.304 7.691 7.055 7.001 7.304 7.055 6.972 

/( )k a b  exact Ohah et al [15]  

 Wang et al [10] 
9.448 7.055 7.304 7.691 7.055 7.001 7.304 7.055 6.972 

Bulson [7] 9.448 7.055 7.304 7.691 7.055 7.001 7.304 7.055 6.972 

Timoshenko and Gere [6] 

Timoshenko [1, 2] 
9.448 7.055 7.304 7.691 7.055 7.001 7.304 7.055 6.972 

 

5. DISCUSSION 

The Galerkin – Kantorovich method has been successfully 

used in this paper to solve the elastic buckling problem of a 

thin rectangular plate under uniform compressive force Nx 

applied at the simply supported edges x = 0, and x = a, while 

the other two edges y = 0, and y = b are clamped. The elastic 

stability problem is mathematically represented by the fourth 

order ordinary differential equation (ODE) – Equation (9) – 

valid on the domain 0  ( ;x a  0   )y b  and the boundary 

conditions given by Equations (3) – (6). 

Following the Galerkin – Kantorovich methodology, the 

deflection function is represented in the variable – separable 

form expressed by the infinite single series in Equation (7). 

The chosen deflection function Equation (7) satisfies apriori 

all the Dirichlet boundary conditions along the simply 

supported edges x = 0, and x = a; but contains an unknown 

function of the y Cartesian coordinate variable which is sought 

such that the domain equation is satisfied at all parts on the 

domain. 

In the Galerkin – Kantorovich methodology, the domain ODE 

is expressed as an integral equation. The Galerkin – 

Kantorovich variational integral statement of the elastic 

stability problem is expressed as the integral equation in 

Equation (11), which upon simplification gave Equation (14). 

Further simplification of the Galerkin – Kantorovich 

variational integral statement of the elastic buckling problem 

obtained by the orthogonality properties of the sinusoidal 

functions and the fact that 0 ,mnI  resulted in Equation (16). 

For any buckling mode, n, the integral in Equation (16) 

vanishes only when the problem reduces to the ODE in 

Equation (17). 

Equation (17) is a fourth order ODE in terms of G(y), which is 

solved using methods of variation of parameters, differential 

operators or trial functions to obtain the general solution for 

G(y) as the equation set out in Equation (24) which has four 

constants of integration. The four constants of integration are 

determined upon enforcement of the four boundary conditions 

along the clamped edges y = 0 and y = b. The application of 

the four boundary conditions yielded a system of four 

homogeneous equations – Equations (30), (31), (34) and (35) 

in terms of the four integration constants. Further 

simplification of the system of homogeneous equations using 

Equations (32) and (33) yielded the system of two 

homogeneous equations – Equations (36) and (37) which is 

expressed in matrix form as Equation (38). The characteristic 

elastic buckling equation is obtained from the condition for 

nontrivial solution as Equation (39) which is a determinantal 

equation. Expansion of the determinant of the characteristic 

stability equation gave Equation (40) which was further 
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simplified to the transcendental equation – Equation (41). 

Equation (41) was solved using computer based iteration 

methods to obtain the elastic buckling loads for values of the 

Poisson’s ratio  = 0.25, and for various values of the plate 

aspect ratio (a/b) ranging from 0.40 to 2.0. The results are 

presented in Table 1 together with results from the previous 

studies done by Wang et al [10], Bulson [7], Onah et al [15], 

Timoshenko [1, 2] and Timoshenko and Gere [6]. Table 1 

reveals that the results obtained for critical elastic buckling 

loads using the Galerkin – Kantorovich method are identical 

with previous results obtained by Wang et al [10], Bulson [7], 

Timoshenko [1, 2], Timoshenko and Gere [6] and Onah et al 

[15]. 

 

6. CONCLUSION 

In conclusion, 

(i) The Galerkin – Kantorovich method presented in this 

paper is ideally suitable for the solution of the elastic 

stability problem of thin rectangular isotropic plate with 

clamped edges (y = 0, and y = b) and the simply 

supported edges (x = 0, x = a) subjected to uniform 

compressive force Nx. 

(ii) The Galerkin – Kantorovich method assumes the 

buckling deflection function as an infinite series of the 

product of an unknown function (G(y)) and a known 

function of the x coordinate which satisfies all the 

Dirichlet boundary conditions along the simply 

supported edges. 

(iii) The Galerkin – Kantorovich variational integral is an 

integral equation and the BVP of elastic stability is thus 

converted to an integral equation over the domain of the 

plate 0  ( ,x a  0   )y b . 

(iv) The resulting integral equation is further simplified to a 

homogeneous fourth order ODE in the unknown 

function G(y). 

(v) The solution of the homogeneous fourth order ODE 

gives the general solution for G(y) in terms of four 

unknown integration constants. 

(vi) The application and enforcement of four boundary 

conditions to G(y) along the clamped edges y = 0, and y 
= b results to a system of four homogeneous equations 

in terms of the four integration constants. The system of 

four homogeneous equations is further simplified to a 

system of two homogeneous equations (by expressing 

two constants in terms of the other two constants). 

(vii) The condition for nontrivial solution is used to obtain 

the characteristic elastic stability equation as a 

transcendental equation which is solved for Nx using 

computational software tools and iteration methods. 

(viii) The critical elastic buckling mode is found to 

correspond to the first buckling mode, when n = 1. 

(ix) The critical elastic buckling loads obtained using 

Galerkin – Kantorovich method were identical with the 

previous results obtained by Onah et al [15], Wang [10] 

and Timoshenko and Gere [6] who used other methods 

for solving the problem. 

(x) The Galerkin – Kantorovich method gave exact solution 

for the critical elastic buckling load of SCSC or CSCS 

Kirchhoff plates under uniform compressive force Nx 

applied at the simply supported edges (x = 0, and x = a) 
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