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Abstract 

In this study, after applying the exponential family distribution 

(Goel-Okumoto, Rayleigh, Erlang) which are widely used in 

the field of reliability to the finite failure NHPP software 

reliability model, we compared and analyzed the reliability 

property based on shape parameters of the lifetime 

distribution. Software failure time data was used to identify 

software failure phenomena, and parametric estimation was applied 

to the maximum likelihood estimation method. As a result, in terms 

of the intensity function, the Rayleigh model was more efficient than 

the other models because the intensity function significantly 

decreased as the failure time passed. In the pattern of the mean value 

function, the Rayleigh model showed a slightly overestimated pattern 

compared to the true value, but it was more efficient than the Erlang 

model because of the smaller error. Also, as a result of comparing 

reliability by applying future mission time, the Rayleigh model was 

high and stable together with the Erlang model, but the Goel-

Okumoto model showed a decreasing tendency. In conclusion, we 

found that the  Rayleigh model is an efficient model with the 

best performance among the proposed models. Through this 

study, we have newly analyzed the property of software reliability 

model with the exponential family lifetime distribution without 

existing research case, and it was able to present new research 

information that software developers could use as basic guidelines. 

Keywords: Erlang Distribution, Exponential Family, Goel-

Okumoto Basic Model, NHPP Software Reliability, Rayleigh  

Distribution, Shape Parameter.  

 

1. INTRODUCTION  

With the rapid development of the software technology 

industry, the scale of the software system is constantly 

expanding and complicated. For this reason, the need for 

software reliability research that can process large amounts of 

information accurately without failures is also rapidly 

increasing. The software reliability, defined as the probability 

that the software will function normally without failure for a 

specified amount of time in a particular environment, is the 

most important software quality standard [1]. Until now, the 

software reliability models based on the non-homogeneous 

Poisson process (NHPP) have been proposed to predict 

software reliability. In particular, to estimate the reliability 

attributes, the software reliability models based on finite 

failure NHPP model using the intensity function and the mean 

value function were developed and proposed [2]. Yamada and 

Osaki [3] stated that the results of the mean value function can 

be estimated using the maximum likelihood estimation 

method, while Huang [4] presented and explained a graph 

showing the confidence interval of the mean value function.  

Pham and Zhang [5] proposed a software reliability cost 

model based on the software reliability model and software 

failure time. Also, Yang [6] analyzed the attributes of the 

finite failure NHPP software reliability model based on 

Weibull lifetime distribution. Kim [7] compared and analyzed 

the attributes of the software reliability model using Burr-Ⅻ 

and Type-2 Gumbel lifetime distribution.  

Therefore, in this study, after applying the exponential family 

distribution which is widely used in the field of reliability to 

the finite failure NHPP software reliability model, we were 

newly analyzed the reliability property of the proposed 

models and will present the optimal model through this results. 

 

2. RELATED RESEARCH  

2.1 NHPP Software Reliability Model   

The NHPP model contains property about mean value m(t) 

and intensity pattern 𝜆(𝑡).  N(t) is the cumulative number of 

failures of the software detected up to time t, m(t) is a mean 

value function when λ(t) is expressed by an intensity function, 

the cumulative failure number N(t) follows a Poisson 

probability density function having a parameter m(t). The 

NHPP software reliability model is a model that measures the 

reliability using the mean failure rate function by the number 

of failures generated per unit time. That is 

 P{𝑁(𝑡) = 𝑛} =
[𝑚(𝑡)]𝑛 ∙  𝑒−𝑚(𝑡)

𝑛!
                                            (1) 

Note. 𝑛 = 0,1,2, ⋯  ∞.  

The mean value function m(t)  and the intensity function 

λ(t) of  the NHPP model are as follows. 

   m(t) = ∫ 𝜆(𝑠)𝑑𝑠                                                                      (2)
𝑡

0

  

  
 𝑑𝑚(𝑡)

𝑑(𝑡)
= 𝜆(𝑡)                                                                              (3) 

 

In terms of software reliability, the mean value function 

represents a software failure occurrence expected value, the 

intensity function is the failure rate function and means the 

failure occurrence rate per defect. Also, the time domain 

NHPP models are classified into a finite failure that the failure 

does not occur at the time of repairing the failure, and an 

infinite failure that the failure occurs at the time of repairing 
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failure.  In this study, we will analyze the software reliability 

property based on finite failure cases. That is, in the finite-

failure NHPP model, if the expected value of the failure that 

can be found up to time [0, t] is θ , then the mean value 

function and the intensity function are as follows. 

  m(t|𝜃, b) = 𝜃𝐹(t)                                                                      (4)  

λ(t|𝜃, b) = 𝜃𝐹(t)′ = 𝜃𝑓(𝑡)                                                      (5) 

Considering Eq. 4 and Eq. 5, the likelihood function of the 

finite-failure NHPP model is derived as follows. 

 𝐿𝑁𝐻𝑃𝑃(Θ|𝑥) = (∏ 𝜆(𝑥𝑖)

𝑛

𝑖=1

) exp[−𝑚(𝑥𝑛)]                           (6) 

Note. 𝑥 = (𝑥1, 𝑥2, 𝑥3 ⋯ 𝑥𝑛).    

 

2.2 Goel-Okumoto basic model : NHPP model 

The Goel-Okumoto is a well-known basic model in the 

software reliability field. This model assumes the exponential 

distribution as the lifetime distribution per fault. Therefore, 

the rate of occurrence of faults is constant. Let f(t) and F(t) for 

the Goel-Okumoto model be a probability density function 

and a cumulative density function, respectively.   

Assuming that the expected value of the number of failures of 

the observation point [0, t] is θ, the mean value function and 

the intensity function of the finite fault NHPP Goel-Okumoto 

model are as follows [8]. 

 m(t|𝜃, b) = 𝜃𝐹(t) = 𝜃(1 − 𝑒−𝑏𝑡)                                          (7)  

 λ(t|𝜃, b) = 𝜃f(t) = 𝜃b𝑒−𝑏𝑡                                                        (8)  

Note. θ > 0, b > 0. 

Substituting Eq. 7 and Eq. 8 into Eq. 6, the likelihood function 

of the finite-failure NHPP model is derived as follows.                   

L(𝜃, b|𝑥) = (∏ 𝜃𝑏𝑒−𝑏𝑥𝑖

𝑛

𝑖=1

) exp[−𝜃(1 − 𝑒−𝑏𝑥𝑛)]             (9) 

Note. 𝑥 = (0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛).  

The log-likelihood function, using Eq. 9, is simplified to the 

following log conditional expression.  

 ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) =                                                                             

𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑏 − 𝑏 ∑ 𝑥𝑘

𝑛

𝑘=1

−  𝜃(1 − 𝑒−𝑏𝑥𝑛)                            (10) 

Note.  𝑥 = (0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛, Θ is parameter space. 

 

Therefore, in the Eq. 11 and Eq. 12, the maximum likelihood 

estimator 𝜃̂𝑀𝐿𝐸  and  𝑏̂𝑀𝐿𝐸  can be estimated by a numerical 

method (bisection method). 

 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=

𝑛

𝜃̂
− 1 + exp(−𝑏̂𝑥𝑛) = 0                        (11) 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
=

𝑛

𝑏̂
− ∑ 𝑥𝑖

𝑛

𝑖=1

− 𝜃̂𝑥𝑛 exp(−𝑏̂𝑥𝑛)               (12) 

Note. 𝑥 = (𝑥1, 𝑥2,, 𝑥3 ⋯ 𝑥𝑛) 

 

2.3 Rayleigh distribution : NHPP model   

The Rayleigh distribution is the lifetime distribution of the 

exponential family widely used in the reliability field. The 

probability density function and the cumulative distribution 

function considering the shape parameter(α) are as follows. 

f(t) =
𝑡𝛼−1

𝛽2
 𝑒

−
𝑡𝛼

2𝛽2                                                                        (13) 

𝐹(t) = 1 − 𝑒
−

𝑡𝛼

2𝛽2                                                                       (14) 

Note. β > 0, t ∈ [0, ∞].  

In order to simplify Eq. 13 and Eq. 14, if substitution by the 

equation  
1

2𝛽2 = 𝑏 is as follows. 

  f(t) = 2b𝑡𝑎−1𝑒−𝑏𝑡𝛼
                                                                  (15) 

𝐹(t) = 1 − 𝑒−𝑏𝑡𝛼
                                                                      (16) 

Note. b > 0, t ∈ [0, ∞]. 

In the Eq. 15 and Eq. 16, a Rayleigh distribution is obtained 

when the shape parameter(α) is 2. Therefore, the mean value 

function and the intensity function of the finite fault NHPP 

Rayleigh model are as follows [9]. 

 m(t|𝜃, b) = 𝜃𝐹(t) = 𝜃(1 − 𝑒−𝑏𝑡2
)                                      (17) 

 λ(t|𝜃, b) = 𝜃f(t) = 2𝜃bt𝑒−𝑏𝑡2
                                               (18) 

Note. θ > 0, b > 0. 

The log-likelihood function to maximum likelihood 

estimation by using Eq. 17 and Eq. 18 is derived as follows. 

ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) = 𝑛𝑙𝑛2 + 𝑛𝑙𝑛𝜃 + 𝑛𝑙𝑛𝑏 + ∑ 𝑙𝑛𝑥𝑖    

𝑛

𝑖=1

           

−𝑏 ∑ 𝑥𝑖
2

𝑛

𝑖=1

− 𝜃 (1 − 𝑒−𝑏𝑥𝑛
2

)                                                    (19) 

Note.  𝑥 = (0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛, Θ is parameter space. 

Therefore, in the Eq. 20 and Eq. 21, the maximum likelihood 

estimator 𝜃̂𝑀𝐿𝐸  and  𝑏̂𝑀𝐿𝐸  can be estimated by a numerical 

method (bisection method). 

 

 
∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=

𝑛

𝜃̂
− 1 + exp(−𝑏̂𝑥𝑛

2) = 0                     (20) 
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∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
=

𝑛

𝑏̂
− ∑ 𝑥𝑖

2

𝑛

𝑖=1

− 𝜃̂𝑥𝑛
2 exp(−𝑏̂𝑥𝑛

2) = 0       (21) 

Note. 𝑥 = (𝑥1, 𝑥2,, 𝑥3 ⋯ 𝑥𝑛). 

 

2.4 Erlang distribution : NHPP model 

The Erlang distribution is the lifetime distribution of the 

exponential family widely used in the reliability field. The 

probability density function and the cumulative density 

function considering the shape parameter (a)  and the scale 

parameter (b) are as follows. 

f(t) =
𝑏𝑎

Γ(𝑎)
 𝑡𝑎−1𝑒−𝑏𝑡                                                                  (22) 

 𝐹(t) = (1 − 𝑒−𝑏𝑡 ∑
(𝑏𝑡)𝑖

𝑖!

𝑎−1

𝑖=0

)                                                  (23) 

Note. a, b > 0, a = 1,2,3‥‥, 𝑡 ∈ [0, ∞]  

 

In this study, we consider the case of the shape parameter 

a = 2.  The log-likelihood function to maximum likelihood 

estimation by using Eq. 22 and Eq. 23 is derived as follows. 

ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥) = 

𝑛𝑙𝑛𝜃 − 𝑛𝑙𝑛Γ(𝑎) + 𝑛𝑎𝑙𝑛𝑏 + (𝑎 − 1) ∑ 𝑙𝑛𝑥𝑖

𝑛

𝑖=1

− 𝑏 ∑ 𝑥𝑖

𝑛

𝑖=1

           

−𝜃 + 𝜃𝑒−𝑏𝑥𝑛 (∑
(𝑏𝑥𝑛)𝑖

𝑖!

𝑎−1

𝑖=0

)                                                     (24) 

Note.  𝑥 = (0 ≤ 𝑥1 ≤ 𝑥2 ≤ ⋯ ≤ 𝑥𝑛, Θ is parameter space. 

Therefore, in the Eq. 25 and Eq. 26, the maximum likelihood 

estimator 𝜃̂𝑀𝐿𝐸  and 𝑏̂𝑀𝐿𝐸  can be estimated by a numerical 

method (bisection method).   

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝜃
=

𝑛

𝜃
− 1 + 𝑒−𝑏𝑥𝑛(1 + 𝑏𝑥𝑛) = 0                (25) 

∂ln𝐿𝑁𝐻𝑃𝑃(𝛩|𝑥)

𝜕𝑏
=

2𝑛

𝑏
− ∑ 𝑥𝑖

𝑛

𝑖=1

− 𝜃𝑏𝑥𝑛
2𝑒−𝑏𝑥𝑛 = 0            (26) 

Note. 𝑥 = (𝑥1, 𝑥2,, 𝑥3 ⋯ 𝑥𝑛). 

 

3. SOFTWARE FAILURE TIME ANALYSIS AND 

SOLUTIONS 

Let compare and analyze the performance property of the 

proposed models using the software failure time data [10] as 

shown in Table 1. This software failure time is the data that 

was occurred 30 times in 738.68 unit time. 

 

Table 1. Software Failure Time Data 

Failure  

 Number 

 Failure Time 

(hours)  

Failure  

 Number 

Failure Time 

(hours) 

1 30.02 16 151.78 

2 31.46 17 177.50 

3 53.93 18 180.29 

4 55.290 19 182.21 

5 58.720 20 186.34 

6 71.920 21 256.81 

7 77.070 22 273.88 

8 80.900 23 277.87 

  9 101.90 24 453.93 

10 114.87 25 535.00 

11 115.34 26 537.27 

12 121.57 27 552.90 

13 124.97 28 673.68 

14 134.07 29 704.49 

15 136.25 30 738.68 

 

Laplace trend test was used to verify the reliability of the 

software failure time data as shown in Figure 1. 

 

 

Fig 1. Estimation Results of Laplace Trend Test 

In general, if the Laplace factor estimates are distributed 

between -2 and 2, the data are reliable because the extreme 

values do not exist and are stable. The estimated value of the 

Laplace factor was distributed between 0 and 2, as shown in 

Figure 1. Therefore, it is possible to apply this data because 

there is no extreme value [11].  

In this study, the maximum likelihood estimation (MLE) was 

used to perform parameter estimation. And, numerical 

conversion data (Failure time[hours]  × 10−2) to facilitate the 
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parameter estimation was used, and the results are shown in 

Table 2.  

 

Table 2. Parameter Estimation of Each Model 

Model               MLE 

Model comparison 

  MSE      𝑅2     

Goel- 

Okumoto 
𝜽̂ = 𝟑𝟑. 𝟒𝟎𝟗𝟐 𝒃̂ = 𝟎. 𝟑𝟎𝟗𝟎 𝟓. 𝟖𝟒𝟐𝟒 𝟎. 𝟗𝟖𝟏𝟒 

Rayleigh 𝜽̂ = 𝟐𝟒. 𝟎𝟏𝟏𝟔 𝒃̂ = 𝟎. 𝟑𝟕𝟎𝟕 𝟖. 𝟔𝟓𝟖𝟕 𝟎. 𝟗𝟕𝟐𝟓 

Erlang 𝜽̂ = 𝟑𝟎. 𝟓𝟗𝟕𝟖 𝒃̂ = 𝟎. 𝟎𝟎𝟕𝟗 𝟓𝟑. 𝟖𝟓𝟒𝟓 𝟎. 𝟖𝟐𝟗𝟑 

 

Explanatory notes.   𝑀𝐿𝐸 ∶ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛, 

𝑀𝑆𝐸 ∶  𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟.   𝑅2 ∶  𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛.                               

 

As the basis for determining the efficient model, the mean 

square error(MSE) is defined as follows [12]. 

 𝑀𝑆𝐸 =

∑ (m(𝑥𝑖) − m̂(𝑥𝑖))
2n

i=1

𝑛 − 𝑘
                                          (27) 

Note that m(𝑥𝑖)  is the total accumulated number of errors 

observed within time is (0, 𝑥𝑖) , m̂(𝑥𝑖) is the estimated 

cumulative number of errors at time 𝑥𝑖  obtained from the 

fitting mean value function, n is the number of observations 

and k is the number of parameters to be estimated. When 

selecting an efficient model, the smaller the value of the  

mean square error, the more efficient the model.   

The coefficient of determination (𝑅2) is a measuring value to 

the explanatory power of the difference between the target 

value and the observed value. When selecting an efficient 

model, the larger the value of the decision coefficient, the 

more efficient the model [13].  

𝑅2 = 1 −

∑ (m(𝑥𝑖) − m̂(𝑥𝑖))
2n

i=1

∑ (m(𝑥𝑖) − ∑ 𝑚(𝑥𝑗
𝑛
𝑗=1 )/𝑛))

2
n

i=1

                      (28) 

As shown in Table 2, we can see that the Rayleigh model is 

more efficient than the Erlang model. But, the Goel-Okumoto 

model has the largest coefficient of determination and the 

smallest mean square error is more efficient than the other 

models.  

Figure 2 shows the transition of mean square error  according 

to each failure number. That is, in this figure, the  

Goel-Okumoto model shows better estimates than the other 

model in the total range of failure numbers. 

 

Fig 2. Transition of  Mean Square Error 

 

Also, the mean squared error of the Rayleigh model shows a 

trend of the comparative small error, which is more efficient 

than the Erlang model in terms of fitness. 

Figure 3 shows trends in the strength function, which is the 

instantaneous failure rate. The Rayleigh model shows the 

greatest decreasing tendency as the failure time passes, 

indicating that it is an efficient model.  But, only the Erlang 

model showed an increasing pattern. 

 

 

  Fig 3. Transition of  Intensity Function λ(t) 

 

Figure 4 shows the pattern trend for the mean value function, 

which is the failure occurring expected value. In this figure, 

the Erlang model has underestimated significantly from the 

difference between the true values, but the Rayleigh model 

has a slightly overestimated pattern. That is, the Rayleigh 

model is more efficient than the Erlang model because the 

error value is estimated to be small. 
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Fig 4. Pattern of  Mean Value Function  

Let analyze the reliability property of the proposed models for 

future mission time.  

Here, reliability (𝑅̂) is the probability that a software failure 

will occur when testing at 𝑥𝑛 = 738.68 × 10−2  and no 

software failure will occur between confidence intervals [𝑥𝑛 ,
𝑥𝑛 + 𝜏] (whereτ  is the future mission time). Therefore, the 

reliability of future mission time is as follows [14]. 

𝑅̂(𝜏|𝑥𝑛) = 𝑒
− ∫ 𝜆(𝜏)𝑑𝜏

𝑥𝑛+𝜏

𝑥𝑛                                                (29)  

= exp[−{𝑚(𝜏 + 𝑥𝑛) − 𝑚(𝑥𝑛)}]            

 

 

Fig 5. Transition of Reliability  

 

As shown in Fig 5, the Rayleigh model and the Erlang model 

show a higher and stable reliability trend than the Goel-

Okumoto model having the lower reliability as the mission 

time passed. That is, in terms of reliability, the Rayleigh 

model is further reliable than the other models because the 

reliability is the highest. 

 

4. CONCLUSION 

It is possible to efficiently improve the software quality by 

analyzing the reliability after quantitatively modeling the 

occurrence of the failure in the software development process. 

In this study, based on the finite-fault NHPP model with 

software failure time data, we compared and analyzed the 

reliability property of the exponential family distribution 

considering shape parameters of failure lifetime distribution. 

The results of this study can be summarized as follows. 

First, in terms of intensity function, the Rayleigh model was 

effective because the occurrence rate of the failure decreased 

as the failure time passed. But, the Erlang model increases 

inversely as the failure time passed. 

Second, in the pattern of the mean value function, the Erlang 

model underestimates the error from the true value, but the 

Rayleigh model shows a slightly overestimated pattern. 

Therefore, it is found that the Rayleigh model is more 

efficient than the Erlang model because of the small error 

width. 

Third, in terms of reliability, the Rayleigh model and the 

Erlang model show stable and high-reliability trends. On the 

other hand, the Goel-Okumoto basic model shows that future 

reliability decreases as the mission time passed.  

In conclusion, a comprehensive analysis of these simulations 

results shows that the Rayleigh model is the most efficient 

model among the proposed models. 

As a result, through this study, together with a new analysis of 

the reliability performance property of the proposed model, 

we were able to provide the research information that software 

developers can use as a basic design guideline.  

Also, future research will be needed to find the optimal model 

through the reliability performance analysis after applying the 

same type of software failure time data to various software 

lifetime distribution. 
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