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Abstract:

The essential criteria was discovered in the thesis to define free
boundary over the nonlinear partial differential equations. The
task is to find co-ordinates of each point of the border so that to
minimize functional. Such task can be treated as an optimum
control problem. It is a problem with restriction. In accordance
with a method of the interfaced functions we will pass to a
problem of optimization without restrictions, having entered
new functional. The purpose of the given work is calculation of
the first variation of functional. It also defines a necessary
condition of optimality for definition of position of border of
an oil layer. The considered method for determining free
boundaries is based on solving problems of determining the
boundary of a system that describes a nonlinear partial
differential equation.
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I. INTRODUCTION

The task of the current study is to find co-ordinates of each
point of the border of the oil deposit so that to minimize
functional. Such task can be treated as an optimum control
problem. It is a problem with restriction.

The purpose of the given work is calculation of the first
variation of functional.

This subsection considers the necessary optimality condition
for determining of the position of the boundary of the oil
deposit.

Let us consider the problem of determining of the boundary for
a system described by nonlinear differential equations in partial
derivatives.

u = f(xy,t,uu,u,,u,,u ) (1)

where u(X, Yy,t) —m-dimensional a vector function of the
state of the system, defined in a two-dimensional region
o eE?; u;,u,,U,, and so on - denoting the partial

derivatives with respect to time and spatial coordinates,
respectively.

The initial and boundary conditions are given in general form

ux,v,0) =uy(x,y) (x,y)eo 2)

1204

gt,x,y,u,u,)=0 (x,y)eoo (3)

where U, denotes the normal derivative of the vector U to

the boundary of the region 0o .

Il. MATERIAL AND METHODS

In accordance with a method of the interfaced functions it is
supposed to pass to a problem of optimization without
restrictions, having entered new functional.

The considered method for determining free boundaries is
based on solving problems of determining the boundary of a
system that describes a nonlinear partial differential equation.
Principles for solving ill-defined problems are considered in the
works of Zakirov and Lapuk [1], Lions [2], Bubnov [3],
Bulygin [4-5], Gutnikov et al. [6-8].

Applied to the inverse problems of the filtration theory in the
works of Zhirov [9], Shazhdekeeva and Mukhambetzhanov
[10], Shazhdekeeva et al. [11], Frolov [12].

I11. RESULTS AND DISCUSSION

The system evolves over a period of time t €[0,T], during
which the measurements are made.

Observations are represented by the g-dimensional (g <m)
vector z (x, vy, t), which for convenience can be considered a
continuous functionZ € E9(ox[0,T]). Suppose that the
vector z is related to the state of the system by the relation

z(x, y,8) = h(u) +£(x, y,1), ©
where &(X,Y,t) — measurement error. The problem is to
determine the region o ( i.e., finding the coordinates of each

boundary point 0o ) in such a way as to minimize the
functional

3 = [ [[206 9,5 = hU(x Y. G(x, v, £.7.8) x[2(&,7,) = h(u(€.7.1))]dxcyd &l el

(5)
The weight matrixG(X,y,&,n,t) is continuous in its
arguments, positive definite and symmetric (G = G').In this
case, the problem under consideration can be treated as an

optimal control problem, in which the position of the boundary
is a control variable.
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In practice, the case of measuring the state vector of a system
in M-discrete points ( X, ¥ ) is often encountered, i.e. a case

Z(Xj ) yj ’t) = AJ-U(XJ. ) y,- yt)+é,j (t), J =12,...M (6)

where matrices of dimension

A(j=12...M)-
(gxm),whose elements are equal to zero or one. In this case,
the original functional J can be represented as follows:

J :_fi[z(xj,yj,t)—Aju(xj,yj,t)]'Gj(t)[z(xj,yj,t)—Aju(xj,yj,t)]dt
()

The notation (1.5.7) can be reduced to a more general form (5)
by introducing into the weight function ¢ - a Dirac function.
Therefore, in the sequel, for convenience, a more general
formula (5) is used.

The optimal control problem formulated above is a problem
with the constraint imposed by equation (1.5.1). In accordance
with the method of conjugate functions, pass to the
optimization problem without restrictions, introducing a new
functional

]
3, =3+ [[y'(x y,O[f —u Jdxdydt, @)
0o

where (X, y,t) —m-dimensional conjugate vector-valued
function. If Oo -boundary, minimizing J, then it also
minimizes and J , .

Suppose that the boundary 6o is subjected to a perturbance
and transforms o™ = do + (do) with the corresponding

the o' =0c+d0.
Perturbance of the border o leads to perturbance JW. Our

transformation  of region o in

goal is to calculate the first variation J v

Suppose that a new area o (its coordinates are indicated

X" , y* ), which depends on the parameter &, can be converted
to the original region ¢ by transformations

X" =@, (x,Y,u,Vu,VU;e) ; 9)

y' =@, (X, y,u,Vu,Vu;e), (10)

where Vu and VZu gradient, and Laplacian of the functions
U. The new value of the function U™ =U"(X",y") is

reduced to the original function U(X,y) by the
transformations (9), (10) and the transformation
u* =@, (X, y,u,Vu,Vu;e) (11)
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It is assumed that these transformations are continuous,

invertible, differentiable, and that to the values &=0
correspond identical transformations
X =@, (X, y,u,Vu,V?u;0) (12)
y =@, (X, Y,u,Vu,V°u;0) (13)
u=ad,(x Y,u,Vu,v°u;0) (14)

If £- a is small value, then equation (9) - (11) can be
represented in the form

D,

X = os

(15)

L tE |£:0+O(g)=x+5§01+0(5);

&

2

. oD
y =, |g:0+g o

+0(e) =y +ap, +0(¢); (16)

=0

u =, |70+g% +0(e)=y+ap, +0(e); (A7)
. ag &=0
The first variations X, Y, U are defined as follows:
X=X —X=ap; (18)
Y=Yy -y=ap,, (19)
AU=u"(X",y)-u(x,y)=ap; (20

The first variation Jy, due to the perturbance is the principal
linear part of (relative to &) of the difference:

3,1 yO1=3, O = [ [ [Tz =hu)I= G, y" & n" Dz —h(u")ldx"dy"d&"dry"dt -

0o'c"

=[]tz =h@1G(x,y, & n,0)[z - h(u)]x dxdyd édrdt + [ [y —u; Jox"dy"dt -

Oco 0o°

—] [wTf -u Joxdyct. (21)

Using the Jacobian of the transformation, we reduce equation
(21) to the form

a(x",y*,f*,n*)

J [u]1-J = —hUu")YG[z-hu")]x dxdyd t—
Lu'1-3, [u] jjj[z (G2 ~hu")]x| =5t = ey
,_T”J'[z —h(u)]'G x[z — h(u)]dxdyd & 7dt + ]J'y/’[f S ES %‘dxdydt -
T
- j j w'[f —u, Jdxdydt (22)
0o
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where &= 3U+U, X +U,d;

8(X*, y*af*’ﬂ*) s a(ﬂl ., 8(02 +85€01 +ga¢’2 gux:au (zx,*y ’t)’ou%xy’t):au (gx'y't)ﬁ”(;y't)+uxxax+uxy5y=&7+uxxé‘xwxy&':
oxy.ém) | x oy o5 an

OO Y )| 14 200, 000 S, =AU, + U, &K +U,d;
a(x,2) | OX oy

A, =0, +U, X+ uxxy5y;

Expanding the integrals in the expression (22) in a Taylor series A, =4, +U, X+U, .
X - . : yy yy yyx 1%
and preserving terms of the first order with respect to & , obtain

- ‘g . In addition, it is assumed that if the point ( X,y ) does not fall
the first variation Jw in the form y

in the region &, then U*(X, y) it can still be represented in
the form U (X", y"), where (X, Y") - is the point in o,
which corresponds to the point (X,Yy) be reason of the
transformations (9), (10).

&, =[] [2A2(&m.0 - hUE 7Gx Y. &m.1)xh, (U(x, . S +u,5+

Oco

+u, Syldxdyd &t ++[ [ [ 22(x, y,8) = h(u(x, y,))I G(x, ¥, £7,6) x

i Using equations

0 G - oy' .. oy . -

—(WIX) + —(wTy) =X, +y iy, +— fx+—— foy +y i x+yfu o+t u, &+
OX oy OX oy .

X X ooy

x[2(S.m.1) - h(u(g,n,t))][a+%]dxdyd§dndt ++1!:£[W,(f *U‘)(g+g) +

+y U ok+y, ug x+yl, ug Syt oy +ptu oy +yt, ug oyt uy ok

+oy'(f —u,) +1//’fx5x+z//’fy5y+l//fuaj+a//fuux5x+x//fuuy5y+z//fuxﬁTx+
+;ufuxxum§y+y/'fuwuyw5y; (24)

+y Uy +yt, A+l u Syt u pt, &+t U SRyt U S s 5 oy’ oy’
&(z//u‘b‘x) +E(Wul@/) = EUﬁX*WU[ﬁX*WUﬁXX +Eu,§y +yu,y+yudy,;

_ — 25
+yf Uy +yf, duy, +yf, u K+yf, Uy, —y'dl, -y, K-y, dydxdydt, (25)

— L — 8, .= 0, .= 0, = 0 —
(23) l//fux &‘Ix + l//fuy a‘ly - &(I//fux &‘l) _&(l//fux )a‘l + @(l//fuy a‘l) _a(‘//fuy )aJ:

there (26)
Sy =y (XY D —p Xy, =y, &X+p,F,a=u"(Xy,)-uXY),— & — oy =

’ V', = — (&) - - &; @7)
The following relations are also used: ot ot

— — 0 — — 8, ., — 0 —
lr//fuxX a'Ixx +l//fuwa‘lyy z_&[(l//fum)xaj]'f_y(l//fum )&J +&(l//fuxxajx)_@[(l//fuw)yaj]+

2

0 — 0 —
+F(V/fuw )au +5(quwa1y) (28)

and the relation JU(X, ¥,0) = 0, obtain the first variation of

the functional éjw in the form

T ’ 2 2
0 0 0 0 0
&, = [+l - WT) - W)+~ R+ O, )= 2fl2(E ) -
0o o

EY o
—h(U(E, 7, ONTG (%, Y., D, (U(x, y,1))dédrr Sudxdydt + [ | {%[wfux = (yf,, ) o+

+yf, U+ (I[Z(X, y,1) —hu(x, y,))]'xG(x,y,&,m.1)[2(£,7.) —h(u(&, 7,1)1dSd77) ] +

0
+7

ay[l//fuya—(v/fuw ) S+, Ay +2([T2(x,y,) = h(u(x, y, DG, y,&n.t) x[2(£,7,1) -
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—h(u(&,n,t))ld&dn)ey] Yaxdydt - I w'ou | dxdy-

Let the conjugate vector (X, Y,t) satisfy the system of
equations

—fW—F(f l//) +(f l//) _(f l/l)xx_(fu

x[z(&,m,t) —h(u(&,n,t)ld&dn (30)
with the condition at the end of the time interval
l//(X, ny) =0. (31)

The substitution of the equations (30) and (31) into the
expression (29) and the application of the Gauss-Ostrogradskii
theorem gives the following representation for the variation of
the functional:

Jj{[qxf -y, )]cosv+[y/‘f (u/fuw)y]sinv}adsdw

J.(y/fuxx &, cosv +yf, &, sinv)dsdt +} J2[120x,y,0 =huOx, v, 0 G(x, v, &) x

oo 0dc o

o-_,—| e

x[2(&,n,t) —h(u(&,7,t))d&d 7} [okcosv + ysinv]dsdt,  (32)

where v — the angle between the positive direction of the X
axis and the outer normal to the boundary of the region do
S - the arc length of the contour 0o .

To determine the boundary conditions for a function v it is

more convenient to use a Ou . Expressing Su through &u and
substituting this expression in (32), obtain

&, j Aty -

0 0o

(wf, )]005v+[y/f (y/fuw)y]sinv}cijdsdu

]
+ [ [wh,, —au, cosv+yf, &, sinv)dsdt +

0 0o

+ ]' J'{S(x, y.t,)xcosv +dysinv) —[(w T, —(wf, ),)cosv+

0 0o

+ (z//'l‘uy - (l//'fuw ),)sinv](u ox+u dy)}dsdt, (33)

where is denoted

S(xy.t)= ZJ[Z(X, Y. —h(u(x, y,ON'G(x, y.&,n.0[2(&,7.t) —h(u(£, 7.t)]d&dn

If we express both OU, and &Ty in terms of the normal OU,,

and tangential U derivatives of the functionU on oo,

and also assume that the contour O is closed, then equation
(1.5.33) is transformed to the form

1207

(29)

=] [, -

0 6o

(720N ]Cosv+[1//f (1//’fuw)y]sin1/+

w)w+2j h, (X, y.))G(X,y,&,77,t)x

o

+ ai [z//' f, sinvcosv—y'f, cosvsin v]}cijdsdt +
X X W

:
+y/f,, sin?v)au,dsdt+ [ [{S(x, y,t)(Sxcosv +dysinv) [T, —(¥f,,))cosv+
0 do

w'f, —('f, )ysinv][uX5x+uy§y]—§(y/’ f, sinvcosy —
y W S X

—y/ f,, sinveosv)(u,&+u,dy)}dsdt  (34)

For  convenience  of calculations, the variation

gun =0ou”(x,y)/on—ou(x,y)/on can be expressed in
terms of AU, =ou”(x",y")/on" —au(x,y)/on.

Indeed, since the angle between N and N, obtain

ouT(x,y) _du(xy) _au(x,y) au(xy) o'u(xy) o

_ou(x.y) &
on on on” on on’

onos
(39)

where N - normal direction to ¢ at the point (X, y); S - the

tangent direction to &5 at the point (x, y); N"- the normal

direction to the perturbed boundary 0o at the point (X*, y*
), which after deformation corresponds to the point (X, Yy) on

06 ; on and 0s — are the normal and tangential components
of the variations & and dy .

The substitution of (35) into (34) gives

:
&szj'[{[y/‘fu —(wft, ), Jcosv+[wf, —(wft, )y]sinv+§[y/fu sinvcosy —
0 do ) - ! ” X "

o .
+—w' f, sinvcosv—
OX .

g//fuyy sinv cos v]}oudsdt +

+] J-(z//fu“ cos” v +yf, sin’ v)é‘undsdt—} j(m% cos? v +

0 oo 0 oo

+z//f sin v)(—dﬁ +—5s

e )dsdt+_H{S(x y,t)(Sxcosv + dysinv) —

0 do

_[(V// fux - (V// fuxx )x Cosv + (V// fuy - (V// fuw )y)Sin V)][ux5X+uy@/] -
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_g(l// f, sinvcosv —y! fuw sinvcosv)(u, ok +u, dy)pdsdt

(36)
It follows from (3) that
g,%+g,9+9g,u+g, d, =0,
X,y €00,
X',y edo’ 37)

Solving (37) with respect to &In and substituting the result in
(36), obtain

.
&, = [ [{t, ~wh,,)Jeosv+yf, (A, )y]sinv+%[y/fu“ sinvcosy —
0 6o

—yf, sinveosy —(wf, cos®v+yf, sin®v)g™, g,}udsdt+
T

[| cosv-

0 0o
“HWR, ~ W8, ) D008+ (F, ~(F, ), )sinvlu, —-Z (o, sinveosy—
N . y W S o

—yf,, sinveosv)u, —(yf, cos®v+yf, sin®yg7, g, —(wf, cos®v+

74i sinzv(@cow—ﬂsin v)}5xdsdt+j”{8(x, y,t)siny —
E on® onos

0 do

[(!;VfuX B (l//fuXX )x) CoSv +

. 0 . .
(1//1‘uy —(WTUW ),)sinv]u, _g('ﬂfuxx smvcos‘/—wfuw sinvcosv)u, —(w T, cos’v +

+
- 2 71 _ 2 - 2 azu
wt, sin“v)g~y g, —(wf, cos®v+yf, sin V)(a_"'
W x W n
. o%u
sinv + p cosv)}dydsdt. (38)
S

We now choose boundary conditions for equation (30), so that
the first term on the right-hand side of expression (38) vanishes.
In view of the arbitrariness of the variation Su on the contour,
obtain

[wf, —(wf, ).Jcosv+[wT, —(wf, )y]sinv+§[y/‘fu sinvcosv —yf, sinvcosv]—
} - y w S o w

—(pf, cos’v+ wi., sin®v)g ™, 0, =0. (39)

Substituting (30) into (29) and changing the order of
integration, obtain the final expression
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&, = [L(% y)3(x y)ds+ [L,(x y)y(x, y)ds,

(40)
where

L(xy) =j{S(x, y.ycosv —[(wf, -t )Jcosv+wf, -t ) )sinvlu, -

—%(yxfu“ sinveosv —yf, sinveosv)u, - (wf, cos’v+yf, sin®v)glg, -
. d%u o'u .
— (¥, cos’v+yf, sin®v)(— cosv———sinv)}dt, (41)
XX w on onos

L(xy) =]‘{5(Xv y.t)sinv—[(wf, —@f, )Jcosv+yf, -t ),)sinviu, -

—%(y/'fuxx sinveosy —yf, sinveosv)u, —(yf,, cos’ vyt sin®v)g ™, g, —

o%u

) o%u .
—(wf, cos’v+yf sin®v)(=—sinv+
wf,, wi,, ) e v

cosv)}dt,(x,y) e 0o
(42)

Note that the perturbance of the contour 5(0c) is represented

by perturbance of the corresponding coordinates X and Jy
contour at each point of the originally defined boundary. The
necessary conditions for optimality (of the first order) will be
the conditions:

Ll(X’ y) =0, (43)

L (x,y)=0. (44).

IV. CONCLUSIONS

The article discovered necessary optimality conditions for
determining of the position of the boundary of oil deposit. The
essential criteria was discovered in the thesis to define free
boundary over the nonlinear partial differential equations.
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