
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 7 (2020), pp. 1795-1801

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.7.2020.1795-1801

1795

Secure and Robust Web Services for E-Payment of Tuition Fees

Feras H. Al-Hawari1 and Mohammad S. Habahbeh2

1 Associate Professor, School of Electrical Engineering and IT, German Jordanian University, Jordan.
2 Senior Java EE Programmer, Information Systems and Technology Center, German Jordanian University, Jordan.

1ORCID: 0000-0001-6948-3336

Abstract

This paper proposes an e-payment processing architecture to

permit students to transfer tuition fees payments to their

university portal accounts using different payment forms such

as e-banking, credit cards, and debit cards. The architecture is

based on RESTful web services that can exchange financial

transactions with all Jordanian banks via the eFAWATEERcom

platform to process online tuition payments. Besides, various

essential aspects to secure the proposed web services such as

server security, network security, and data-integrity protection

are addressed in this work to gain the trust of customers.

Further, the web services are designed to be robust so they can

appropriately handle input errors and software exceptions. In

that regard, the deployment of the web services resulted in a

high percentage of e-payments to overall payments, which

asserts the popularity of the e-payment service amongst

students.

Keywords: e-payment, accounting system, eFAWATEERcom,

RESTful web services, application security, application

robustness.

I. INTRODUCTION

Enabling students to register for courses online is considered

one of the most important e-services that every university should

offer. Nevertheless, this service is not deemed fully online when

students cannot pay their required registration fees

electronically. Because in the previous scenario, the students

must be present on campus, or in the bank, and possibly stand

in long lines to pay the required fees for online registration.

Therefore, an e-payment service must be implemented along

with online registration to allow students to pay for, and enroll

in, courses from the comfort of their homes.

Based on [1], the online payment systems are divided into

account-based and electronic-currency systems. Accordingly,

the account-based systems allow payment via an existing

personal account (e.g., bank account). On the other hand, the

electronic-currency systems permit payment when the payer

owns the electronic (digital) currency. Popular forms of

account-based systems, according to [1-4], are credit cards,

debit cards, mediating systems (e.g., PayPal [5]), and payments

via online banking. While, examples of electronic-currency

systems are smart cards and online cash (e.g., bitcoin [6])

systems.

In that regard, this paper explores the required methods to

integrate web services with the eFAWATEERcom platform [7,

8] to allow the German Jordanian University (GJU) students to

securely and instantly transfer money to their accounts in the

university portal [9, 10] for online tuition fees payment. The

eFAWATEERcom platform, established in partnership with the

Central Bank of Jordan, is a real-time Electronic Bill

Presentment and Payment (EBPP) solution that enables students

to make payments seamlessly and securely, via computer or

mobile. It has already processed over 39 million invoices valued

at 28 billion US dollars [7]. It also enables students to make e-

payments via credit cards, debit cards, and e-banking. Not to

mention, in case a student does not have a bank account, the

Jordanian Banks and Post Office all accept cash payments from

the students to transfer e-payments on their behalf via the

eFAWATEERcom platform.

The rest of the paper is organized as follows. In section II, a

comparison to related works is presented. In section III, the e-

payment processing architecture that is based on web services is

discussed. In section IV, the security aspects related to the web

services are explored. In section V, the robustness methods

employed in the web services are explained. In section VI, the

deployment results of the web services are presented. In section

VII, a summary of this work is given.

II. COMPARISON TO RELATED WORKS

As far as related works, the student self-service system in [11]

is used to permit students to pay registration fees electronically

via PayPal [5]. PayPal is a mediating service for online

transactions that requires providing credit card or bank account

details as the source of payments [1]. Moreover, the MUK-

OFPS system in [12] is introduced to allow paying university

fees online using credit cards and debit cards. Besides, the

application of online payment mode in university charging [13]

is achieved by connecting with a third-party payment gateway

and online banking. Also, the systems discussed in [14, 15]

enable students to pay fees by interacting with a bank interface.

Based on the feature comparison to previous related works

shown in Table 1, the eFAWATEERcom platform is

advantageous as it enables students to make e-payments using

credit cards, debit cards, and e-banking. It also lets students

transfer online tuition payments even if they do not have bank

accounts.

Although the effect of securing e-payments on improving

customer satisfaction is highlighted in [16-18], the related works

in [11-15] did not elaborate much on this important aspect.

Hence, unlike other works, this paper also focuses on data,

server, and network security aspects related to web services that

enable students to make online tuition payments via the

eFAWATEERcom platform. Besides, it discusses several

mechanisms to make the introduced web services robust by

gracefully handling input errors and program exceptions.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 7 (2020), pp. 1795-1801

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.7.2020.1795-1801

1796

Table 1. A feature comparison to related works.

 Credit Cards Debit Cards PayPal E-Banking Online without a Bank Account

This Work Yes Yes No Yes Yes

[11] No No Yes No No

[12] Yes Yes No No No

[13-15] No No No Yes No

Fig. 1. The adopted e-payment processing archirecture.

III. E-PAYMENT PROCESSING ARCHITECTURE

The adopted e-payment processing architecture is shown in Fig.

1 and is based on web services. The web services exchange

financial requests with banks via the eFAWATEERcom

platform [7, 8] to process online tuition payments. Once an e-

payment notification for a student is received, the web service

will promptly record a payment transaction in the Accounting

Information System (AIS) database [19]. Consequently, the

payment transaction gets immediately reflected on the student's

statement of account in the MyGJU portal [9]. Accordingly, the

student will be able to register online [9] for as many courses as

the current balance amount will cover.

The types, implementation, communication protocol, and

messages of the web services that are used to process the online

tuition payments at the GJU side are discussed in the following

subsections.

III.I. Web Service Types

The supported web service types are:

 StudentValidation: This service is required to enable a

bank to validate that the customer (i.e., student) has a correct

MyGJU portal account and thus avoid sending the desired

payment to a wrong destination. The service performs the

customer validation based on a student ID included in the

request message. The validation is deemed successful when

a student record for the student ID is found in the MyGJU

portal database. In case of success, the bank sends another

request message to deposit the payment. Otherwise, the bank

cancels the payment and reports the error to the customer.

 PaymentNotification: When the student validation

succeeds, this service can be used to record a tuition

payment transaction in the AIS database, given that the

payment amount and student ID are both found in the request

message of this service.

III.II. Web Service Implementation

The Java API for RESTful Web Services (JAX-RS) is utilized

to develop the e-payment web services based on the

Representational State Transfer (REST) architecture [20]. The

JAX-RS uses runtime annotations to facilitate the definition and

deployment of web services. Accordingly, the related Java class

files can be decorated with JAX-RS annotations to define the

resource classes and the actions that the clients may carry out on

those resources. The annotated resources are later configured

and exposed to clients when the web application archive (i.e.,

war file) containing the resource classes is deployed to a Java

EE [21] server.

In that regard, the resource classes for the StudentValidation and

PaymentNotification web services are shown in Fig. 2 and Fig.

3, respectively. The @Path annotation at line 1 in the

aforementioned figures is used to define the relative Uniform

Resource Identifier (URI) of the resource classes. While, the

@Path annotations at line 6 in Fig. 2 and Fig. 3 specify the

relative URI of the processStudentValidation method and

processPaymentNotification method, respectively. The @POST

annotation at line 7 in both figures indicates that the two

methods process HTTP POST requests. Both methods produce

content of the MIME media type APPLICATION_XML as

identified by the @Produces annotation at line 8 in each figure.

Additionally, the resource class files must be packaged as part

of a web application to deploy the web services. In that respect,

the class shown in Fig. 4 is required to define the web service

resources to be deployed. The @ApplicationPath annotation at

line 1 specifies the base URI of the application servlet and all

resource URIs. Whereas, the getClasses method that starts at

line 3 is needed to return a list of RESTful web service resources

exposed by the web application.

Consequently, a client can access a resource using a resource

URI constructed as shown in Fig. 5. Where the serverName is

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 7 (2020), pp. 1795-1801

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.7.2020.1795-1801

1797

the DNS name mapped to the host machine. The contextPath is

the name of the Java EE application. The baseURI is the value

of @ApplicationPath annotation (see Fig. 4). The resourceURI

is the @Path value of the resource or method (see Fig. 3).

Fig. 2. The StudentValidation resource class.

Fig. 3. The PaymentNotification resource class.

Fig. 4. The ApplicationConfig class.

Fig. 5. The web services resources and methods URIs.

III.III. Web Service Communication and Messages

The communication between clients and RESTful web services

is done via HTTP requests and responses. Therefore, a client

sends a request to carry out an action (i.e., invoke a method) on

a resource (i.e., a class), and the web service returns a response

including the produced result. Accordingly, the input and output

messages of the service method are placed in the HTTP request

and response bodies, respectively. Besides, the XML data

format is used to represent the included input and output

messages.

Each input and output message consists of a header, body, and

footer sections analogous to the input message for the

processStudentValidation method shown in Fig. 6. The header

section contains the message timestamp, biller code (e.g., 450),

and message type (i.e., STDVALREQ, STDVALRES,

PMTNTFREQ, or PMTNTFRES). The body section includes

the message details. The footer section encloses a signature used

to ensure that the message body is not modified on the way (i.e.,

for data integrity protection).

The essential information in the message body for the four

different message types are discussed next:

 Request message (with type STDVALREQ) for the

processStudentValidation method (see Fig. 6): This message

is used to validate the student (i.e., customer) status before

sending the payment. Hence, it includes the needed

information to do so such as the BillingNo (i.e., student ID)

of the student to be validated, ServiceType (i.e., payment

type), and DueAmount (i.e., payment amount).

 Response message (with type STDVALRES) for the

processStudentValidation method (see Fig. 7): The Result

section in this message contains the student validation result

details. In case the student is successfully validated, the

ErrorInfo section value will be Success. Otherwise, the

validation failure reason (e.g., student Id not found, student

inactive, exception encountered) will be shown in the

ErrorInfo section. Besides, the student ID and payment

information used to validate the student are included in this

message.

 Request message (with type PMTNTFREQ) for the

processPaymentNotification method (see Fig. 8): This

message is sent to deposit money in the student MyGJU

portal account. Therefore, it includes payment information

such as eFAWATEERcom transaction Id (i.e., the value of

JOEBPPSTrans), recipient (e.g., a student with BillingNo

20191209029), date, bank code, amount (e.g., 2320.000

JOD), access channel (e.g., Mobile), service type (e.g.,

Tuition), etc.

 Response message (with type PMTNTFRES) for the

processPaymentNotification method (see Fig. 9): This

message contains the payment notification Result section,

eFAWATEERcom transaction Id (i.e., JOEBPPSTrans),

processing date, and statement date.

IV. WEB SERVICE SECURITY

The various security aspects that are related to the used web

services are explored in the following subsections.

IV.I. Server Security

The server hosting the web services is protected as follows: the

secure Linux platform is used to operate the host, all unwanted

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 7 (2020), pp. 1795-1801

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.7.2020.1795-1801

1798

services are disabled, strong password rules are imposed on all

users, all applications are regularly updated/upgraded to close

any security holes, and anti-virus software is constantly running

in the background.

Fig. 6. Input message for processStudentValidaion.

Fig. 7. Output message body for processStudentValidaion.

Fig. 8. Input message body for processPaymentNotification.

Fig. 9. Output message body for processPaymentNotification.

IV.II. Network Security

The HTTPS protocol is enabled in the Java EE application

server to secure communication between the eFAWATEERcom

client and the e-payment web services. Furthermore, the security

firewall is configured (see Fig. 10) to block any unauthorized

access to the MyGJU database and web services servers from

the internet or intranet. Accordingly, only administrators are

granted access to both servers from certain static IP addresses

and via secure Virtual Private Network (VPN) connections.

Besides, the eFAWATEERcom client can only connect to the

web services HTTPS port via secure VPN channels from an

authorized set of static IP addresses. Yet, any client may access

the MyGJU portal via a dedicated HTTPS port.

IV.III. Data Integrity Protection

As an extra security measure, public key cryptography [22] is

utilized to ensure that the body of any exchanged message is not

altered in transit (i.e., to protect the integrity of the financial

transaction). Therefore, eFAWATEERcom and GJU exchange

public keys to enable a receiving side to decrypt messages

signed by the private key of the sending side. Accordingly, a

web service (or eFAWATEERcom) method produces a

message body verification signature as follows:

 The GJU (or eFAWATEERcom) private key is used (see

Fig. 11) to encrypt (i.e., sign) the body text of a response (or

request) message to be sent. In that context, the Java security

API [23] is used to encrypt the message body.

 The signed message body (i.e., signature) is then placed in

the BodySig section (see Fig. 6) within the response (or

request) message footer. Hence, the receiving side can use

the public key of the sending side in addition to the body and

signature in a received message to authenticate and verify

the integrity of the received message body

On the other hand, a web service (or eFAWATEERcom)

method can verify a received signature as follows:

 The body section (see Fig. 6) from a request (or a response)

message is extracted.

 The signature text (see Fig. 6) in a BodySig section is

extracted.

 The Java security API methods (see Fig. 12) are used to

verify the integrity of the message body by using the

eFAWATEERcom (or GJU) public key to decrypt the

extracted signature and then match (i.e., verify) the result

with the received message body.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 7 (2020), pp. 1795-1801

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.7.2020.1795-1801

1799

Fig. 10. The secure network configuration.

Fig. 11. The produceSignature software module.

Fig. 12. The verifySignature software module.

V. WEB SERVICE ROBUSTNESS

The processing methods of the web services are designed to be

robust by handling input errors as well as software exceptions.

Accordingly, users can investigate what caused an error for

possible solutions. The main mechanisms to achieve web

service robustness are:

 The BillerCode value (see Fig. 6) of the message recipient is

first extracted and verified to make sure not to process the

message in case the intended destination is incorrect.

 The message signature is also extracted and verified, as

explained in subsection IV.III, to cancel the transaction and

report an error in case the message signature and body do

not match (i.e., the validation fails).

 The XML input syntax errors (e.g., unterminated element,

wrong element name, invalid element content, etc.) are

detected and reported while parsing the XML request

message.

 Software exceptions (e.g., XML parser, I/O, database

connection, and NULL pointer exceptions) are caught,

logged (as shown in Fig. 13), and reported for further

debugging and investigation.

 Every received request message and its corresponding

response message are saved in a related database table for

archiving and debugging purposes.

VI. VALIDATION AND RESULTS

The e-payment service was launched on the first 2016/2017

semester. Since then, it gained wide popularity amongst students

because it is very practical and comfortable. According to Fig.

14, the percentage of the electronic payments amount with

respect to total payments amount (i.e., the amount of e-payments

and in-person payments) in the first 2016/2017 semester was

about 23%. Then when most students were informed about the

service and its benefits, the percentage of the e-payments

amount jumped to almost 96% in the second 2016/2017

semester and maintained similar or higher values in the

following semesters.

Fig. 13. The exceptions log database table and data.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 7 (2020), pp. 1795-1801

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.7.2020.1795-1801

1800

Fig. 14. The percentage of in-person payments versus e-payments amounts with respect to the total payments amount for eight

academic semesters.

Further, the number of recorded transactions since the launch of

the service is about 24972 transactions without any security

issues. Only 78 transactions (i.e., about 0.3% of the overall

transactions) had to be repeated due to database connection

timeouts.

Besides, based on the student satisfaction survey results, shown

in Fig. 15, most of the GJU students (1972 out of 2230 students;

i.e., 88.3% of the students who participated in the survey)

strongly agreed or agreed that the online tuition payment service

is very convenient and useful.

Not to mention, the cost of an online tuition payment when a

student uses e-banking as a payment channel varies as shown in

Table 2. On the other hand, when a student uses a credit card as

a method of payment the cost is 2.5% the paid amount.

Accordingly, the offered service proved to be secure, robust,

popular, and inexpensive.

VII. SUMMARY

An e-payment processing architecture that is based on RESTful

web services is introduced in this paper. The web services can

exchange financial transactions with all Jordanian banks via the

eFAWATEERcom platform to process online tuition payments.

Two types of web services are discussed in this work. The

StudentValidation web service is used to validate the identity of

a student and thus prevent a bank from sending a payment to a

wrong student account. The PaymentNotification web service is

utilized to record a payment transaction in the related student

account.

Fig. 15. The student satisfaction survey results.

Table 2. The cost of a tuition payment via e-banking.

Payment Amount (in Jordanian Dinar) Payment Cost (in Jordanian Dinar)

1-500 0.5

501-1000 1

More than 1000 2

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 7 (2020), pp. 1795-1801

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.7.2020.1795-1801

1801

The Java API for RESTful Web Services (JAX-RS) is used to

implement the e-payment web services. Accordingly,

annotations are used to define the resource classes and the

actions that the clients may perform on those resources. The

HTTPS protocol is used to exchange financial transactions

between banks and web services via the eFAWATEERcom

platform. The security of the server and network, as well as the

integrity of the data, are addressed to secure the web services.

The input errors and software exceptions are also handled to

make the web services robust.

The e-payment service has been heavily used by the GJU

students since its deployment because it allows them to pay and

then register for courses from anywhere. Nevertheless, it will

be expanded in the future to allow students to pay the fees of

the admission application, student proof, official transcript,

graduation, parking, and transportation online.

REFERENCES

[1] OECD, "E-commerce, electronic payments," OECD

Digital Economy Papers, no. 117, pp. 1-57, 2006.

[2] B. U. I. Khan, R. F. Olanrewaju, A. M. Baba, A. A.

Langoo, and S. Assad, "A compendious study of

online payment systems: past developments, present

impact, and future considerations," International

journal of advanced computer science applications,

vol. 8, no. 5, pp. 256-271, 2017.

[3] M. Masihuddin, B. U. I. Khan, M. Mattoo, and R. F.

Olanrewaju, "A survey on e-payment systems:

elements, adoption, architecture, challenges and

security concepts," Indian Journal of Science

Technology, vol. 10, no. 20, pp. 1-19, 2017.

[4] M. Niranjanamurthy, N. Kavyashree, S. Jagannath,

and D. Chahar, "Analysis of e-commerce and m-

commerce: advantages, limitations and security

issues," International Journal of Advanced Research

in Computer Communication Engineering, vol. 2, no.

6, pp. 2360-2370, 2013.

[5] PayPal. (2020). PayPal. Available:

https://www.paypal.com

[6] bitcoin. (2020). bitcoin. Available:

https://bitcoin.org/en/

[7] MadfooatCom. (2020). MadfooatCom. Available:

http://madfooat.com

[8] A. Al-Ashqar, "The impact of electronic bills on

customer satisfaction: a field study on Efawateercom

users," M.S. Thesis, Middle East University, Amman,

Jordan, 2018.

[9] F. Al-Hawari, "MyGJU student view and its online

and preventive registration flow," International

Journal of Applied Engineering Research, vol. 12, no.

1, pp. 119-133, 2017.

[10] F. Al-Hawari, A. Alufeishat, M. Alshawabkeh, H.

Barham, and M. Habahbeh, "The software

engineering of a three ‐ tier web ‐ based student

information system (MyGJU)," Computer

Applications in Engineering Education, vol. 25, no. 2,

pp. 242-263, 2017.

[11] T. Sheeba, S. Begum, and I. AlHarthy, "Student self

service system " Journal of student research, vol. 1,

pp. 1-5, 2017.

[12] G. Kobusinge, "Online fees payment system for

Makerere University (MUK-OFPS)," Project Report,

Department of Information Systems, Makerere

University, Kampala, Uganda, 2013.

[13] H. Zhu, Y. Xie, M. Hou, K. Yan, and T. Li,

"Application of online payment mode in university

charging management," in International Conference

on Mechatronics and Intelligent Robotics, 2018, pp.

225-230: Springer.

[14] M. Nyondo and N. Lameck, "Design and development

of a secondary school payment system," The

International Journal of Multi-Disciplinary Research,

pp. 1-23, 2020, Art. no. CFP/1517/2020.

[15] A. S. Misal, S. R. Misal, A. R. Chavhanke, and P. A.

Ambatkar, "Online fee payment system,"

International Journal for Research in Applied Science

& Engineering Technology, vol. 4, no. 3, pp. 806-809,

2016.

[16] H. Nasereddin and S. Khazneh, "An empirical study

of factors affecting the acceptance of mobile payments

in Jordan," International Journal of Recent Research

and Applied Studies, vol. 29, no. 3, pp. 110-121, 2016.

[17] A. San Martino and X. Perramon, "Defending e-

banking services: antiphishing approach," in Second

International Conference on Emerging Security

Information, Systems and Technologies, 2008, pp. 93-

98: IEEE.

[18] Y. Prihastomo, A. N. Hidayanto, and H. Prabowo,

"The key success factors in e-marketplace

implementation: a systematic literature review," in

International Conference on Information

Management and Technology (ICIMTech), 2018, pp.

443-448: IEEE.

[19] F. Al-Hawari, "Analysis and design of an accounting

information system," International Research Journal

of Electronics and Computer Engineering, vol. 3, no.

2, pp. 16-21, 2017.

[20] R. T. Fielding and R. N. Taylor, "Architectural styles

and the design of network-based software

architectures," Doctoral dissertation, University of

California, Irvine Irvine, 2000.

[21] J. Juneau, Introducing Java EE 7: a look at what's

new. New York, NY, USA: Apress, 2013.

[22] J. Katz and Y. Lindell, Introduction to modern

cryptography. Boca Raton, FL, USA: CRC Press,

2007.

[23] S. Oaks, Java security: writing and deploying secure

applications, 2nd ed. Newton, MA, USA: O'Reilly

Media, 2001.

https://www.paypal.com/
https://bitcoin.org/en/
http://madfooat.com/

