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Abstract 

In this paper, the obesity and tumor model has been analyzed. 

We aim to show that all solutions of the model are bounded and 

find all equilibria of the models. We also investigate the 

conditions for the existence of positive equilibria for the models. 

Next, the local and global stability of the positive equilibrium 

is determined by the linearization and Lyapunov methods. 

Moreover, the model with time-delay is also exhibited for the 

existence of a Hopf bifurcation. Finally, we illustrate the 

numerical results using some advantages of mathematical 

software to support the analytic results and show the effect of 

some parameters for tumor growth.  

Keywords: Obesity; Tumor model; Time delay; Stability; 

Hopf bifurcation. 

 

I. INTRODUCTION  

A tumor is formed in body due to abnormal cellular growth, 

and it becomes cancer when the tumor is malignant. It is one of 

the most serious world health problems [1]. There are many 

common causes of tumor, such as, smoking and tobacco, diet 

and physical activity, sun and other types of radiation, viruses 

and other infections. Recently, many previous works [2-6] 

show that obesity is a risk factor for many serious diseases such 

as type-II-diabetes, hypertension, hearth problem, including 

tumor and cancer. Therefore, the relationship between obesity 

and tumor growth is an interested topic for many researchers. 

Observing several experimental studies between cancer and 

obesity, [7,8,21] the International Agency for Research on 

Cancer (IARC) has reported linkages between cancer and 

obesity in cases of colorectal cancer, breast cancer in 

postmenopausal women, endometrium cancer, renal cancer, 

and oesophagus cancer [9]. In previous work [8-10], it has been 

found that obesity and excess weight are two major health 

problems in countries around the world.  These problems are 

mostly caused by a sedentary lifestyle and excess eating. 

Obesity occurs when excessive amounts of fat cells are stored 

in the body. It is well known that the fat cell population 

increases rapidly during childhood. In adulthood, the fat cell 

population remains almost constant or increases slowly unless 

there is a dramatic weight gain or loss [11]. In 2016, the World 

Health Organization (WHO) reported that approximately 2.3 

billion adults in the world were overweight and more than 700 

million people were obese. Obesity can cause other serious 

diseases which could be fatal, for example hypertension, heart 

problems, cancer, tumors, etc. 

In theoretical cancer researches, mathematical modeling is one 

of the more successful methodologies by applying 

experimental data to create mathematical equations with 

describing tumor growth. In 2013, Okwan-Duodu et al.  [12] 

studied simulation models to assess the effect of obesity on 

mortality of cancer patients. In 2016, Ku-Carrillo et al. 
assumed that the obesity of an individual is directly 

proportional to the carrying capacity of their body to store fat 

which means that the obesity degree of an individual can 

carrying in the organism which tumor can be occurred, so 

obesity can carry in tumor. 

In 2003, Villasana et al. [13] developed the logistic growth 

function with time delay for studying the effect of drug to the 

tumor cells by tumor-growth model. In 2014, Rihan et al.  [14] 

had shown that a time delay between the interactions of the 

immune cells and the tumor cells and the growth rate of the 

immune cells are important for developing a suitable response 

after recognizing the tumor cells. In this work, we extend the 

model interaction between tumor cells and obesity represented 

by the positive nonlinear growth term for the immune cells 
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  and the competition between immune cells and 

tumor cells 1 ( ) ( )c I t T t    with a time delay ( ). Hence, we 

generalized the model for the interaction between tumor and 

obesity as  
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(1) 

where ( )I t  is the density of immune cells at time ,t  ( )T t  is 

the density of cancer - tumor cells at time ,t  ( )N t  is the density 

of host cells at time ,t  ( )F t  represents the density of fat cells 

at time t  and 0.   The parameters of model (1) are in the 

Table 1 as follow
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Table 1. The value of parameters for the tumor-obesity model 

Parameters Meaning Unit 

s  
  

  

1d  

1r  

2r  

3r  

1b  

2b  

3b  

1c  

2c  

3c  

4c  

5c  

 

A constant rate of migration of immune cells into the tumor 

A positive constant 

A positive constant 

The natural death rate of the immune cells 

The growth rate for the cancer cells 

The growth rate for the normal cells 

The growth rate for the density of fat cells 

The inverse of the carrying capacity for the tumor cells 

The inverse of the carrying capacity for the normal cells 

The inverse of the carrying capacity for the density of fat 

The competition coefficients between immune cells and tumor cells 

The competition coefficients between tumor cells and immune cells 

The competition coefficients between tumor cells and normal cells 

The competition coefficients between normal cells and tumor cells 

The competition coefficients between tumor cells and fat cells 

 

1 1.Density mL day   
1day  

.Density mL  
1day  
1day  
1day  
1day  

.Density mL  

.Density mL  

.Density mL  
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   

 

Note that all variables are assumed to be non-negative and all 

parameters are assumed to be positive. 

 

II. BOUNDEDNESS OF SOLUTIONS 

We now prove that all solutions of the model are bounded 

using the LCIS method [15] to find the bounds of a domain 

containing all compact invariant sets of model (1) with 0   

for positive values of model parameters.  

First, we will find ultimate densities of fat cells by taking the 

function 1h F  with   0.F   The derivative was computed 

as 

 1 3 31 .fL h r F b F   

By solving this differential equation, then the maximum density 

of fat cells is 

1 1

3

1
( ) :{ }.maxK h F F

b
    

Hence, the density of fat cells is bounded as 

1

3

1
( ) 0 ( ) .{ }K h F t

b
                          (2) 

Applying the localizing function 2h T  with    0.T   From 

(1), the Lie derivative of 
2h  can be defined as follows 

 2 1 1 2 3 51 .fL h rT bT c IT c TN c TF      

 

By solving this differential equation, then the maximum density 

of tumor cells without taking the immune cells and the normal 

cells is 

5

1 2

3 1 1 3

1
( ) .{ }c

K h T
b rb b

    

Taking the function 
3h N  with   0,N   then the 

derivative was computed as 

3 2 2 4 ( ) 1  .fL h r N b N c TN    

By solving this differential equation, we can get the set 

4

3

2 2 2

1
( ) { 0} { }.c TS h N N

b r b
      

Hence, the ultimate density of normal cells is denoted by the 

set 

3

2

1
( ) 0 ( ){ }.K h N t

b
                          (3) 

Next, upper and lower bounds for the density of immune cells 

can be determined by taking the function 4  .h I  We 

computed its Lie derivative as follows 

4 1 1 .f
ITL h s c IT d I

T



   


 

Now, in order to derive the lower bound, we take all negative 

terms to the left side of the equation and by neglecting the 

rational term in the right side and applying the Iterative 

Theorem we get 

5

4 1 2 1 1

3 1 1 3

1
( ) ( ) {( ( ) ) }.c

S h K h c d I s
b rb b

      
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Hence, we establish that the lower bound for the density of 

immune cells is given by 

1 1 3

1 4

1 1 3 1 5 1 1 3 1

( ) :{ }.min
srb b

K h I I
c rb c c rb b d

  
 

 

For upper bound, by neglecting negative terms in the right side 

and applying the Iterative Theorem, we obtain 

4 1( ) ( ){ }.S h d I s    

If the condition holds 

1 0.d                                     (4) 

Thus, we can conclude that the upper bound for the density of 

immune cells is given by 

2 4

1

( ) :{ }.max
sK h I I

d 
  


 

Hence, the ultimate density of immune cells is defined as 

1 1 3

4

1 1 3 1 5 1 1 3 1 1

( ) ( ){ }.srb b sK h I t
c rb c c rb b d d 

  
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     (5) 

Finally, we can define the upper bound for the action of the 

density of immune cells and density of normal cells on density 

of tumor cells. We assume that 

1 2 min 3 min

1 2 min

    0,

   0.

r c I c N
r c I

  

 
                      (6) 

From 
2( ) { 0},S h T   we apply the Iterative Theorem as 

5 2 3
2 3 4

1 1 1 3 1 1

1
( ) { 0} ( ) ( ) : .{ }min min

max
c c I c NS h T K h K h T T

b rbb rb


        

 

We can define the boundedness of density of tumor cells as 

5 2 3

2

1 1 1 3 1 1

1
( ) 0{ }.min minc c I c N

K h T
b rb b rb


            (7) 

From the results of (2), (3), (5) and (7), we can conclude the 

theorem as follow 

Theorem 1 All compact invariant sets of the model (1) with 
0   are bounded with conditions (4) and (6) in the positively 

invariant domain 4

,0:W R  are located inside the bounded 
domain 1 2 3 4: ( ) ( ) ( ) ( ),K W K h K h K h K h     where 

1

1

5 2

1 2

1 1 1 3 1 1

2 3

( ) ;   0,

1
0 ( ) ;    0,

1 1
0 ( ) , 0 ( ) ,
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d

c c I
T t r c I
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

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and    min 1 1 3 1 1 3 1 5 1 1 3 1 .  /     I srb b c rb c c rb b d    

In case 0,   we also show that ( )I t  of the first equation of 

(1) is uniformly bounded by using the generalized Gronwall 

Lemma [16]. From the first equation of model (1), we obtain 

1 1

1
0

( ) ( )
( ) (0) ( ) ( )

( )
 ( ( ) ).

td t d uI u T uI t e I s c I u T u e du
T u
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 

(8) 

Since / ( ) 1T T    and 1 (0,1]
d te  , we get 

  

1 1

( )1

1 1 1

0
1

( )

0
1 1

1

( ) (0) ( ) ,

(0) (0)

.

( ( ) )
t d
u

td t d u

t e dd t d u d u

sI t I e I u e du
d
s sI e e I e e du
d d

M

  

 






   
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



 (9) 

The generalized Gronwall Lemma gives 
1( )I t M  where 

1M  

is uniformly bounded, then ( )I t  is uniformly bounded. 

 

III. ANALYSIS OF EQUILIBRIA 

In this section, we derive conditions for the existence of 

equilibrium populations 
* * * *( , , , ).I T N F  From the last 

equation of (1), it is obvious that * 0F   or 
31/ .b  If * 0F  , 

i.e., no fat inside the tumor, then the equilibrium points are 

* *

1 2 3

1 1 2

1
,0,0,0 ,   ,0, ,0 , , ,0,0  ( ) ( ) ( )s sE E E I T

d d b
    

and * * *

4 , , ,0 ,( )E I T N  

where  

*

* 2 3 1 2 2 2 2 2 4

3 4 1 2 1 2

r c r r b r b c c I
T

c c r r b b
 




 and 
*

* 1 4 1 2 1 2 4

3 4 1 2 1 2

.
rc rr b c c IN

c c rr b b
 




 

Therefore, *T  and *N  are positive real number if the following 

condition is satisfied when 
3 4 1 2 1 2c c r r b b  and 

* 1 2 3 1 2 1 1 4

2 2 4 2 4

max , .{ }rb c r r b rcI
b c c c c

 
  The value of 

*I  satisfies the 

cubic equation 

*3 *2 *

2 1 0 0,I a I a I a                          (10) 

where  

2 3 4 1 2 1 2 1 1 1 2 1 2 3

2 2 1 2

2 2 2 2 2
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It is obvious that 
2   0.a  From Descartes' Rule of Signs [17], 

the conditions for positive *I  of (10) is if 
0 0,a   then there 

are three positive *I  or a positive *.I  

Next, we apply the Cardano formula [18] to get the analytical 

solution of (10), which formula was defined the variables as 

32

1 2 0 21 2
9 27 23

,   .
9 54

a a a aa aQ R
 

   

Then, the three roots can be obtained as follows. Define 

1 1

3 2 3 3,   ( ) ,   ( ) .D Q R S R D T R D       

Then the roots of equation (10) are given by 

* *

1 2 2 2

*

3 2

1 1 1
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1 1
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     

 

Equation (10) has a positive real solution when 0D   and 

2

1
.

3
S T a   Then, 

*I  in (10) is a positive real if the 

following conditions are satisfied 

3 2 2 3 2

0 2 1 2 1 0 1 2 04 4 162 27 0a a a a a a a a a      and 2

1
,

3
S T a   

where 

13 2 3
3 21 2 0 2 1 2 1 2 0 2 3

13 2 3
3 21 2 0 2 1 2 1 2 0 2 3

9 27 2 3 9 27 2
,

54 9 54

9 27 2 3 9 27 2
.

54 9 54
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a a a a a a a a a aS
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    
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As noted above, 
*

31/F b  is also a possible equilibrium value. 

Repeating the steps given above, we find equilibrium points 

5 6 7 8, , , .E E E E  Hence, the equilibrium points are 

* *

5 6 7

1 3 1 2 3 3

1 1 1 1
,0,0, ,  ,0, , , , ,0,  ( ) ( ) ( )s sE E E I T

d b d b b b
    

and 
* * *

8

3

1
, , , .( )E I T N

b
  

where 
2 *

* 1 2 1 3 3 3 4 5 1 2 1 2 1 2 1 2 2

1 1 3 3 4 1 2 1 2( )

r r b b c c c c r r b b r r b b c I
T

rb b c c r r b b
  




  

and 
*

* 1 3 4 1 2 1 3 4 5 3 2 4

3 3 4 1 2 1 2( )

rb c r r b b c c b c c I
N

b c c r r b b
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


 with conditions for 

positive real are 
3 4 1 2 1 2  c c rr bb  and 

2

3 4 5 1 2 1 2 1 2 1 3 3

1 2 1 2 2

c c c r r b b rr b b c
rr b b c

 
  

* 1 3 4 4 5 1 2 1 3

3 2 4

.
rb c c c rr b bI

b c c
 

 The value of 
*I  satisfies the cubic 

equation 

*3 *2 *

2 1 0 0,I e I e I e                       (11) 

Where 

2

2 1 1 2 1 3 3 3 4 5 1 2 1 2 3 1 1 3 1 1 3 4 1 2 1 2

1 2 1 2 3 2

2 2 2 2 2 2 21
1 1 1 1 3 3 4 1 2 1 2 1 2 1 2 3 2 3 4 1 2 1 22

1 1 2 1 2 3 2
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1
( ) ( )( ) ,

( ) ( )
( )

(

( )

(

e c r r b b c c c c r r b b b rb b c d c c r r b b
r r b b b c

ce d r b b c c r r b b sr r b b b c c c r r b b
c r r b b b c

c r r b b c c c c r

 


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2

1 2 1 2 3 3 4 5 1 1 3 1 1 3 4 1 2 1 2 1 2 1 3 3 3 4 5

2

1 2 1 2 3

21
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)

( )( ) .
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)
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From Descartes' Rule of Signs, we can find the conditions for 

positive *I  of (11) as follows 

(1) If 
2 0e   and 

0 0,e   then there is a positive *.I  

(2) If 
2 0e   and 

0 0,e   then there are three positive 
*I  

or a positive *.I  

Using the Cardano solution of (11), the conditions for the value 

of 
*I  to be a positive real number are 

3 2 2 3 2

0 2 1 2 1 0 1 2 04 4 162 27 0 e e e e e e e e e      and 2

1
.

3
S T e   

where  

13 2 3
3 21 2 0 2 1 2 1 2 0 2 3

13 2 3
3 21 2 0 2 1 2 1 2 0 2 3

9 27 2 3 9 27 2
,

54 9 54

9 27 2 3 9 27 2
.

54 9 54

( ( ) ( ) )

( ( ) ( ) )

e e e e e e e e e eS

e e e e e e e e e eT

    
  

    
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In summary, the equilibrium points 1 2 5, ,E E E  and 
6 ,E  the 

tumor cell populations were zero. These states were therefore 

medically desirable tumor-free states. In the equilibrium points 

1 2 5, ,E E E  and 
6 ,E  the tumor cell populations were nonzero. 

These were therefore endemic equilibrium states. 

 

IV. STABILITY OF THE MODEL 

In this section, we study the local stability of the model (1) 

about each equilibria by the linearzation method. Let 

( ) ( ( ), ( ), ( ), ( ))TW t I t T t N t F t , then the linearzed of (1) about 

equilibrium 
* * * *( , , , )I T N F  is given as follows 

2

* *

2

1

*

2 3 5

4 2 2 4

3 3 3

2

* * *

*

* *
* *

1 1* * 2

( ) ( )
2

2

0 0
( )

( ),0 0 0 0

0 0 0

0

0 0 0 0

0 0 0 0

0

0 0 0

c
W t W t

c r c
r

T Ic T c I
T T

W

d
c T w T c T

N r b N T
r b F

t

 

 



 
 


 
   
 

 

 
  

  
  





 
 







  (12) 

where 
* * * *

22 1 1 1 2 3 52 .w r rbT c I c N c F      
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From (12), It is obvious that the equilibrium 
1 2 3 4, , ,E E E E  

and 
5E  are unstable for 0.   Next, we show the local 

stability of the equilibrium 
6E  for 0   as the following 

theorem 

Theorem 2 If  2 1 1 2 3 2 5 3 3   ,   sc d rb b b c b c    then 
6E  of 

the model (1) is locally asymptotically stable for 0.   

Proof: At 
6 ,E  the characteristics equation of the model (1) is 

given by 

1

1

1 1

3 52

1

1 2 3

4

2

2

3

0 0

0 0 0
0.

0 0

0 0 0

( )c ssd e
d d

c cc sr
d b b

c r
b

r












  

   


  

 

  (13) 

Hence, all eigenvalues of the characteristic of (13) are 

3 52

2 3 1 1

1 2 3

, , , .
c cc sr r d r

d b b
         

Obviously, all roots associated with characteristics equation are 

negative if  2 1 1 2 3 2 5 3 3    .sc d rb b b c b c                                

Moreover, we can show that the global stability of the tumor 

free equilibrium point with zero time delay by using a 

Lyapunov function 

Theorem 3 The tumor free equilibrium 
6E  is globally 

asymptotically stable in positively invariant set K  with zero 
time delay if the condition 

2

1 2 1 3 1 3 5 1 1 3 1 5 1 1 3 1( )( )src b b rb c c rb c c rb b d     

is fulfilled. 

Proof: We introduce a Lyapunov function [19] of the form 

  ,V T T  which is positive-definite and continuously 

differentiable for all positive bounded values of ,T  i.e.,  

(0) 0V   and ( ) 0, 0.V T T    Hence, the time derivative of 

the Lyapunov function V  satisfies 

 

 

1 1 2 3 5

1 1 1 2 3 5

,

1 ,

.min min min max

V T
rT b T c IT c TN c TF

T r rb T c I c N c F



    

    

 

If 1 2 5 0min maxr c I c F    then, we will get 0.V   From 

Theorem 1, we can simplify the condition as 

2

1 2 1 3 1 3 5 1 1 3 1 5 1 1 3 1( )( ).src b b rb c c rb c c rb b d           (14) 

We should note that the Lyapunov conditions in (14) are a 

sufficient condition and are not necessary for global stability of 

the tumor free equilibrium 6 .E                                                     

V.  EXISTENCE OF PERIODIC SOLUTION  

In this section, we focus on bifurcation behavior of 
8E  of 

model (1) when 0.   First, we determine local stability at 

8.E  From (12), the characteristic equation of the model (1) 

about equilibrium 
8E  is given as following 

1 11 12

* * *

2 22 3 5

*

4 33

3

0 0

0,
0 0

0 0 0

d v e v e
c T u c T c T

c N u
r

 







   

  


 

 

 

 

where 

* * * * *5

22 1 1 1 2 3 33 2 2 2 4

3

2 , 2 ,
c

u r rbT c I c N u r r b N c T
b

          

*
*

11 1*

Tv c T
T




 


 and 

*
*

12 1* 2
.

( )

Iv c I
T




 


  

 

which gives                  

  3 2 2

3 3 2 1 6 5 4( ) 0,r n n n n n n e                (15) 

where 
* * * *

1 1 3 4 22 33 2 1 22 1 33 22 33 3 4

* * *

3 1 22 33 4 3 4 11 2 33 12 22 33 11

( ), ,

, ,

n d c c T N u u n d u d u u u c c T N

n d u u n c c T N v c T u v u u v

       

     

*

5 22 11 33 11 2 12n u v u v c T v    and 6 11.n v   

From (15), we find that one of characteristic is 
3 0.r     

Hence, if  0   then, equation (15) will become 

3 2

11 12 13 0,n n n                         (16) 

where 
11 1 22 33 11( ),n d u u v      

           
* * *

12 11 1 22 33 2 12 22 33 3 4( )( ) ,n v d u u c T v u u c c T N        

           
* *

13 1 11 3 4 1 22 33( ) .n d v c c T N d u u     

From [12] the solution of a cubic equation was published by 

Gerolano Cardano. Hence, the solutions of the equation (16) in 

  are given by 

1 11

1
( ), 

3
n S T      

2 11

3 11

1 1
( ) i 3( ) ,

3 2

1 1
( ) i 3( ).

3 2

n S T S T

n S T S T





     

     

 

From the Cardano formula, we found that if 0D   then, 1  is 

real number, 2  and 3  are a pair of conjugate complex roots. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1854-1865 

© International Research Publication House.  http://www.irphouse.com 

1859 

If 0D  then, 
1 , 

2  and 
3  are real numbers. Hence, the 

stability of the equilibrium 
8E  of the model (1) when 0   

can be stated in the following theorem. 

Theorem 4 If 11

1
| |

3
S T n   and 

11

4
,

3
( )

9
| |S T n    then the 

stability of 
8E  of the model (1) with 0   is asymptotically 

stable where 

11 1 22 33 11

13 32
3 212 11 13 11 12 11 13 1112 11 3

13 32
3 212 11 13 11 12 11 13 1112 11 3

( ),

9 27 2 9 27 23
,

54 9 54

9 27 2 9 27 23
.

54 9 54

( ( ) ( ) )

( ( ) ( ) )

n d u u v

n n n n n n n nn nS

n n n n n n n nn nT

   

   
  

   
  

 

Proof: From the Cardano formula, we can stated as follow. 

In case 0,D   if 11

1
| | ,

3
S T n   we find that 

1  is negative 

real number and real parts of 
2  and 

3  are negative. Hence, 

the equilibrium 
8E  is asymptotically stable. Otherwise, if 

11

1
| |

3
S T n   then, 

1  is positive real number. Hence, the 

equilibrium 
8E  is unstable. 

In case 0,D   if 11

1
| | ,

3
S T n   we find that 

1  is negative 

real number. If 0D   and 11

1
| | ,

3
S T n   we get 

1

3S T R   

and then, 
1

3
2 11

1
2

3
n R     and 

1

3
3 11

1
2 .

3
n R      Hence, 

1 2,   and 
3  are negative real number. 

If   0,D   we have 

1

3| |i  ( )S R D   and 
1

3  | |i .( )T R D   

Hence, we get the root of S  and T  are 

1

3
2 2

i
3 3 3 3

k
k kS r cos sin       

       
    

 

and                                                

1

3
2 2

  i ;   0,1,2.
3 3 3 3

k
k kT r cos sin k       

        
    

 

where 

3 22r Q R   and 1 | |
.

D
tan

R
 

 
  

 
 

 

 

Hence, 

1

3
2

2 cos
3 3

kS T r   
   

 
 and 

1

3
2

2 sin .
3 3

kS T r i  
   

 
 

From Gerolano Cardano formula, the solutions of cubic 

equation are 

1 11

1 1

3 3
2 11

1 1

3 3
3 11

1
( ),

3

1 2 2
2 cos 3 sin ,

3 3 3 3 3

1 2 2
2 cos 3 sin .

3 3 3 3 3

n S T

k kn r r

k kn r r



   


   


   

   
        

   

   
        

   

  

We find that 
1  is negative real number if 11

1
| | .

3
S T n    For 

2  if 11

1
| |

3
S T n   then 

1

3
11 11

1 2 2
0 2 cos .

3 3 3 3

kn r n  
    

 
           (17) 

Let 
2 0   then, 

1 1

3 3
11

2 1 2
3 sin 2 cos .

3 3 3 3 3

k kr n r      
      

   
   (18) 

 

From (17)  and (18), the condition of 
2  is negative real 

number as follows 
1

3
11

2 2
3 sin .

3 3 3

kr n  
  

 
                    (19) 

For 
3 :  if 11

1
| |

3
S T n   then 

1

3
11 11

2 1 2
2 0.

3 3 3 3

kn n r cos   
      

 
        (20) 

 

Let 
3 0   then, 

1 1

3 3
11

1 2 2
2 cos 3 sin .

3 3 3 3 3

k kn r r      
       

   
 (21) 

From (20) and (21), the condition of 
3  is negative real 

number as follows 
1

3
11

2 2
3 sin .

3 3 3

kn r   
   

 
               (22) 

Hence, from ( 19)  and (22), we find that 2  and 3  are 

negative real number which the condition as follows 

 

      11

4
.

3
( )

9
| |S T n                          (23)       
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Hence, the equilibrium 
8E  is asymptotically stable. Otherwise, 

if 11

1
| |

3
S T n    then, 

1  is positive real number. Hence, the 

equilibrium 
8E is unstable.                                                                                                                                                      

Next, we focus on bifurcation behavior of 
8E  of model (1) 

when 0.   First, we restate the characteristic equation of (15) 

as follow: 

3 2 2

3 2 1 6 5 4( ) 0,n n n n n n e                (24) 

where 
* * * *

1 1 3 4 22 33 2 1 22 1 33 22 33 3 4

* * *

3 1 22 33 4 3 4 11 2 33 12 22 33 11

( ),

, ,

,n d c c T N u u n d u d u u u c c T N

n d u u n c c T N v c T u v u u v

       

     

  
*

5 22 11 33 11 2 12n u v u v c T v    and 6 11 .n v     

Suppose that    and let i   be roots of (24). Then, 

we get 
6 2 2 4 2 2 2

3 2 6 2 1 3 4 6 5

2 2

1 4

( 2 ) ( 2 2 )

( ) 0.

n n n n n n n n n
n n

        

  
 (25) 

Let 2 0,z    so the equation (25) can be reduced as follows 

3 2

1 2 3 0,z r z r z r                            (26) 

where 
2 2 2 2

1 3 2 6 2 2 1 3 4 6 52 , 2 2r n n n r n n n n n n        and 

2 2

3 1 4 .r n n   From [20] the solution of the cubic equation was 

published by Gerolano Cardano. Hence, the solutions of the 

equation (26) in z  are given by 

1 1 2 1

3 1

1 1 1
( ),   ( ) i 3( ),  

3 3 2

1 1
( ) i 3( ).

3 2

z r S T z r S T S T

z r S T S T

         

     

 

The solution of the equation (26) be a positive solution when

  0D   and 1

1
.

3
S T r   From the conditions we can find at 

least one of ; 1,2,3k k   is a positive solution. Hence, a 

positive solution of (25) is given as follows 

1

1
.

3
S T r     

Finally, we will find k  in the form as follows 

4 2
1 5 3 6 1 6 3 4 2 5 1 4

2 2 2

5 6 4

1 ( ) ( )
cos 2

( ) ( )
( ),k

n n n n n n n n n n n k
n n n

 
 

  

     
 

 
(27) 

where 0,1,2,....k   

Condition (27) represents the bifurcation points of the model 

(1). We present the theorem for the bifurcation points 
0  is 

Hopf bifurcation points in the following theorem. 

Theorem 5 Let ( ) ( ) ( )i        be a root of (16) 
0   

satisfying 
0( ) 0    and 

0( )    where R   and 
0  is 

the smallest positive root of (27). If all parameters of (1) meet 
the conditions 

2

2 24 6 5

1 3 22

6

2
0 ,  2  

2

n n n
n n n

n



    and 2

2 32 ,n n  

then 
0

Re 0|d
d  







 
 


  and hence 

0   is the Hopf 

bifurcation point of (1). 

Proof: To prove additional conditions in Theorem 8, consider 

the characteristic equation in the form as follows 
3 2 2

3 2 1 6 5 4( ) 0.n n n n n n e                 (28) 

Let   be a function of  , i.e. ( )   . Differentiate both 

sides of  (28) with respect to ,  and let 
0 0( ) i   , we can 

show that 

0

1 2 2 4 3

2 3 2 3 1

2 4 2 3 2

2 3 1

2 3

5 6 5 4 6

2 4 3 2

5 4 6

( 3 ) i2 ][( ) i( )

( ) ( )

i2 [ i( )]
i .

( )

[ ]|

[ ]

n n n n nd
d n n n

n n n n n
n n n

 

     

    

   

   





     
 

   

   
 

 

(29) 

Consider only the real part of (29). It follows that 

 

0

1 4 2 2 2 2

3 2 2 1 3

3 2 2 2

2 3 1

2 2 2

4 6 6 5

2 2 2 2

5 4 6

(3 2 ) (4 2 )
Re

( ) ( )

2 (2 )
.

( )

| n n n n nd
d n n n

n n n n
n n n

 

  

   



 





      
        

 


 

 

We can see that 
0

1

0Re |d
d  








 

 

 
 
  

 when 
4 2 2

33 2n   

2 2

2 2 1 34 2n n n n   and 
2 2 2

4 6 6 52 2 .n n n n   Hence, the 

condition can be simplified as 

4 2 2 2 2 2
3 2 1 3 2 2 3 2 3 2 4 6 5

2

6

( 4 18 ) (9 4 ) 2 2
.

3 2

n n n n n n n n n n n n
n


      

    (30) 

If 
2

1 3 22n n n  and 
2

2 32n n  then, the condition (30) becomes 

2

2 4 6 5

2

6

2
0 .

2

n n n
n




                         (31) 

Thus 
0  is the Hopf bifurcation point.                                   

Hence, all works above shows that the hypotheses for Hopf 

bifurcation are satisfied at 0   with the condition (31). 

These lead us to state the following theorem. 

Theorem 6 The conditions for stability of model (1) at 
8 ,E  we 

have the following. 

(1) If 0 ,   then the equilibrium point 8E  is asymptotically 

stable. 
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(2) If 
0 ,   then the equilibrium point 

8E  is unstable. 

(3) If 
0 ,   then Hopf bifurcation occurs when 

2

1 3 22 ,n n n  

2

2 24 6 5

0 2 32

6

2
0 , 2

2

n n n
n n

n



    and 

0  is the Hopf bifurcation 

point. 

 

VI.  NUMERICAL SIMULAITON RESULTS  

In this section, we implement mathematical programs of Maple 

software package to simulate numerical results for local and 

global stability, necessary conditions of behavior of bifurcation 

and effecting some parameters for tumor growth. The 

parameter values in Table 2 and four types of initial conditions 

 0t   can apply for our numerical simulations of the model 

(1). 

Table 2: The value of parameters for the tumor-obesity model 

Parameters Values 

used 

Unit Reference 

s  
  

  

1d  

1r  

2r  

3r  

1b  

2b  

3b  

1c  

2c  

3c  

4c  

5c  

 

0.33 

0.01 

0.3 

0.2 

0.5 

1 

0.3025 

1  

0.5 

0.4 

1 

1 

1 

1 

0.1 

1 1.Density mL day   
1day  

.Density mL  
1day  
1day  
1day  
1day  

.Density mL  

.Density mL  

.Density mL  
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   

[10] 

[10] 

[10] 

[10] 

Estimated 

[10] 

Estimated 

[10] 

Estimated 

Estimated 

[10] 

Estimated 

 [10] 

[10] 

Estimated 

 

 

 

 

 

Figure 1: The numerical simulation of Immune cells, Tumor 

cells, Host cells and Fat cells with different initial conditions 

Graphs in Figure 1 with different initial conditions shows that 

all numerical solutions for the host population classes converge 

to  6   1.65, .0,2,2.5E   Those results agree with the 

theoretical results provided in Theorem 2, which show that the 

equilibrium point 
6E is asymptotically stable. 

Next, we provide the numerical simulations of the model (1) 

with the parameter values in Table 3 and the initial conditions 

        0   0.52,  0   0.94,  0   1.3,  0   1.1,I T N F     

which gives the endemic equilibrium point is  

8 (0.505541473,0.9206153173,1.284981766,1)E   

and the Hopf bifurcation point 
0  in (27) is given by 

0 8.167.   
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Table 3: The value of parameters for the tumor-obesity model 

Parameters Values 

used 

Unit Reference 

s  

  

  

1d  

1r  

2r  

3r  

1b  

2b  

3b  

1c  

2c  

3c  

4c  

5c  

 

0.33 

0.01 

0.3 

0.2 

1.5 

1 

0.3 

0.8  

0.42 

1 

0.5 

0.5 

0.5 

0.5 

0.5 

1 1.Density mL day   
1day  

.Density mL  
1day  
1day  
1day  
1day  

.Density mL  

.Density mL  

.Density mL  
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   
1 1.Density mL day   

[10] 

[10] 

[10] 

[10] 

[10] 

[10] 

Estimated 

Estimated 

Estimated 

Estimated 

Estimated 

Estimated 

 Estimated 

Estimated 

Estimated 

 

Based on Theorem 6, all numerical solutions for the host 

population classes converge to 
8E  for all  time delays ,  if  

00 8.167.     Graphs of numerical solutions in Figure 2 

are decreasingly oscillated to the equilibrium point which gives 

asymptotically stability, when 
07.5 8.167.     The Hopf 

bifurcation phenomena can be occurred when a bifurcation 

point, , is sufficiently large and across 
0 8.167.    For 

example, 
08.18 8.167,     the solutions of immune cells, 

tumor cells and normal cells are widely oscillated about the 

equilibrium 
8E  in Figure 3. Moreover, if obese people are 

tumors, the density of fat cells are rapidly decreasing, while the 

density of tumor cells are constantly oscillating and changing 

any time .t  

Finally, we are interested in two parameters:  
3r  (the growth 

rate for the density of fat cells) and 
3b  (the inverse of the 

carrying capacity for the density of fat) in order to showing the 

effective parameters for decreasing  the level of density for 

tumor cells in the model (1). Choosing three decreasing 

3 1.2,1.1,1.0r   and three increasing 
3 0.98,0.99,1.00b   and 

the value of a time delay 
0 [7.5,8.16].   The level of density 

of tumor cells in the model (1) are decay and changing its 

behavior from limit cycle to asymptotically stable at 7.49   

in Figure 4 In the other hand,  selecting  8.2  , the level of 

density of tumor cell in the model (1) is widely oscillating and 

changing its behavior from uncontrolled to limit cycle to a 

periodic level in Figure 5. 

 

 

 

 

Figure 2: The numerical simulation of Immune cells, Tumor 

cells, Normal cells and Fat cells when 7.5   
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Figure 3: The numerical simulation of Immune cells, Tumor 

cells, Normal cells and Fat cells when 8.18   

 

 

Figure 4: Time plots of Tumor cells and the numerical 

simulation of Immune cells, Tumor cells and Fat cells with 

different values of 
3r  and 

3b  at 7.49   

 

 

 

 
Figure 5: Time plots of Tumor cells and the numerical 

simulation of Immune cells, Tumor cells and Fat cells with 

different values of 
3r  and 

3b  at 8.2   
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VII. CONCLUSION 

In this paper, we presented an analysis of the obesity and tumor 

models both with and without time delay. We first used the 

LCIS method (Theorem 1) to find the bounds of a domain 

containing all compact invariant sets of models without time 

delay for positive values of model parameters. The generalized 

Gronwall Lemma applied for finding the bounds of ( )I t  of 

model with time delay which is uniformly bounded. For 

stability of equilibrium points, we found that equilibrium points 

1 2 3 4, , ,E E E E  and 
5E  of the models both with/without a time 

delay are always unstable. Next, the statement and proof of the 

conditions for local stability of 
6E  is given in Theorem 2. Also, 

the conditions for the global stability of 
6E  with zero-time 

delay are stated and proved in Theorem 3. Therefore, we 

analyzed the stability of the endemic equilibrium points 
8 ,E  

and proved that the equilibrium by linearization was stable for 

the model without time delay in Theorem 4. For the time-delay 

model, we derived the necessary conditions for the existence of 

a Hopf bifurcation point (Theorem 5). In the numerical 

simulations, we used biologically reasonable values of 

parameters to test our analytical results. We found that the 

numerical simulations converged to the equilibrium point 
6E  

for choices of parameter values satisfying the conditions in 

Theorem 2-3.  The numerical simulations also showed 

convergence to 
8E  for time delays   less than the Hopf 

bifurcation point 
0  and limit cycle behavior for 

0   

(Theorem 6). Also, the effect of some parameters on the 

dynamic of the model (1) are studied for the value of 
3r  (the 

growth rate for the density of fat cells) decreases and the value 

of 
3b  (the inverse of the carrying capacity for the density of 

fat) increases. It can be concluded that the obesity and time 

delay affect the growth of tumors. The obese people are likely 

to increase the density of the tumor and the obesity is a health 

problem of the modern world. 

VIII. ACKNOWLEDGEMENT 

This research is supported by the Centre of Excellence in 

Mathematics, the Commission on Higher Education, the 

Department of Mathematics, Faculty of Applied Science, King 

Mongkut's University of Technology North Bangkok and 

Kasem Bundit University, Thailand  

 

REFERENCES 

[1] S. Friberg and S. Mattson, “On the growth rates of 

human malignant tumors: implications for medical 

decision making,” Journal of surgical oncology, vol. 65, 

no. 4, pp. 284-297, 1997.  

[2] F.J. Santonja, A. Morales, R.J. Villanueva, and J.C. 

Cortes, “Analysing the effect of public health campaigns 

on reducing excess weight: A modelling approach for 

the Spanish autonomous region of the community of 

Valencia,” Evaluation and program planning, vol. 35, 

no. 1, pp. 34-39, 2012.  

[3] C. Oh and M. MA, “Optimal intervention strategies for 

the spread of obesity,” Journal of Applied Mathematics, 

2015.  

[4] D. Aldila, N. Rarasati, N. Nuraini, and E. Soewono, 

“Optimal control problem of treatment for obesity in a 

closed population,” International Journal of 

Mathematics and Mathematical Sciences, 2014.  

[5] D. Laudisio, G. Muscogiuri, L. Barrea, S. Savastano, 

and A. Colao, “Obesity and breast cancer in 

premenopausal women: Current evidence and future 

perspectives,” European Journal of Obstetrics and 

Gynaecology and Reproductive Biology, vol. 230, pp. 

217-221, 2018.  

[6] C.A.A.Rojas, M.T.Alvarez-Banuelos, J.Morales 

Romero, H.Suarez-Diaz, J. C. Hernandez-Fonseca, and 

G. Contreras-Alarcon, “Breast cancer: Metastasis, 

molecular subtypes, and overweight and obesity in 

Veracruz, Mexico,” Clinical breast cancer, vol. 19, no. 

1, pp. 166-171, 2019.  

[7] H. Rubin, “Promotion and selection by serum growth 

factors drive field cancerization, which is anticipated in 

vivo by type 2 diabetes and obesity,” Proceedings of the 

National Academy of Sciences, vol. 110, no. 34, pp. 

13927-13931, 2013.  

[8] S. D. Hursting, “Minireview: the year in obesity and 

cancer,” Molecular endocrinology, vol. 26, no. 12, pp. 

1961-1966, 2012.  

[9] M. Schwab, Encyclopaedia of cancer. Springer Science 

and Business Media, 2008.  

[10] R. A. Ku-Carrillo, S. E. Delgadillo, and B. Chen-

Charpentier, “A mathematical model for the effect of 

obesity on cancer growth and on the immune system 

response,” Applied Mathematical Modelling, vol. 40, 

no. 7, pp. 4908-4920, 2016.  

[11] J. Jo, O. Gavrilova, S. Pack, W. Jou, S. Mullen, A. E. 

Sumner, S. W. Cushman, and V. Periwal, “Hypertrophy 

and/or hyperplasia: dynamics of adipose tissue growth,” 

PLoS computational biology, vol. 5, no. 3, 2009.  

[12] D. Okwan-Duodu, G. E. Umpierrez, O. W. Brawley, and 

R. Diaz, “Obesity-driven inflammation and cancer risk: 

role of myeloid derived suppressor cells and alternately 

activated macrophages,” American journal of cancer 

research, vol. 3, no. 1, 2013.  

[13] M. Villasana and A. Radunskaya, “A delay differential 

equation model for tumor growth,” Journal of 

Mathematical Biology, vol. 47, no. 3, pp. 270-294, 2003.  

[14] F. A. Rihan, D. Abdelrahman, F. Al-Maskari, F. 

Ibrahim, and M. A. Abdeen, “Delay differential model 

for tumour-immune response with 

chemoimmunotherapy and optimal control,” 

Computational and math- ematical methods in medicine, 

2014.  

[15] P. A. Valle, K. E. Starkov, and L. N. Coria, “Global 

stability and tumor clearance conditions for a cancer 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1854-1865 

© International Research Publication House.  http://www.irphouse.com 

1865 

chemotherapy system,” Communications in Nonlinear 

Science and Numerical Simulation, vol. 40, pp. 206- 

215, 2016.  

[16] A. Halanay and A. Halanay, Differential equations: 

Stability, oscillations, time lags, vol. 6. Academic press 

New York, 1966.  

[17] D. J. Grabiner, “Descartes’ rule of signs: Another 

construction,” The American Mathematical Monthly, 

vol. 106, no. 9, pp. 854-856, 1999.  

[18] E. Weisstein, “Np-hard problem, mathworld a wolfram 

web resource,” 2005.  

[19] P. Liu and X. Liu, “Dynamics of a tumor-immune model 

considering targeted chemotherapy,” Chaos, Solutions 

and Fractals, vol. 98, pp. 7- 13, 2017.  

[20] E. W. Weisstein and C. Problem, “From mathworld a 

wolfram web re- source http://mathworld.wolfram. 

com,” Mean Curvature. html, 2005. 

[21]  Sarud U,  Sanoe  K,  Ekkachai  K. The  effect  of  obesity  

and cancer  stem  cells  in  tumor  model  with  time  

delay,  9(4),  COMPUSOFT,  An International Journal 

of Advanced Computer Technology. PP. 3633-3641. 


