
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1880

AI-aided Traffic Differentiated QoS Routing and Dynamic Offloading in

Distributed Fragmentation Optimized SDN-IoT

Muhamed Begović1, Samir Čaušević1, Belma Memić1 and Adisa Hasković1
1 Faculty of Traffic and Communications, University of Sarajevo, Bosnia and Herzegovina

ORCID: 0000-0002-3691-4969 (Muhamed Begovic)

Abstract

Internet of Things (IoT) becomes an emerging network

technology that expedites billions of devices to be connected

via the Internet to provide real-time intelligent application

services. The benefits of Software-Defined Networking (SDN)

can be used to fulfill IoT requirements. Quality of Service

provisioning is an on-going demand in software-defined IoT

(SD-IoT), particularly for large scale environments. In this

paper, we address this issue by proposing a seamless model of

AI-aided Traffic Differentiated QoS Routing and Dynamic

Offloading in distributed fragmentation optimized SDN-IoT.

Firstly, we propose a Multi-Criterion based Deep Packet

Inspection method for classifying the network traffic, which is

held in Edge Routers (access points). Secondly, we construct a

Partially Connected Network Topology using the ISOMAP

algorithm for an effective rule placement and routing. We

propose a Traffic Differentiated QoS Routing for forwarding

data packets via the most suitable switches. We select the

optimum route by Deep Alternative Neural Network (DANN).

Based on the relationships among switches, the path is selected

and flow rules are deployed. The poor QoS is often caused by

load imbalance in controllers and switches. To overwhelm this

issue, we propose a Dynamic Offloading scheme in SD-IoT.

We offload the data packets from the overloaded controller to

the underloaded controller using Hassanat Distance-based K-

nearest neighbors (HDK-NN) algorithm. Similarly, we propose

a Ranking-based Entropy function (R-Ef) to allow dynamic

offloading among switches. Simulation is performed using the

NS3.26 simulator and the results proved that our proposed AI-

aided SD-IoT model provides superior QoS performance

compared to previous approaches.

Keywords: Software-Defined Internet of Things, QoS

Provisioning, Artificial Intelligence, Traffic Classification and

Routing, Dynamic Offloading, Rule Placement

I. INTRODUCTION

Software-Defined Internet of Things (SD-IoT) is a new

network management and control technology that supports

diverse real-time applications [1-3]. SDN consists of data

forwarding and control over the network devices. It separated

the control logic from forwarding devices and controls it from

the single entity, which is called a controller. SD-IoT is a future

Internet technology that supports a wide range of applications

such as Industrial IoT, Sensor Networks, and so on [4-8].

Quality of Service (QoS) provisioning is a potential need in

SD-IoT (delay-sensitive or loss-sensitive). To improve the QoS

while providing control and management of SDN, different

mechanisms have been proposed such as routing, queuing

theory, scheduling, traffic classification, load balancing, and

rule placement. Task offloading is a current topic in SD-IoT

applications. However, employing a huge number of

heterogeneous IoT devices in a centralized SDN controller does

not meet the QoS requirements. Hence, the multi-controller

enabled distributed environment is presented. In a distributed

environment, the overloading of the individual controller is a

core issue [9-13]. The fragmentation method was introduced in

[14]. This approach uses two different controllers such as local

controllers and the global controller. The global controller has

a global view of the local controller’s management and control.

In software-defined WSN, a local controller is connected with

the sink node and it communicates and gathers data from sensor

nodes.

A hierarchical control plane for the multi-domain environment

is considered in [15]. Preserving topology in network traffic is

one of the big objectives of this paper. For this purpose, the

local controller is assigned for each domain (geographical area),

and the global controller has a global view for monitoring of all

local controllers in different domains. However, the load is

imbalanced in the network as a consequence of the hierarchical

structure. The upper layer of controllers is balanced and the

bottom layer is very under-loaded, which has given less priority.

It does not update the frequent network changes and the global

controller fails to handle failures among local controllers

immediately. An optimum load-balanced path is built through

network topology and this minimizes new assignments by the

best dynamic offloading strategy. Load balanced routing is the

way to achieve QoS goals in SDN. Conventional routing

algorithms such as the Bellman-Ford algorithm, Link State

algorithm, and Dijkstra algorithm are presented to improve

balance the load in routers. But these algorithms are time-

consuming and not effective for load-balanced routing.

1.1. Motivation

Various meta-heuristic algorithms have been proposed for load

balancing in SD-IoT such as ant colony optimization (ACO),

simulated annealing (SA), genetic algorithm (GA), particle

swarm optimization (PSO), and so on. However, these

optimization algorithms do not handle large communication

overhead. With the growth rate of network devices and their

continuous sensing feature, the centralized controller cannot

handle a large number of requests. Hence multi-controller

mechanism is introduced currently, which seeks to address the

research issues of a single controller. Fig. 1. illustrates the

offloading in SDN. In multi-controller SDN, there are three

types of controller mechanisms implemented. Control plane

can be implemented using a central controller managing the

local controllers, distributed controllers that work and take

action on their own, and fragmentation-based distributed

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1881

controllers. Switch migration is one of the solutions in the

multi-controller environment for load balancing [16-17]. In a

distributed environment, switch migration is not adequate and

it leads to time complexity. Flow rule placement in switches is

an emerging research topic in SDN. Recently, it gained more

attention among researchers. When the need for the flow rules

installation is high, then the flow table of switch might be

overloaded, which can cause severe issues in QoS provisioning.

Besides, when flow rules are installed based on per-flow

statistics, it causes high computation overhead. Therefore, in

this paper, we addressed the above-mentioned issues and

designed a distributed controller with the fragmentation-

optimized environment for QoS provisioning.

SDN Controller (Global View to Manage Network)

Switch-5
Switch-3

Switch-2 Switch-6Switch-4

Switch-NSwitch-1

Normal state

Offload state

Switch_config

Flow_config

Fig. 1. Offloading in SDN

1.2. Contributions

The objective of this paper is to design a novel artificial

intelligence aided SD-IoT to increase the QoS in each layer

(devices layer, switches layer, and controller layer). The

proposed traffic differentiated routing and dynamic offloading

model for QoS improvement are defined on an individual layer.

The major contributions of this paper are summarized as

follows:

1) For increasing the QoS analysis, the AI-aided SD-IoT

model performs four actions: Traffic Differentiation,

Switches Topology Discovery, Traffic Differentiated

Routing and Rule Placement, and Dynamic Offloading.

2) Traffic differentiation - Initially, we differentiate the

traffic arrived from edge routers. Based on the traffic type,

appropriate routing action is taken. We propose a Multi-

Criterion-based Deep Packet Inspection method. To

compute the QoS satisfaction of the IoT user, we

introduce the delay tolerance for network traffic arrived

on ER.

3) Switches Topology Discovery - ISOMAP algorithm is

proposed for topology management, which effectively

determines the link connectivity. Partially Connected

Topology connects based on four criteria: CPU

computing resources, node degree, queue utilization, and

link quality. This topology consists of three relationships:

one-to-one, one-to-many, many-to-many.

4) Traffic Differentiated Routing - Traffic Differentiated

Routing uses a Deep Alternative Neural Network

(DANN), which considers several metrics for load-

balanced routing. When the flow rule is not matched with

the flow table, then the route request is sent to the

respective controller. The controller validates the

connectivity among switches and then places the rule. It

reduces the number of rules employed on the switches.

5) Dynamic Offloading – Our model predicts the switch

utilization and packets migration on the controllers.

Packets migration is implemented using Ranking based

Entropy Function, and Hassanat Distance-based K-

Nearest Neighbor (HDK-NN) algorithm is used for switch

offloading from the overloaded controller to the

underloaded controller.

6) Experiments show that the proposed model achieves 12%

of reduced end-to-end delay, 30% of reduced packet loss

rate, 35% of reduced switch failure rate, 15% of reduced

controller failure rate, 12% of increased throughput, 65%

of reduced rule placement and 30% of increased load

balancing rate.

1.3. Paper organization

This paper is structured as follows: Section II details the state-

of-the-art on the QoS improvement concepts in SD-IoT.

Section III presents the problematic issues of previous research.

Section IV deals with the proposed AI-aided SD-IoT model.

Section V elaborates on the performances of the proposed

model and comparison with previous research by significant

parameters. In section VI, we conclude the paper and give

future directions.

Table 1. Nomenclature

Notation Meaning

Si = (S1, S2, S3…, Sn) Switches

T1xN = [T(1), T(2),

T(3),…T(M)]

Network topology

D1, D2, D3…, Dn Devices

Lij The link between switch i

and j

DC Dominant Controller

LCi Leaf Controller

R2 Region of switches

lQ Link Quality

Ɖʈ Delay time

Q(i) Queue utilization

δ(i) Switch buffer

rm Relative mobility

Dij Distance

N(pi) Number of packets

α and β Coefficient parameters

II. STATE-OF-THE-ART

In this section, we elaborate on the different state-of-the-art

from four different perspectives - traffic differentiation,

routing, offloading, and rule placement in SDN and IoT-based

QoS schemes.

2.1. Traffic differentiation schemes

In IoT, forecasting network traffic is a critical point for SDN.

Dias et al. [18] proposed a traffic classification approach for

real-time applications (e.g. video streaming application). A

naïve Bayes classification method is proposed for real-time

video streaming traffic network classification, which primary

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1882

intention is to reduce the delay for multimedia service

applications requested by the user. User preference is computed

for traffic classification and delay tolerance for sensitive

applications. The naïve Bayes algorithm fails to classify the

incoming traffic when the network traffic is high. Martin et al.

[19] proposed a deep learning-based neural network

architecture for IoT traffic prediction. This architecture

contains residual, boosted, and stacked networks. The proposed

neural network architecture shows good results, but the time

complexity is high.

Yu et al. [20] proposed a QoS-aware traffic classification

method in SDN by DPI. A semi-supervised machine learning

algorithm is combined with DPI for SDN. This method

classifies the arrived flows into different QoS classes. A neural

network-based traffic matrix is constructed for traffic

prediction. The authors in [21] use long short-term memory

recurrent neural networks (LSTM RNNs). From the current

history of traffic, future network traffic is predicted. LSTM and

RNN consume significant time for traffic prediction and

require substantial processing time. Tajiki et al. [22] have

considered congestion control and joint QoS for traffic

prediction in SDN. This paper solves two optimization

problems including an exact solution and fast suboptimum one.

The authors consider the bandwidth and delay constraints of

SDN. In routing, modules for resource allocation and resource

re-allocation are used. The rerouting module consumes time

which is not negligible.

2.2. Routing schemes

Park et al. [23] presented a network situation-aware framework

(NSAF) for handling application routing in SDN. The route

must be based on the QoS requirements and dynamic network

status changing. It consists of application registration, network

status monitoring, violation detection, and routing control. For

different service classes (application type), different serv class

is incorporated such as packet loss, delay, and jitter. It does not

manage the dynamic network changes and control paths when

application requirements change. Further, NSAF uses

Dijkstra's routing and genetic algorithms in routing, which

induces high computational overhead. Saha et al. [24] proposed

a traffic-aware QoS routing in SD-IoT networks. In general, the

route is constructed for two types of applications: delay-

sensitive and loss-sensitive. A greedy approach-based K-

shortest paths algorithm is proposed to compute the optimum

routing path in which QoS requirements are considered for each

packet. In this step, the controller is deployed with adaptive

flow rules for routing switches. Moreover, IoT users do not

only request delay-sensitive and loss-sensitive applications. In

a large-scale network, different heterogeneous devices with

various requirements are present.

A simulated annealing based QoS-aware routing (SAQR)

algorithm is proposed in [25]. It adaptively adjusts the weight

of delay, loss rate, and bandwidth requirements to determine

the best routing path with meeting the QoS requirements.

Experiments were conducted to validate this approach

concerning loss rate, delay, and bandwidth. Also, authors select

the best path using Dijkstra’s algorithm, which is a blind search

algorithm that consumes significant time for processing.

Routing is a compelling solution for balancing the load and

overhead in the network. Low-cost load balancing route

management (L2RM) is an effective framework proposed by

Wang et al. [26]. Adaptive route modification is implemented

to avoid flow table overloading. Further, L2RM uses dynamic

information polling (DIP) scheme, which queries switches to

know the current queue utilization. When failure occurs, the

response time of the controller increases and it leads to poor

network management. Another similar research can be found in

[27] and it is called load-balanced aware routing on the SDN

controller. It addresses the problem of load balance routing in

both controllers and links and thus it minimizes the controller

response time and link utilization rate. Two update mechanisms

are proposed such as area bound update and controller load

update. Experiment results show that the controller response

time is greatly reduced by balancing the load, but it fails to

minimize the overhead among switches.

2.3. Offloading schemes

SDN controller is fully capable of offloading the tasks

dynamically. Detour [28] proposes a dynamic allocation of

tasks and resources in software-defined Fog networks for IoT

applications. IoT devices are connected to fog nodes using

multi-hop IoT APs. The SDN controller collects network

information through the southbound interface and performs

optimum task allocation thanks to the global view of the

network. The idea is to decide whether the task will be

performed locally or on a remote device, select the ideal fog

device, and select the optimum path to forward the task to

another device. The M/M/1 model is applied to the task queue

to select the appropriate application to perform the task after

reaching the fog node. The limitation is that the end-to-end

delay is significant in terms of sending load balancing requests

to the SDN controller, and high-priority tasks have to wait a

long time. Neghabi et al. [29] presented the solutions for load

balancing using Meta-Heuristic algorithms. The authors have

presented some benefits of using these algorithms for

improving network performance. However, these optimization

algorithms do not solve the problems of large network loads

and most of them face the problem of falling into the local

optimum and premature convergence.

Authors in [30] have considered a load-balancing issue by

deploying a virtual SDN controller (VController). When

network traffic is high, the virtual SDN controller is deployed

over the network. For this purpose, a virtual network function

(VNF) is used with primary and secondary VControllers. When

the load of the primary controller increases, the secondary

controller splits the load and processes the part of requests. The

second controller has a copy of the primary controller and it

balances the load among switches. A large number of load

balancing actions are required and poor QoS is achieved due to

virtual controller placement. In Machine to Machine (M2M)

networks, traffic-aware load balancing is proposed [31]. It is

implemented in SDN assisted IoT. The processes involved in

this paper are: (1) determining traffic flow at arrived switches

using packet header information, (2) the route is considered and

the determined traffic flow is forwarded and processed via the

route, and (3) flow table is updated if the latency exceeds the

threshold value. For traffic-aware load balancing, only delay

and type of service are considered which is not sufficient for

delay-tolerant applications (M2M services).

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1883

A distributed multi-controller environment-based switch

migration is proposed in [32]. The authors proposed the

strategy called efficiency aware switch migration (EASM) for

distributed controllers load balancing. The load different matrix

and trigger factor are used to estimate the controllers' load

balancing. The migration efficiency problem considered load

balancing rate and migration cost for optimum migration of

switches. EASM is not suitable for switch migration in a large

scale network environment.

Authors in [33] have focused on dynamic load balancing with

hybrid genetic and ant colony optimization algorithms. In GA,

the fitness value is computed by path length, energy

consumption rate for packets transmission and reception, and

energy status of all switches. In ACO, the optimum path is

identified and the packet is forwarded towards the selected

path. Search speed for path selection is sufficient, but criteria

for path selection are insufficient to find the real optimum path.

In [34] authors proposed a predictive adaptive real-time model

that is used to select cloud for random service prediction

available in the virtual network services over a multi-cloud

environment. Different types of cloud provide different

services with different QoS. For this purpose, dynamic virtual

placement was applied in this study. With this dynamic virtual

placement, different kinds of traffic were served for users from

a different region. When arrived users' traffic is reached from

the expected level, then more virtual placement is required.

Hence, dynamic offloading among switches will be helpful in

this case.

2.4. Rule placement schemes

Flowstat [35] presents flow-rule placement considering three

processes, namely route selection, rule installation, and rule

redistribution. The authors formulated the Max-Flow-Min-Cost

optimization problem for optimum forwarding paths selection.

For the computed path, flow rules are installed. Furthermore,

rule distribution is considered for flow rules traffic congestion

in the network, which decreases the network traffic. It

minimizes the end-to-end delay for packet forwarding and

flows rule installation in the data plane. When the path is

frequently selected, the installation of flow rules for the

particular path is high and it causes flow table overloading in

switches. The controller does not consider the adequate metrics

for forwarding path selection, which causes severe issues in

QoS improvement.

Rule placement is a challenging issue due to the memory

limitation of the switches. A novel approach is proposed [36]

for rule placement according to two possible connections

between neighboring switches: serial and parallel relationship.

For rule placement handling, in this paper, a new data structure

called OPTree (Ordered Predicate Tree) is proposed. It is used

to represent rules in the device and is suitable for checking if a

rule is contained in an existing rule. Two OPTree algorithms

have been created for setting up rules and searching. Although

the approach presented considers the positional relationship for

adjacent devices, the number of rules being set is still large,

which places a heavy burden on the controller. The use of fat-

tree or star topologies increases the number of rules that are

added, making network topology an important factor for global

network management. In [37], the SDN controller computes

and places new rules for switches flow table. If a switch

receives the data packet, but it does not match with the flow

table rules, the switch directly communicates to the controller.

In this paper, the controller places the flow rule for a particular

switch and also gives the best path for processing a packet.

Then the packet is transmitted to neighboring switches. For

flow rule installation, switch-controller delay and switch-to-

switch delay is computed for packet transmission via the path.

Computation of path delay between switch–controller and two

switches is relatively high. Traffic overhead is increased and

the flow table of the switch is overloaded within a few packets

processing.

III. PROBLEM DESCRIPTION

Based on the previous state-of-the-art analysis, in this section,

we defined the problems on the four concepts focused on QoS

enhancement. Fig. 2. presents the problem statement

undertaken in the AI-aided SD-IoT model. Further, we address

the following research questions.

 (RQ1). How our AI-aided SD-IoT model can efficiently

process a large number of requests from IoT devices?

 (RQ2). What are the performance benefits of proposing a

new model in SD-IoT with subject to QoS provisioning?

 (RQ3). Is it best for forwarding large flow requests from

the multi-controller environment?

 (RQ4). How AI-aided SD-IoT model is best for resource-

constrained IoT devices?

Fulfill QoS in IoT via SDN under massive

requests from users IoT devices

Design traffic differentiated QoS model for

routing and dynamic flow offloading in

multi-controller SDN

Traffic

Classification

QoS-based

Traffic

Routing

Dynamic

Flow

Offloading

Flow Rule

Placement

Artificial Intelligence Approaches

1. Global Objective ?

2. Problem Statement

?

3. Subobjectives ?

4. Methods to solve ?

Fig. 2. Problem statement representation

In the previous section, several heuristic optimization

algorithms are illustrated. These algorithms produce large

communication overhead since they can provide a single

optimum solution and poor scalability. For SD-IoT based

networks, a large AI model is required, which eliminates the

communication overhead, packet loss, and latency issues. Also,

the AI model is needed for environments with a large amount

of traffic and providing results within the expected delay.

In [38] authors have contributed with three operations

including network dimension reduction by Principal

Component Analysis (PCA), Queue Utilization (QU)

prediction, and load-balanced routing by Deep Neural Network

(DNN). In the local router, packets arrived status is monitored

and the next hop is selected for transmission whereas the central

router is used to detect the QU and traffic rate of all local

routers. This model has several drawbacks as follows: it is a

time-consuming operation, it does not produce the meaningful

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1884

network patterns, the packet loss rate is high because it does not

consider the link quality, extracting network topology is a

tedious task, and it does not result with effective SDR

representation. Load balanced routing for next-hop selection is

based on QU which is predicted by DNN, which is not

sufficient to achieve load balancing. A task with high priority

(real-time) is required to wait for a longer time. Furthermore,

SDR is not suited for a large-scale environment because the

central router would lead to a single point of failure.

To avoid the frequent flow migrations from one controller to

another, fractional level switch migration is proposed in [39]

by the dynamic controller mapping algorithm. There are 3 steps

incorporated: (1) load imbalance detection, (2) target

controllers and switches selection, and (3) switch migration

(target controller load is balanced). Subsequently, controllers

are reordered. In a large multi-controller environment, search

spaces for finding the target controllers are difficult and the

solution can be suboptimum. To minimize the number of new

assignments, an absolute prediction of switches load is

significant to consider.

A new routing strategy is proposed in [40], which is called

Segmented Routing. A segment refers to Instruction and a node

segment consists of a unique label of next switch to reach.

Initially, the Multi-Objective Particle Swarm Optimization

algorithm is presented for link weight optimization to load

balancing and path cost. With the use of optimized

Weighted_Matrix between the source node and the destination

node, K-number of shortest paths is selected and the best path

is selected based on user preferences. For user preferences, QoS

is evaluated using the Key Performance Index (Delay, Jitter,

and Packet Loss). The KPI is computed by the Fuzzy AHP

algorithm (Analytic Hierarchy Process). Segment routing using

the MOPSO algorithm is a very time-consuming task, and also

Fuzzy AHP for weight matrix computation is not effective

since it is a relatively complex method and it requires a large

size of mathematical computations in measuring priority. To

deal with the load balancing issue, the arrival packet rate is one

of the most important metrics, which must be considered for

load-balanced routing. The authors of this paper have not

concentrated on this issue.

In this paper, we concentrated on the core issues to upgrade the

QoS of the network. These problems are solved by the proposed

solutions in this paper and are elaborated in the next section.

C
O

N
T

R
O

L
 P

L
A

N
E

 Distributed Fragmentation

Optimized Control Plane

D
A

T
A

 P
L

A
N

E

Data Acquisition and

Transmission

ERn
ER2ER1

D
E

V
IC

E
S

 L
A

Y
E

R

T1 T2 Tn……..
T1 T2 Tn……..

Partially Connected

Topology

Dominant Controller

Leaf Controllers 1...N

Topology Information

Load Measurement

Offloading Decision

Routing Manager

Load Measurement

Offloading Decision

Traffic

Differentiated

Routing using

DANN

Tasks

Flow Rule Generator

Control Plane Forwarding Path

Data Plane Communication link

Normal Switch

Source and Destination

Overloaded Switch

Rule Install

Topology Information

RTDI Queue

Task Priority

Classifier

Non RTNMC Queue

RTDT Queue

Non RTMC Queue

Fig. 3. System model

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1885

IV. AI-AIDED SOFTWARE-DEFINED IOT

In this section, we present the system model of the AI-aided

SD-IoT model. The notations used in this paper are listed in

Table 1.

4.1. System overview

In this paper, we assume that our proposed model for SD-IoT

is employed with heterogeneous IoT devices constrained in

resources. They are connected and communicating via the

Internet over the same IP assisted gateways, which are called

Edge Routers (ERs). Our proposed work consists of distributed

controllers including Dominant Controller and Leaf

Controllers, Switches, ERs, and IoT devices. Fig. 3. shows the

AI-aided SD-IoT architecture. Assume that SD-IoT

environment is an undirected graph 𝒢 = (𝕊, 𝕃, 𝕔) , where S

represents the set of all switches, L represents the links between

switch i and j, and c is a controller. The link between switches

are:

𝕃 = {(𝑖, 𝑗)|(𝑖, 𝑗) ∈ 𝑠 × 𝑠, 𝑖 ≠ 𝑗} (1)

As mentioned earlier, links between switches are a key point in

the SDN. The DC communicates with the LCs and LCs

communicate with switches via OpenFlow protocol.

The communication between the SDN controller and the

application layer is obtained via Application Programming

Interface (API). There are three layers incorporated for

designing our proposed model:

 Devices Layer: In this layer, several heterogeneous

IoT devices are 𝐷1 … 𝐷𝑛. From device 𝐷𝑖 , the request

is sent to the ER, which performs the traffic

differentiation by multi-criterion based deep packet

inspection.

 Data Plane Layer: In this layer, several switches are

deployed in a partially connected network topology.

Switches verify the flow rule and take the action based

on the flow table information.

 Control Plane layer: This layer consists of

fragmentation optimized distributed controllers. It

reduces the problems caused by the centralized and

distributed controller environments.

There are four operations involved in our approach: Traffic

Differentiation, Topology Discovery, Traffic Differentiated

Routing and Rule Placement, and Dynamic Offloading. In the

following sub-sections, we elaborate on these operations.

4.2. Traffic differentiation

In the first layer, IoT devices are deployed and sensing is

started. The sensed information is acquired and transferred via

ERs. In the ER, traffic is classified into four classes and put into

individual queues:

(1). Real-Time Delay Intolerant (RTDI) Queue

(2). Real-Time Delay Tolerant (RTDT) Queue

(3). Non-Real-Time Mission Critical (Non-RTMC) Queue

(4). Non-Real-Time Non-Mission Critical (Non-RTNMC)

Queue

Traffic from IoT devices is differentiated (see Fig. 4.) to meet

the QoS requirements.

Real-time and Non-

real-time traffic Classifier

Edge Router

RTDI

RTDT

Non-RTMC

Non-RTNMC

Multi-Criterion based

Deep Inspection Model

using Mutual Tsallis

Entropy

Scheduler (1)

Scheduler (2)

Scheduler (3)

Scheduler (4)

Fig. 4. Traffic differentiation

Some of the applications are video streaming (YouTube,

Dailymotion, and Netflix), P2P torrent (BitTorrent, and

VUZE), video chat or VoIP (Gtalk, Facebook Messenger,

Skype, WhatsApp, Twitter), cloud access (AWS, Google

Drive, OneDrive, and Dropbox), online games, email sending

or receiving. This traffic classification is suited for various

application examples. Each IoT device’s traffic request is

measured in bps. In ER, we have used Deep Packet Inspector

and Traffic Classifier. We split the input traffic into four classes

using four criteria: (1). Packet Deadline 𝑃𝐷(𝑖), (2). Packet Size

𝑃𝑆(𝑖) , (3). Protocol Used 𝑃𝑅𝑇(𝑖), and (4). Type of Service

Request 𝑇𝑆𝑅(𝑖).

Table 2. Traffic differentiation

Traffic

Class

Example

service

Required

data rate

Packet

Delay

Priority

RTDI

video

conferencing,

and VoIP

1.5-8Mbps <50ms 1

RTDT
Video or

Audio
2-10Mbps <200ms 2

Non-

RTMC
E-commerce 1.5-150Mbps <500ms 3

Non-

RTNMC

Email or

Web
Kbps-Gbps <1000ms 4

Algorithm 1: Traffic Differentiation

Begin

Input: n packets arriving at the ER δ

Output: Four traffic classes (RTDI =1, RTDT =2, Non-

RTMC=3, and Non-RTNMC =4)

// Apply Mutual Tsallis Entropy computation for all 𝑝(𝑖)

for each packet p(i) do

If p(i) ∈ RTDI_level then

Put p(i) into RTDI;

else

If p(i) ∈ 𝑅𝑇𝐷𝑇_level then

Put p(i) into RTDT;

else

If p(i) ∈ 𝑁𝑜𝑛 − 𝑅𝑇𝑀𝐶_level then

Put p(i)into Non-RTMC;

else

Put p(i)into Non-RTNMC;

end if

end if

end for

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1886

In deep packet inspectors, these four criteria are evaluated and

forwarded to the traffic classifier with the inspected result.

Table 2. depicts traffic differentiation in detail.

Based on the packet delay and the required data rate, traffic is

differentiated in traffic classifier and priority is given.

Algorithm 1 shows the procedure for traffic differentiation.

When the arriving traffic is RTDI, then the packet is

immediately forward to the switches for taking an action. For

packet (traffic) classification, our proposed multi-criterion

based deep inspection model follows Mutual Tsallis Entropy

function. The Mutual Tsallis Entropy function is defined by

δ>1 and it is computed according to the equation:

𝑀𝜀𝛿
𝓉 = ℎ𝛿

𝓉 (𝑥) − ℎ𝛿
𝓉 (𝑥|𝑦) = ℎ𝛿

𝓉 (𝑦) −

 ℎ𝛿
𝓉 (𝑦|𝑥) = ℎ𝛿

𝓉 (𝑥) + ℎ𝛿
𝓉 (𝑦) − ℎ𝛿

𝓉 (𝑥, 𝑦),
(2)

ℎ𝛿
𝓉 (𝑥, 𝑦) is an upper bound value that has positive and

symmetric Tsallis joint entropy. It shows the correlation

between two criterions 𝑥 and 𝑦. After that normalized Tsallis

mutual entropy is:

𝑁𝑀𝜀𝛿
𝓉 (𝑥, 𝑦) =

𝑀𝜀𝛿
𝓉 (𝑥;𝑦)

ℎ𝛿
𝓉 (𝑥,𝑦)

 (3)

The entropy values are taken in the interval of 0 and 1. When

the value is 0 then 𝑥 and 𝑦 are independent, and also 𝛿 = 1.

The value 1 is taken if and only if 𝑥 = 𝑦. In this way, mutual

information-based entropy values are computed for all criteria

used for traffic classification.

4.3. Switches topology discovery

In the Data Plane, we firstly construct network topology for

switches deployed in the network. We presented a Partially

Connected Topology. For routing, we extract topological

information. For topology construction, the ISOMAP

algorithm is used to analyze the topology connectivity. It

defines each switch connection to neighbor switches via its

Nearest Euclidean Neighbors. ISOMAP algorithm takes as

input the distances 𝐷(𝑠𝑖 , 𝑠𝑗) between all pairs (𝑖, 𝑗) from 𝑁

data points in the high-dimensional input space 𝑋.

ISOMAP is a manifold learning algorithm, which performs

better than PCA, and other dimensionality reduction

algorithms. It is easy to discover the low-dimension spatial

structure in data. The key advantage of Isomap for topology

design is that it uses the Geodesic distance to estimate the

dissimilarity between two switches and it generates relatively

high accurate neighbor switches according to the Error-Prone

Distance Information.

Assume that the SDN consists of 𝑀 switches {𝑠1, … , 𝑠𝑚}

deployed in a 2D space. Let 𝑠𝑖 ∈ ℝ2 denote the location of the

switch 𝑠𝑖. Without loss of generality, we suppose that the first

𝑛 switches are considered for topology design. We use

Euclidean distance metric as a domain-specific metric for

similarity (distance) computation and the distance between

every pair of switches is computed as:

𝐷(𝑠𝑖 , 𝑠𝑗) = (∑ (𝑠𝑖𝑘 − 𝑠𝑗𝑘)
2𝐷

𝑘=1)
2

(4)

Where 𝐷 = 2 for 2D space and similarly 𝐷 = 3 for 3D space.

When compared to PCA, ISOMAP preserves the Intrinsic

Geometry of switches location since it captures the Geodesic

Manifold distances between all pairs of switches. We consider

the following attributes for switches:

(1). CPU computing resources: It is the basic and significant

component in a switch, and it contains the primary entities

such as Buffer, Operator, and Controller. It receives the

instructions and performs action and processes requests.

If the CPU of the switch is sufficient, then it can process

a large number of requests.

(2). Node degree: It is the direct indicator that reflects the node

centrality in the network topology. The switch with a

higher degree is selected since it can process more

requests.

(3). Queue Utilization (QU): It represents the available space

in the switch buffer which reflects its ability to keep and

store the packets. As for path selection, the higher switch

buffer is selected to reduce the packet loss rate in a high

network traffic scenario. However, switches must be

underloaded, so we properly select the switch 𝑖 for

intermediate node. It is computed as:

𝑄(𝑖) =
𝑁(𝑝𝑖) 𝑖𝑛 𝔡 (𝑖)

𝑆𝑖𝑧𝑒 𝑜𝑓 𝔡 (𝑖)
 (5)

Where 𝑁(𝑝𝑖) 𝑖𝑛 𝔡 (𝑖) represents the number of packets in

the buffer of the switch 𝑖.
(4). Link Quality: This metric describes the relationship

between the switches concerning the packet received rate

𝑝ϓ and packet transmission rate 𝑝ţ𝑟 , and hence link

quality 𝒢ℓ is computed as:

𝒢ℓ = 𝛼 ∗ 𝑝ϓ + β ∗ 𝑝ţ𝑟 (6)

Where 𝛼 and β are the coefficient parameters for

computing the link quality that ranges from 0 to 1. With

this value, link quality is computed differently.

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

S
14

Relationship l ines

S
13

S
15

S
16

AP2

AP1

AP4

AP3

Fig. 5. Partially connected topology

Fig. 5. depicts the connectivity of switches. Therefore, the

network topology 𝑇1×𝑁 = [𝑇(1), 𝑇(2), … 𝑇(𝑀)] can represent

connectivity and availability of switches for choosing the

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1887

particular node for path 𝑝. We calculate the parallel and serial

relationships between the switches 𝑠𝑖 and 𝑠𝑗 . A switch

containing higher connectivity (serial and parallel) is selected

as the intermediate node for packet transmission. Based on the

connectivity, 𝐿𝐶𝑖 deploys the rules in switches.

4.4. Traffic differentiated routing and rule placement

After network construction, we allow data packets from the

queue. Firstly, we process packets from the RTDI queue since

they have absolute priority (delay<50ms). Towards that, we

process other queues based on the delay tolerance for

application services. When a data packet arrives into a queue,

we must check the flow rule for the corresponding packet in a

switch. If the flow rule is matched in the flow table, then the

packet is processed. For that packet, we establish the route.

Based on the packet traffic type we construct the route. Hence,

we called it Traffic-Aware Routing.

To find the optimum path, several criteria are considered:

Packet Loss 𝑝𝑙 , RTDI Packets Queue Utilization Rate 𝑄𝑢 ,

Latency 𝐿, Bandwidth 𝐵, Hop Count 𝐻, and Distance between

two Switches 𝐷. For traffic-aware routing, we propose a Deep

Alternative Neural Network (DANN), which provides better

performance than DNN and conventional machine learning

methods.
Input Layer Alternative Layer

S1

S3

Sn

S2

Output

O1

O2

O3

O4

Yes

Yes

Yes

No

Max Pool Layer

Soft Max Layer

Fig. 6. DANN structure

Table 3. DANN hyperparameters

Layers Description
6-Alternative layers 64, 128, 256, 256, 512, 512

kernel response maps

Activation function ReLU
3-Fully connected

layers

Size = 2048

Layer kernel size 3× 3 × 3
1 volumetric max

pool layer
2× 2 × 2

Learning rate 0.1
Input neurons 512

Batch size 100
Data Samples 1000
Window size 5

DANN is a combination method, which contains the strengths

of CNN and RNN. It is depicted in Fig. 6. In DANN

architecture, we deal with the alternative layers. Each

alternative layer is a convolutional layer followed by the

recurrent layer. With the use of Adam Optimizer, DANN

parameters are selected and optimized (see Table 3.). To

perform DANN training and testing, operations Pyramid

Generation and Feature Map Combination were used. It is

explored in alternative layers. The recurrent layer in the

alternative layer has provided merits such as every element

incorporating contexts in an arbitrarily large region in the

current layer. When the time steps increase, then the state of

every unit is influenced by the other elements that are also

increasing, and it is a larger neighborhood in the current layer.

If the flow rule does not match with the flow table, then the

switch requests the path from the corresponding leaf controller.

Then the controller gives the path. With the partially connected

topology (parallel and serial relationships to switches), the

switch has verified whether the flow rule is present for all

switches in the available path. If the rule for a data packet is

present in all switches in the available path, then no Rule

Placement is required. Otherwise, flow rules are deployed for

switches. In this way, rule placement is invoked. The flow table

entries according to the traffic class are illustrated in Table 2.

4.5. Dynamic offloading

Offloading refers to offloading the various computational

expensive flow requests to the underloaded nodes based on

their current load. In this paper, we applied a dynamic

offloading scheme on both the data plane and the control plane.

Most of the research is focused on balancing the load in either

switches or controllers, which degrades the system

performance. Hence, in this paper, we propose the concept of

dynamic offloading on both the data plane and the control plane

at the same time as described below.

4.5.1. Offloading in the data plane

In the data plane, packets are offloaded from the overloaded

switch to the underloaded switches based on the current load of

the switches. It is called optimum relays selection. For dynamic

offloading, we proposed a ranking-based entropy function. This

process is held in the leaf controller. We consider several

criteria for packets offloading such as packet arrival rate 𝑝𝑎𝑟 ,

no. of packets in buffer 𝑛𝑝𝑏𝑓, the packet loss rate 𝑝𝑙𝑟 , expected

delay 𝜀𝑑 , no. of flow entries 𝑛𝑓𝑒 , and total no. of packets

correctly processed in history ∑ 𝑝(ℎ)𝑛
𝑖=1 . We compute the

entropy value 𝐸(𝑖)for all switches in the network for offloading

overloaded switch packets into under loaded switches. An

attribute set ∁ is used for switches selection:

∁= {𝑝𝑎𝑟 , 𝑛𝑝𝑏𝑓 , 𝑝𝑙𝑟 , 𝜀𝑑, 𝑛𝑓𝑒 , ∑ 𝑝(ℎ)𝑛
𝑖=1 } (7)

The mathematical formula to calculate 𝐸(𝑝(𝑖)) can be defined

as:

𝐸(𝑝(𝑖)) = − ∑ 𝜌(𝑖) log2 𝜌(𝑖)𝑘
𝑖=1 (8)

Where 𝜌(𝑖) denotes the probability of switch 𝑖 being selected

in the controller for offload. Information entropy function is

used here to address the uncertainty issue. The minimum

entropy represents the switch has lower uncertainty and the

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1888

expected entropy is achieved by the higher uncertainty. For all

switches, we compute the expected entropy value according to

the attribute set ∁ to ᶃ (conditional Entropy), which is

computed as:

𝐻(ᶃ|∁) = ∑ 𝜌(ᶃ𝑖)
𝑛
𝑖=1 𝐻(ᶃ𝑖)

(9)

Now, we determine the Information Gain 𝔾 between the

entropy and expectation values as follows:

𝔾 (ᶃ, ∁) = 𝐻(ᶃ) − 𝐻(ᶃ|∁) (10)

Then we compute GainRatio Ғ for each switch 𝑆𝑖 ∈ 𝐿𝐶𝑖

according to the attribute set ∁ and select the switches with

maximum Ғ.

Packet

Device

1). RTDI Queue

2). RTDT Queue

3). Non RTMC Queue

4). Non RTNMC Queue

Traffic Differentiation

ER

Traffic Differentiated

Routing using DANN

Process RTDI Queue

If Flow == Match

No
Action Taken via Selected

Forwarding Path

Yes

Switch

Forwarding Selection Path

Network Initialization (Devices, ERs,

Switches, Controllers)

Request Flow Rules for the

Selection Path

Check Connectivity

Packet Forwarding

Leaf Controller

Dominant

Controller

If Switch ==

Overload

No

Terminate
Yes

Offloading Decision Making using

Ranking based Entropy Function

If Controller ==

Overload

Yes

Offloading Decision Making using

HDK-NN

No

Terminate

Process End

Deep Packet Inspector

Traffic Classifier

Packet Deadline

Packet Size

 Protocol Used

Type of Service Request

Traffic Classification

 Forwarding Path

Selection

Queue Utilization Rate,

Packet Loss Rate,

Latency, Bandwidth,

Hop Count, Distance

between two switches

Link Connectivity

CPU Computing Resources,

Queue Buffer Length, Node

Degree and Link Quality

Offloading

Packet arrival rate, no of

packets in buffer, packet loss

rate, expected delay, no of

flow entries, tot. no of

packets processed in history

Fig. 7. Workflow diagram

4.5.2. Offloading in controller plane

In this section, we define the controller overloading in the

controller plane. Controller load measurement is done in the

𝐷𝐶 to report the load statistics for all 𝐿𝐶(𝑖). The flow statistics

include the number of flow table entries 𝑁(𝜁𝑒), the average

packet arrival rate 𝐴𝑝𝑟 of each switch 𝑖 , the round-trip time

ℝ𝒯ţ, and the current load 𝐿𝐶(𝑖).

The current load of LC is calculated by the number of packets

waiting to be processed and currently running on the switches

at time ȶ:

𝐿𝐶(𝑖) =
∑ 𝑆𝑖(ℽ)𝑛

𝑖=1

ℽ
 (11)

Where 𝑆𝑖=1…𝑛 denotes the number of switches, and 𝑆𝑖(ℽ) is the

number of packets from switch 𝑖 . Each entity's purpose is

depicted in Fig. 7. Also, we compute 𝐿𝑜𝑎𝑑𝑅𝑎𝑡𝑖𝑜 for all 𝐿𝐶(𝑖)

by the abovementioned factors:

𝐿𝑜𝑎𝑑𝑅𝑎𝑡𝑖𝑜 = 𝑎𝑁(𝜁𝑒) + 𝑏𝐴𝑝𝑟 + 𝑐ℝ𝒯ţ + 𝑑𝐿𝐶(𝑖) (12)

In equation (12), 𝑎, 𝑏, 𝑐, 𝑑 are the coefficient weights and their

sum is equal to 1.0. Based on the 𝐿𝑜𝑎𝑑𝑅𝑎𝑡𝑖𝑜, 𝐷𝐶 determines

the overloaded 𝐿𝐶(𝑖) and switches connected to it.

When compared to other offloading approaches in SDN, our

proposed solution is better in three perspectives:

 Consistency and completeness: The network is full-

fledged and it is not discontinuing its services at any time.

When the offloading action is taken, then the consistency

or stability of switches is high and offloading action is not

required for a longer time.

 Overload: In this stage, we compute the amount of

overload and overhead in the data plane and controller

plane imposed on the system.

 Scalability: The performance is increased and not affected

when the number of IoT devices increases.

V. RESULTS

This section contains the evaluation of the AI-aided SD-IoT

model with a description of experiments and simulation

analysis. In the following subsections, the simulation setup,

comparison results, and motivating application are given.

5.1. Experimental setup

To evaluate the QoS for the proposed AI-aided SD-IoT model,

we used NS3.26. It is a discrete event network simulator written

by C++ programming language, and python scripts are used.

Table 5. describes the simulation parameters that are

considered for the simulation. Our simulation testbed consists

of 50 IoT devices, 6 ERs, 21 OpenvSwitches, 4 Open Daylight

Controllers (3 leaf controllers, and 1 dominant controller).

The simulated topology is partially connected topology to

connect n switches to the controller. Each switch is connected

to a single device and reactivity of switches is investigated in

the controller and the status of partially connected topology is

updated.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1889

Further, simulation class libraries were employed to perform

the simulation. Our three-layered simulation topology is given

in Fig. 8.

Tables 4. and 5. represent the configuration of the system,

testbed, and simulation settings respectively. In Table 6., C1,

C2, and C3 represent the workload of local controllers 1, 2, and

3 respectively and DC is the dominant controller workload.

Table 4. Configuration of system and testbed

 Operating System Ubuntu 14.04

LTS (32bit)

System

Configuration

Implementation

Tool

NS3.26

 Processor Dual-core and

above

 RAM 2GB and above

Testbed

Configuration

IoT Devices

(Hosts)

3.3GHz, 4-cores,

4GB RAM

 OpenvSwitch 3.3GHz, 4-cores,

4GB RAM

 Open Daylight 3.3GHz, 4-cores,

4GB RAM

Table 5. Simulation settings

Simulation Parameters Values

Communication range 1000×1000m

IoT

Devices

No of devices 50

Topology Partially Connected

Topology

IoT application

size

4000-100000MI

Trained

applications

50 per minute

Devices type Hosts

Application type Real-time and non-real-

time

No of ERs 6

SDN

No of controllers 4

No of switches 21

Connection Speed 1000Mbps

Flow table size 1000 entries

Interval for flow

request

0.001s

Flow size 100bytes

Learning rate 0.025

Switch degree minimum 3

CPU of switch 5 units (packets per

second)

buffer length 8

Start load 100 applications/sec

Traffic Type TCP, UDP, IP, HTTP,

RTP

Packet Size 512 bytes

Number of packets 1,00,000

Packet Interval 50ms

Simulation time 300s

Training Data Samples 10000

Testing Data Samples 5000

Table 6. Controller load statistics

Workload Value

Maximum workload (C1) 1000 (events/sec)

Maximum workload (C2) 1100 (events/sec)

Maximum workload (C3) 1200 (events/sec)

DC maximum work load 5000 (events/sec)

(a)

(b)

Fig. 8. Simulation testbed: (a) Simulation diagram;

(b) Simulation in NetAnim

5.2. Performance metrics

In this section, we define the significant QoS metrics with the

necessary formulas considered in this paper for performance

evaluation and validation.

(1). End-to-End Delay – It is a time duration caused by the

transmission of the packet from the source to the

destination. The achievement of QoS leads to the

minimization of end-to-end delay. It is computed by:

𝐸𝑛𝑑 − 𝑡𝑜 − 𝐸𝑛𝑑 𝐷𝑒𝑙𝑎𝑦 =
∑ 𝑑𝑒𝑙𝑎𝑦𝑝(𝑖)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 (13)

(2). Packet Loss Rate – It is a significant phenomenon that

leads to the loss of packets traveling from the source to

the destination node. The main reason for packet loss is

the queue overflow in switches. It is computed as:

𝑃𝑎𝑐𝑘𝑒𝑡 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑒 =
𝑁(𝐿𝑝𝑐) 𝑎𝑡 𝑠(𝑖)

𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 𝑎𝑡 𝑠(𝑖)
 (14)

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1890

Where 𝑁(𝐿𝑝𝑐) represents the number of lost packet count

in switch 𝑖.
(3). Switch Failure Rate – It is defined as the number of

packets failed on switch 𝑖 at time ţ.
(4). Controller Failure Rate – It is defined as the number of

switches failed at the controller at time t.

(5). Throughput – It is defined as the increased packets

transmission and reception status of all IoT devices in the

network. However, it is based on the capability of

hardware components and their configurations. In this

paper, we define the throughput metric in the following

way: “the number of packets successfully forwarded from

switch 𝑖 per unit of time”.

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
∑ 𝑡𝑟𝑎𝑛𝑚𝑠𝑖𝑠𝑠𝑖𝑜𝑛 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑝(𝑖)

ţ
 (15)

(6). Rules Placement – Through flow rule installation, we

avoid the packet loss, and service requirements meet the

user/device QoS requirements. Also, rules placement

must be reduced to avoid the flow table overloading.

𝑅𝑢𝑙𝑒 𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑁(𝑅𝑃) 𝑎𝑡 𝑠(𝑖) ∈ 𝐿𝐶𝑖 (16)

Where 𝑅𝑃 refers to the number of rules placed in the

switch 𝑖.
(7). Load Balance Rate – It is the rate of load balancing among

switches and controllers. It is a positive metric so it

requires a high value to obtain better QoS.

5.3. Comparative study

In this section, we demonstrate the experiment results for the

proposed AI-aided SD-IoT model, as well as qualitative and

quantitative comparison with the previous approaches in SDN

and IoT. We have primarily focused on investigating the

performance in four previous approaches, namely Sway [24],

DNN-SR [38], FSM [39], and FRI [37]. In Table 7., we

compare the performance by the aforementioned significant

metrics.

5.3.1. End-to-end delay

The computation of delay for any kind of network is important

to show the effectiveness of QoS. It is mainly caused by packets

waiting in a queue. To avoid this delay, an optimum path is

selected between the source to the destination. Fig. 9. indicates

the performance of the end-to-end delay for the proposed model

compared to the Sway and DNN-SDR.

From the analysis and trend line in Fig. 9., it is clear that the

proposed model gains a lower end-to-end delay to transmit

packets. In this paper, we differentiate the traffic arrived from

various IoT devices. Based on the deep packet inspection, we

classify the packets, and routing is implemented according to

the classified traffic.

Fig. 9. End-to-end delay vs. Packets per second

In Sway, traffic type is considered, but it fails to select the

optimum path, which results in high end-to-end delay.

Similarly, DNN-SDR uses software-defined routers to send the

packets to the destination router. It requires the optimum path

and traffic differentiated route to forward the packets. The

proposed work uses an optimum path according to the traffic

type and decreases the end-to-end delay by above 45%.

Table 7. Qualitative comparison

Prior Works Key Idea Advantages Limitations

FSM
Fractional level switch

migration

(1). Does not require frequent flow

migrations

(2). Less overhead

(1). Not suited for a large-scale

environment

(2). Absolute switch prediction is not

possible

Sway

Traffic aware QoS routing

(delay-sensitive and loss-

sensitive applications)

(1). The route is constructed for

multimedia traffic

(2). K-paths are determined

(1). Not suited for heterogeneous

devices

(2). Low throughput

(3). Low scalability

(4). Low Load balance rate

DNN-SDR
Load balanced routing via

queue load rate prediction

(1). Network dimensionality is

reduced

(2). Achieved load balance rate

(1). Time-consuming

(2). Poor scalability

(3). Single point of failure

FRI
Flow rules placement in

switches

(1). Predicts the best path for traffic

(2). Low packet loss rate

(1). Low throughput

(2). Traffic overhead is high

(3). Large delay in best path selection

AI-aided SD-

IoT

Traffic differentiation, QoS

routing, rules placement and

dynamic offloading

(1). High QoS

(2). Less complexity

(3). High scalability

 -

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60

E
n
d

-t
o

-E
n
d

 D
el

ay
 (

m
s)

Packets per second

AI-aided SD-IoT
Sway
DNN-SDR
AI-aided SD-IoT
Sway
DNN-SDR

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1891

5.3.2. Efficacy of packet loss rate

In a large-scale network, the packet drop rate is high in

transmission and reception. The unit of packet loss rate is %

and it must be low to show better performance. Fig. 10. shows

the effectiveness of the packet loss rate of the proposed model

compared to the previous approaches.

Fig. 10. Packet loss rate vs. Packets per second

When compare to Sway, DNN-SDR, and FSM, our proposed

AI-aided SD-IoT model has shown good performance. This is

achieved by optimum switches selection for transmitting

packets and the selection of the method to provide the optimum

solutions.

In SD-IoT, packet loss is a general issue, but it is not easy to

recover it. In this paper, we effectively addressed this issue by

proposing the optimum path and effective algorithms. In DNN-

SDR, queue utilization is predicted by DNN for all SDRs, but

the packet is transmitted via Dijkstra path selection. It causes

higher packet loss rates. Our proposed model reduces the

packet loss rate by up to 30%. Table 8. shows the packet loss

rates comparison of the proposed model with FSM, DNN-SDR,

and Sway.

Table 8. Packet loss rate

QoS works # of packets

sent

of lost

packets

Packet loss

rate (%)

FSM 5000 226 4.51%

Sway 5000 175 3.24%

DNN-SNR 5000 125 2.5%

Proposed 5000 50 1%

5.3.3. Efficacy of switch failure rate

Providing load balancing in conditions where a large number

of packets are processed from IoT devices is challenging. It

must be taking into account that the size of the flow table is

limited and that the switch may fail due to overfilling. The

switch failure rate must be low because one of the basic

assumptions of SDN is global network management, and this is

reflected by minimizing the number of switch failures. Fig. 11.

shows the switch failure rate versus packets per second. The

computational delay between switch and controller is less

because of partially connected topology created using the

ISOMAP algorithm and the flow installed for some of the

switches, which decreases the flow table overloading by the

installation of new flow rules. Hence, the switch failure rate is

decreased. Sway does not concentrate on the switch failure rate.

Fig. 11. Switch failure rate vs. Packets per second

When the packet is transmitted via frequent switches, it can

cause failure even if the packet is forwarded on the same switch.

To avoid this issue, switches failure must be handled promptly

and it must be active when all packets are processed. In this

paper, we considered multiple optimum criteria for switches

routing. Due to the topology discovery and the type of network

topology (fragmentation-optimized distributed controller), we

achieved a lower switch failure rate. When compared to Sway,

the AI-aided SD-IoT model has reduced the switch failure rate

by up to 35%. Likewise, a 10.5% reduction was achieved

compared to DNN-SDR and FSM.

5.3.4. Efficacy of controller failure rate

Similar to the switch failure, controller failures must be avoided

in SDN since it directly affects the QoS. Controller failure

happens when all the switches connected to the controller fail

to process the incoming request.

Today, applications requested by the IoT users are different.

Some of them are delay tolerant, and some of them are delay

intolerant. For sensitive IoT applications, the delay must be

lower. While handling a large number of applications with

various QoS requirements, the computing resources for the

controller may become unavailable. To overwhelm this

problem, load balancing is introduced, but the effective load

balancing mechanisms are still required. The performance of

the controller failure rate for the proposed model and FSM,

Sway, and DNN-SDR is given in Fig. 12.

Fig. 12. Controller failure rate vs. Number of

controllers

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18
0.2

0.22
0.24
0.26

10 20 30 40 50 60 70 80 90 100

P
ac

k
et

 L
o

ss
 R

at
e

(%
)

Packets per second

FSM
Sway
DNN-SDR
AI-aided SD-IoT

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600 700 800 900 1000

S
w

it
ch

 F
ai

lu
re

 R
at

e
(%

)

Packets Per Second

FSM
Sway
DNN-SDR
AI-aided SD-IoT

0

10

20

30

40

50

1 2 3 4

C
o

n
tr

o
ll

er
 F

ai
lu

re
 R

at
e

(%
)

Number of Controlllers

FSM
Sway
DNN-SDR
AI-aided SD-IoT

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1892

In comparison to the previous approaches, our model achieved

a lower controller failure rate. The DC is responsible to take the

action of offloading the packets in a dynamic time interval. It

increases QoS efficiency and decreases the controller failure

rate. When compared to Sway, FSM, and DNN-SDR, our

proposed model has reduced controller failures by 15%.

5.3.5. Efficacy of throughput

It is a significant and positive metric in SD-IoT. It is reduced

due to traffic congestion at large scale networks. In a dense

network area, a huge number of packets are forwarded and

received. It results in poor performance in terms of network

throughput. Fig. 13. demonstrates the performance of the

throughput versus network load.

Fig. 13. Throughput vs. Network load

In sway, FSM, and DNN-SDR, the network traffic pattern is

not highly concentrated and it is not based on the applications

request from IoT devices. To meet this demand, in this paper,

we introduce two core concepts, namely topology discovery

and traffic differentiation by Isomap and deep packet

inspection method. The proposed AI-aided SD-IoT model

increases throughput by up to 12% compared to FSM, Sway,

and DNN-SDR.

5.3.6. Efficacy of rules placement

In this paper, we first achieved the installation of flow rules in

routing effectively. With the use of partially connected

topology and all LCs in the network the switch's relationships

can be verified.

Fig. 14. Number of switches vs. No. of rules placed

A minimum degree of a switch in a controller is 3 and based on

that the flow rules are deployed over the switch. This step helps

to reduce the number of rules placement and prevents the flow

table overloading. Fig. 14. shows the performance of the rule

placement versus the number of switches.

We compared our proposed AI-aided SD-IoT model with FRI.

In FRI, large numbers of flow rules are deployed, which

increases the size of the flow table. When the switches are

overloaded, packets migration is employed. A large number of

switches migration degrade the QoS level and affect the

controller performance.

5.3.7. Efficacy of load balance rate

The proposed model introduced the concept of dynamic

offloading of IoT device requests (packets/tasks) in

fragmentation-optimized distributed controllers.

Fig. 15. Load balance rate vs. packets per second

The comparison of the load balance rate for the proposed and

previous approaches is given in Fig. 15. To avoid the controller

failures due to overloading issue, the multi-controller

environment is established. The FSM approach only migrates

the switches from the overloaded controller to the underloaded

controller. It produces a better load-balancing rate on the

control plane, but the frequent migration from one switch to

another increases the overhead in the controller. Also, FSM

does not concentrate on the data plane. In Sway and SDR, the

load balance rate is reduced due to poor network management.

5.3.8. QoS validation

From the above analysis, we see that the proposed AI-aided

SD-IoT model is capable of achieving high QoS in terms of

end-to-end delay, packet loss rate, switch failure rate, controller

failure rate, throughput, rules placement, and load balance rate.

In particular, our proposed model achieves the best

performance in QoS guaranteed factors, which is illustrated in

Tables 9. and 10. We observe that the AI-aided SD-IoT model

has satisfied QoS factors since it uses traffic differentiation,

optimum routing via best switches, dynamic offloading, and

rules placement.

In this paper, delay constraints, load balancing constraints, and

flow constraints are satisfied. In traffic differentiation and

0

100

200

300

400

500

600

700

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Network Load

FSM

Sway

DNN-SDR

AI-aided SD-IoT

0

10

20

30

40

50

60

3 6 9 12 15 18 21

N
o

 o
f

ru
le

s
p

la
ce

d

Number of Switches

FRI

AI-aided SD-IoT

FRI

AI-aided SD-IoT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

L
o

ad
 B

al
an

ce
 R

at
e

(%
)

Packets Per Second

FSM

Sway

DNN-SDR

AI-aided SD-IoT

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1893

routing, the path is established based on the delay-sensitive and

loss-sensitive applications flow.

Table 9. QoS guarantee factors

State-

of-the-

art

Delay Through-

put

Packet

Loss

Rate

Load

Balance

Rate

Scalability

Sway

DNN-

SDR

FSM

FRI

AI-

aided

SD-

IoT

 - TRUE (Does meet the QoS requirement)

 -FALSE (Does not meet the QoS requirement)

Table 10. Quantitative comparison

QoS

Parameters
FSM Sway

DNN-

SDR
FRI

AI-

aided

SD-

IoT

End-to-End

Delay (ms)
- 3.016 3.7416 - 0.625

Packet

Loss Rate

(%)

0.1029 0.1098 0.0955 - 0.0325

Switch

Failure

Rate (%)

4.25 10.27 4.75 - 5.2

Controller

Failure

Rate (%)

12.75 28 20.75 - 8.75

Throughput

(Kbps)
357.9 321.2 344.4 - 404.5

Rules

Placement
- - - ≅ 31 ≅ 10

Load

Balance

Rate (%)

0.325 0.181 0.275 - 0.737

5.4. Motivating application

The usefulness of our proposed AI-aided SD-IoT model is

given in this section by providing an example. We have tested

our proposed model in Industry 4.0 applications, which is also

referred to as IIoT. There are several IoT devices deployed in

the industrial environment, namely RFID, BLE, Modbus,

CANbus, EtherCAT, Profibus, and Profinet. From the IIoT

devices, the task request is forwarded to the controller in XML

or JSON format.

Fig. 16. shows the Industry 4.0 application implemented in SD-

IoT. To ensure communication of IoT devices with Router,

different communication protocols are used, such as HTTP,

CoAP, MQTT, BLE, Modbus, and CAN-open Ethernet.

Controllers

RFID

BLE

Modbus

EtherCAT

CANbus Profibus

Profibus

Router

Switches

Fig. 16. Industry 4.0 in SD-IoT (Use case)

5.5. Computational complexity analysis

We evaluate the performance of the proposed solution by

determining the amount of overhead and overload on the

network. To analyze it, we calculated the computational

complexity. IoT devices are resource-constrained and they

must save energy to be able to operate for a longer time. Hence,

we compute the time complexity of the proposed solution.

Time complexity refers to the order of growth the proposed

algorithm requires in execution time for the given input. For

representing the time complexity, Big-O notation is used. In

this paper, the time complexity is predicted using three factors,

namely, complexity, topology, and traffic pattern. Our

proposed AI-aided SD-IoT model time complexity is compared

with the previous state-of-the-art research and depicted in

Tables 11. and 12.

Table 11. Time complexity computation

State-of-

the-art

Complexity Type

(Time)

Topology Traffic

Pattern

Sway Non-deterministic

polynomial time

DNN-SDR Exponential time

FSM Log linear

FRI Cubic

Proposed Logarithmic

The statistical performance of time complexity is evaluated

through simulations. Performance is compared with Sway,

DNN-SDR, FSM, and FRI. 𝐷 is the number of IoT devices and

n represents the number of required operations. When network

traffic is unevenly distributed to the SDN controller, then time

complexity increases because switches are bandwidth

constrained and need low response time for sensitive

applications.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1894

Table 12. Time complexity computation

Algorithm

Time Complexity (3 Cases)

Linear Best Worst

Sway ~𝑂(1) ~𝑂(𝑛𝐷) ~𝑂(𝑛2)

DNN-SDR ~𝑂(𝑛𝐷) ~𝑂(𝑛2𝐷) ~𝑂(2𝑁𝐷)

FSM ~𝑂(𝑛2𝐷) ~𝑂(𝑛2𝐷) ~𝑂(𝑛2𝐷)

FRI ~𝑂(𝑛𝐷) ~𝑂(𝑛2𝐷) ~𝑂(𝑛2𝐷)

Proposed AI-

aided SD-IoT
~𝑂(𝑛𝐷) ~𝑂(4𝑛𝐷) ~𝑂(𝑛2𝐷)

After the time complexity evaluation based on above factors,

we have found that the proposed model requires 𝑂(4𝑛 × 𝐷),

and 𝑂(4𝑛) represents execution time required for completing

the four processes such as traffic differentiation, topology

discovery, traffic differentiated routing, dynamic offloading

and rule placement. From the time complexity analysis, if the

number of devices increases and devices are resource-

constrained, then the stronger mechanisms are required to

improve the level of QoS.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a novel AI-aided SD-IoT model for

traffic differentiated routing and dynamic offloading. We

focused on AI concepts for all layers of the proposed model. To

mitigate the issues of multi-controller environment-based load-

balancing mechanisms, we presented fragmentation-optimized

distributed controllers enabled SD-IoT environment.

We presented four new concepts in this paper to improve the

QoS: traffic differentiation, topology discovery, traffic

differentiated routing and rule placement, and dynamic

offloading. We showed that the QoS is increased through the

proposed concepts and algorithms, and we showed our

proposed model is an effective and scalable solution for any

kind of application environments (sensitive, non-sensitive,

delay-tolerant, and delay intolerant). Moreover, we proved that

our AI-aided SD-IoT model achieves 12% of reduced end-to-

end delay, 30% of reduced packet loss rate, 35% of reduced

switch failure rate, 15% of reduced controller failure rate, 12%

of increased throughput, 65% of reduced rule placement and 30%

of increased load balancing rate.

In the future, we plan to work on the 5G environment, which

provides a high data rate and less latency in smart IoT

applications, and we plan to test our proposed solution in the

different real-world application scenarios.

REFERENCES

[1] Y. S. Yu and C. H. Ke, “Genetic algorithm-based

routing method for enhanced video delivery over

software defined networks,” Int. J. Commun. Syst., vol.

31, no. 1, pp. 1–13, 2018.

[2] A. K. Rangisetti, T. V. Pasca S., and B. R. Tamma,

“QoS Aware load balance in software defined LTE

networks,” Comput. Commun., vol. 97, pp. 52–71,

2017.

[3] H. Sufiev, Y. Haddad, L. Barenboim, and J. Soler,

“Dynamic SDN controller load balancing,” Futur.

Internet, vol. 11, no. 3, pp. 1–21, 2019.

[4] S. Causevic and M. Begovic, “Optimizing Traffic

Routing in Different Network Environments Using the

Concept of Software-Defined Networks,” in

Proceedings of the 2019 42nd International

Convention on Information and Communication

Technology, Electronics and Microelectronics

(MIPRO), 2019, pp. 409–414.

[5] Y. C. Chang, W. X. Cai, and J. W. Jhuang, “Bacteria-

inspired communication mechanism based on

software-defined network,” 2018 27th Wirel. Opt.

Commun. Conf. WOCC 2018, pp. 1–3, 2018.

[6] M. Begović and H. Bajrić, “Solving Management

Constraints of Traditional Networks using the Concept

of Software Defined Networking,” Int. J. Soft Comput.

Eng., vol. 7, no. 5, pp. 7–12, 2017.

[7] Y. Kyung and J. Park, “Prioritized admission control

with load distribution over multiple controllers for

scalable SDN-based mobile networks,” Wirel.

Networks, vol. 25, no. 6, pp. 2963–2976, 2019.

[8] J. Cui, Q. Lu, H. Zhong, M. Tian, and L. Liu, “A Load-

Balancing Mechanism for Distributed SDN Control

Plane Using Response Time,” IEEE Trans. Netw. Serv.

Manag., vol. 15, no. 4, pp. 1197–1206, 2018.

[9] Y. W. Ma, J. L. Chen, Y. H. Tsai, K. H. Cheng, and W.

C. Hung, “Load-Balancing Multiple Controllers

Mechanism for Software-Defined Networking,” Wirel.

Pers. Commun., vol. 94, no. 4, pp. 3549–3574, 2017.

[10] T. Hu, P. Yi, J. Zhang, and J. Lan, “Reliable and load

balance-aware multi-controller deployment in SDN,”

China Commun., vol. 15, no. 11, pp. 184–198, 2018.

[11] C. Wang, B. Hu, S. Chen, D. Li, and B. Liu, “A Switch

Migration-Based Decision-Making Scheme for

Balancing Load in SDN,” IEEE Access, vol. 5, no. c,

pp. 4537–4544, 2017.

[12] T. Hu, P. Yi, J. Zhang, and J. Lan, “A distributed

decision mechanism for controller load balancing

based on switch migration in SDN,” China Commun.,

vol. 15, no. 10, pp. 129–142, 2018.

[13] H. Xu, H. Huang, S. Chen, G. Zhao, and L. Huang,

“Achieving High Scalability Through Hybrid

Switching in Software-Defined Networking,”

IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 618–632,

Feb. 2018.

[14] H. I. Kobo, A. M. Abu-Mahfouz, and G. P. Hancke,

“Fragmentation-based distributed control system for

software-defined wireless sensor networks,” IEEE

Trans. Ind. Informatics, vol. 15, no. 2, pp. 901–910,

2019.

[15] J. Hua, L. Zhao, S. Zhang, Y. Liu, X. Ge, and S. Zhong,

“Topology-Preserving Traffic Engineering for

Hierarchical Multi-Domain SDN,” Comput. Networks,

vol. 140, pp. 62–77, Jul. 2018.

[16] F. Al-Tam and N. Correia, “On load balancing via

switch migration in software-defined networking,”

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 13, Number 8 (2020), pp. 1880-1895

© International Research Publication House. https://dx.doi.org/10.37624/IJERT/13.8.2020.1880-1895

1895

IEEE Access, vol. 7, pp. 95998–96010, 2019.

[17] Y. Zhou, K. Zheng, W. Ni, and R. P. Liu, “Elastic

Switch Migration for Control Plane Load Balancing in

SDN,” IEEE Access, vol. 6, no. c, pp. 3909–3919, 2018.

[18] K. L. Dias, M. A. Pongelupe, W. M. Caminhas, and L.

de Errico, “An innovative approach for real-time

network traffic classification,” Comput. Networks, vol.

158, pp. 143–157, Jul. 2019.

[19] M. Lopez-Martin, B. Carro, and A. Sanchez-

Esguevillas, “Neural network architecture based on

gradient boosting for IoT traffic prediction,” Futur.

Gener. Comput. Syst., vol. 100, pp. 656–673, 2019.

[20] C. Yu, J. Lan, J. C. Xie, and Y. Hu, “QoS-aware traffic

classification architecture using machine learning and

deep packet inspection in SDNs,” Procedia Comput.

Sci., vol. 131, pp. 1209–1216, 2018.

[21] A. Azzouni and G. Pujolle, “NeuTM: A neural

network-based framework for traffic matrix prediction

in SDN,” IEEE/IFIP Netw. Oper. Manag. Symp. Cogn.

Manag. a Cyber World, NOMS 2018, pp. 1–5, 2018.

[22] M. M. Tajiki, B. Akbari, M. Shojafar, and N. Mokari,

“Joint QoS and congestion control based on traffic

prediction in SDN,” Appl. Sci., vol. 7, no. 12, pp. 1–15,

2017.

[23] J. Park, J. Hwang, and K. Yeom, “NSAF: An Approach

for Ensuring Application-Aware Routing Based on

Network QoS of Applications in SDN,” Mob. Inf. Syst.,

vol. 2019, 2019.

[24] N. Saha, S. Bera, and S. Misra, “Sway: Traffic-Aware

QoS Routing in Software-Defined IoT,” IEEE

Transactions on Emerging Topics in Computing, IEEE

Computer Society, pp. 1–12, 2018.

[25] C. Lin, K. Wang, and G. Deng, “A QoS-aware routing

in SDN hybrid networks,” Procedia Comput. Sci., vol.

110, pp. 242–249, 2017.

[26] Y. C. Wang and S. Y. You, “An Efficient Route

Management Framework for Load Balance and

Overhead Reduction in SDN-Based Data Center

Networks,” IEEE Trans. Netw. Serv. Manag., vol. 15,

no. 4, pp. 1422–1434, Dec. 2018.

[27] H. Wang, H. Xu, L. Huang, J. Wang, and X. Yang,

“Load-balancing routing in software defined networks

with multiple controllers,” Comput. Networks, vol. 141,

pp. 82–91, Aug. 2018.

[28] S. Misra and N. Saha, “Detour: Dynamic Task

Offloading in Software-Defined Fog for IoT

Applications,” IEEE J. Sel. Areas Commun., vol. 37,

no. 5, pp. 1159–1166, May 2019.

[29] A. Akbar Neghabi, N. Jafari Navimipour, M.

Hosseinzadeh, and A. Rezaee, “Nature-inspired meta-

heuristic algorithms for solving the load balancing

problem in the software-defined network,”

International Journal of Communication Systems, vol.

32, no. 4. John Wiley and Sons Ltd, 10-Mar-2019.

[30] S. Ejaz, Z. Iqbal, P. Azmat Shah, B. H. Bukhari, A. Ali,

and F. Aadil, “Traffic Load Balancing Using Software

Defined Networking (SDN) Controller as Virtualized

Network Function,” IEEE Access, vol. 7, pp. 46646–

46658, 2019.

[31] Y. J. Chen, L. C. Wang, M. C. Chen, P. M. Huang, and

P. J. Chung, “SDN-Enabled traffic-aware load

balancing for M2M networks,” IEEE Internet Things J.,

vol. 5, no. 3, pp. 1797–1806, Jun. 2018.

[32] T. Hu, J. Lan, J. Zhang, and W. Zhao, “EASM:

Efficiency-aware switch migration for balancing

controller loads in software-defined networking,”

Peer-to-Peer Netw. Appl., vol. 12, no. 2, pp. 452–464,

Mar. 2019.

[33] H. Xue, K. T. Kim, and H. Y. Youn, “Dynamic load

balancing of software-defined networking based on

genetic-ant colony optimization,” Sensors

(Switzerland), vol. 19, no. 2, Jan. 2019.

[34] L. Gupta, R. Jain, A. Erbad, and D. Bhamare, “The P-

ART framework for placement of virtual network

services in a multi-cloud environment,” Comput.

Commun., vol. 139, no. October 2018, pp. 103–122,

2019.

[35] S. Bera, S. Misra, and A. Jamalipour, “FlowStat:

Adaptive Flow-Rule Placement for Per-Flow Statistics

in SDN,” IEEE J. Sel. Areas Commun., vol. 37, no. 3,

pp. 530–539, Mar. 2019.

[36] W. Li, Z. Qin, K. Li, H. Yin, and L. Ou, “A Novel

Approach to Rule Placement in Software-Defined

Networks Based on OPTree,” IEEE Access, vol. 7, pp.

8689–8700, 2019.

[37] I. I. Awan, N. Shah, M. Imran, M. Shoaib, and N. Saeed,

“An improved mechanism for flow rule installation in-

band SDN,” J. Syst. Archit., vol. 96, pp. 1–19, Jun.

2019.

[38] H. Yao, X. Yuan, P. Zhang, J. Wang, J. Chunxiao, and

M. Guizani, “Machine Learning Aided Load Balance

Routing Scheme Considering Queue Utilization,”

IEEE Trans. Veh. Technol., pp. 1–1, Jun. 2019.

[39] F. AL-Tam and N. Correia, “Fractional switch

migration in multi-controller software-defined

networking,” Comput. Networks, vol. 157, pp. 1–10,

Jul. 2019.

[40] X. Hou, M. Wu, and M. Zhao, “An Optimization

Routing Algorithm Based on Segment Routing in

Software-Defined Networks,” Sensors (Basel)., vol. 19,

no. 1, Dec. 2018.

