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Abstract 

Internet of Things (IoT) becomes an emerging network 

technology that expedites billions of devices to be connected 

via the Internet to provide real-time intelligent application 

services. The benefits of Software-Defined Networking (SDN) 

can be used to fulfill IoT requirements. Quality of Service 

provisioning is an on-going demand in software-defined IoT 

(SD-IoT), particularly for large scale environments. In this 

paper, we address this issue by proposing a seamless model of 

AI-aided Traffic Differentiated QoS Routing and Dynamic 

Offloading in distributed fragmentation optimized SDN-IoT. 

Firstly, we propose a Multi-Criterion based Deep Packet 

Inspection method for classifying the network traffic, which is 

held in Edge Routers (access points). Secondly, we construct a 

Partially Connected Network Topology using the ISOMAP 

algorithm for an effective rule placement and routing. We 

propose a Traffic Differentiated QoS Routing for forwarding 

data packets via the most suitable switches. We select the 

optimum route by Deep Alternative Neural Network (DANN). 

Based on the relationships among switches, the path is selected 

and flow rules are deployed. The poor QoS is often caused by 

load imbalance in controllers and switches. To overwhelm this 

issue, we propose a Dynamic Offloading scheme in SD-IoT. 

We offload the data packets from the overloaded controller to 

the underloaded controller using Hassanat Distance-based K-

nearest neighbors (HDK-NN) algorithm. Similarly, we propose 

a Ranking-based Entropy function (R-Ef) to allow dynamic 

offloading among switches. Simulation is performed using the 

NS3.26 simulator and the results proved that our proposed AI-

aided SD-IoT model provides superior QoS performance 

compared to previous approaches. 

Keywords: Software-Defined Internet of Things, QoS 

Provisioning, Artificial Intelligence, Traffic Classification and 

Routing, Dynamic Offloading, Rule Placement 

I. INTRODUCTION  

Software-Defined Internet of Things (SD-IoT) is a new 

network management and control technology that supports 

diverse real-time applications [1-3]. SDN consists of data 

forwarding and control over the network devices. It separated 

the control logic from forwarding devices and controls it from 

the single entity, which is called a controller. SD-IoT is a future 

Internet technology that supports a wide range of applications 

such as Industrial IoT, Sensor Networks, and so on [4-8]. 

Quality of Service (QoS) provisioning is a potential need in 

SD-IoT (delay-sensitive or loss-sensitive). To improve the QoS 

while providing control and management of SDN, different 

mechanisms have been proposed such as routing, queuing 

theory, scheduling, traffic classification, load balancing, and 

rule placement. Task offloading is a current topic in SD-IoT 

applications. However, employing a huge number of 

heterogeneous IoT devices in a centralized SDN controller does 

not meet the QoS requirements. Hence, the multi-controller 

enabled distributed environment is presented. In a distributed 

environment, the overloading of the individual controller is a 

core issue [9-13]. The fragmentation method was introduced in 

[14]. This approach uses two different controllers such as local 

controllers and the global controller. The global controller has 

a global view of the local controller’s management and control. 

In software-defined WSN, a local controller is connected with 

the sink node and it communicates and gathers data from sensor 

nodes. 

A hierarchical control plane for the multi-domain environment 

is considered in [15]. Preserving topology in network traffic is 

one of the big objectives of this paper. For this purpose, the 

local controller is assigned for each domain (geographical area), 

and the global controller has a global view for monitoring of all 

local controllers in different domains. However, the load is 

imbalanced in the network as a consequence of the hierarchical 

structure. The upper layer of controllers is balanced and the 

bottom layer is very under-loaded, which has given less priority. 

It does not update the frequent network changes and the global 

controller fails to handle failures among local controllers 

immediately. An optimum load-balanced path is built through 

network topology and this minimizes new assignments by the 

best dynamic offloading strategy. Load balanced routing is the 

way to achieve QoS goals in SDN. Conventional routing 

algorithms such as the Bellman-Ford algorithm, Link State 

algorithm, and Dijkstra algorithm are presented to improve 

balance the load in routers. But these algorithms are time-

consuming and not effective for load-balanced routing. 

1.1. Motivation 

Various meta-heuristic algorithms have been proposed for load 

balancing in SD-IoT such as ant colony optimization (ACO), 

simulated annealing (SA), genetic algorithm (GA), particle 

swarm optimization (PSO), and so on. However, these 

optimization algorithms do not handle large communication 

overhead. With the growth rate of network devices and their 

continuous sensing feature, the centralized controller cannot 

handle a large number of requests. Hence multi-controller 

mechanism is introduced currently, which seeks to address the 

research issues of a single controller. Fig. 1. illustrates the 

offloading in SDN. In multi-controller SDN, there are three 

types of controller mechanisms implemented. Control plane 

can be implemented using a central controller managing the 

local controllers, distributed controllers that work and take 

action on their own, and fragmentation-based distributed 
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controllers. Switch migration is one of the solutions in the 

multi-controller environment for load balancing [16-17]. In a 

distributed environment, switch migration is not adequate and 

it leads to time complexity. Flow rule placement in switches is 

an emerging research topic in SDN. Recently, it gained more 

attention among researchers. When the need for the flow rules 

installation is high, then the flow table of switch might be 

overloaded, which can cause severe issues in QoS provisioning. 

Besides, when flow rules are installed based on per-flow 

statistics, it causes high computation overhead. Therefore, in 

this paper, we addressed the above-mentioned issues and 

designed a distributed controller with the fragmentation-

optimized environment for QoS provisioning.  

SDN Controller (Global View to Manage Network)

Switch-5
Switch-3

Switch-2 Switch-6Switch-4

Switch-NSwitch-1

Normal state

Offload state

Switch_config

Flow_config

 
Fig. 1. Offloading in SDN 

1.2. Contributions 

The objective of this paper is to design a novel artificial 

intelligence aided SD-IoT to increase the QoS in each layer 

(devices layer, switches layer, and controller layer). The 

proposed traffic differentiated routing and dynamic offloading 

model for QoS improvement are defined on an individual layer. 

The major contributions of this paper are summarized as 

follows:  

1) For increasing the QoS analysis, the AI-aided SD-IoT 

model performs four actions: Traffic Differentiation, 

Switches Topology Discovery, Traffic Differentiated 

Routing and Rule Placement, and Dynamic Offloading. 

2) Traffic differentiation - Initially, we differentiate the 

traffic arrived from edge routers. Based on the traffic type, 

appropriate routing action is taken. We propose a Multi-

Criterion-based Deep Packet Inspection method. To 

compute the QoS satisfaction of the IoT user, we 

introduce the delay tolerance for network traffic arrived 

on ER.  

3) Switches Topology Discovery - ISOMAP algorithm is 

proposed for topology management, which effectively 

determines the link connectivity. Partially Connected 

Topology connects based on four criteria: CPU 

computing resources, node degree, queue utilization, and 

link quality. This topology consists of three relationships: 

one-to-one, one-to-many, many-to-many. 

4) Traffic Differentiated Routing - Traffic Differentiated 

Routing uses a Deep Alternative Neural Network 

(DANN), which considers several metrics for load-

balanced routing. When the flow rule is not matched with 

the flow table, then the route request is sent to the 

respective controller. The controller validates the 

connectivity among switches and then places the rule. It 

reduces the number of rules employed on the switches. 

5) Dynamic Offloading – Our model predicts the switch 

utilization and packets migration on the controllers. 

Packets migration is implemented using Ranking based 

Entropy Function, and Hassanat Distance-based K-

Nearest Neighbor (HDK-NN) algorithm is used for switch 

offloading from the overloaded controller to the 

underloaded controller.   

6) Experiments show that the proposed model achieves 12% 

of reduced end-to-end delay, 30% of reduced packet loss 

rate, 35% of reduced switch failure rate, 15% of reduced 

controller failure rate, 12% of increased throughput, 65% 

of reduced rule placement and 30% of increased load 

balancing rate. 

1.3. Paper organization 

This paper is structured as follows: Section II details the state-

of-the-art on the QoS improvement concepts in SD-IoT. 

Section III presents the problematic issues of previous research. 

Section IV deals with the proposed AI-aided SD-IoT model. 

Section V elaborates on the performances of the proposed 

model and comparison with previous research by significant 

parameters. In section VI, we conclude the paper and give 

future directions. 

Table 1. Nomenclature 

Notation Meaning 

Si = (S1, S2, S3…, Sn) Switches 

T1xN = [T(1), T(2), 

T(3),…T(M)] 

Network topology 

D1, D2, D3…, Dn Devices 

Lij The link between switch i 

and j 

DC Dominant Controller 

LCi Leaf Controller 

R2 Region of switches 

lQ Link Quality 

Ɖʈ  Delay time 

Q(i) Queue utilization 

δ(i) Switch buffer 

rm Relative mobility 

Dij Distance 

N(pi) Number of packets 

α and β Coefficient parameters 

II. STATE-OF-THE-ART 

In this section, we elaborate on the different state-of-the-art 

from four different perspectives - traffic differentiation, 

routing, offloading, and rule placement in SDN and IoT-based 

QoS schemes. 

2.1. Traffic differentiation schemes 

In IoT, forecasting network traffic is a critical point for SDN. 

Dias et al. [18] proposed a traffic classification approach for 

real-time applications (e.g. video streaming application). A 

naïve Bayes classification method is proposed for real-time 

video streaming traffic network classification, which primary 
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intention is to reduce the delay for multimedia service 

applications requested by the user. User preference is computed 

for traffic classification and delay tolerance for sensitive 

applications. The naïve Bayes algorithm fails to classify the 

incoming traffic when the network traffic is high. Martin et al. 

[19] proposed a deep learning-based neural network 

architecture for IoT traffic prediction. This architecture 

contains residual, boosted, and stacked networks. The proposed 

neural network architecture shows good results, but the time 

complexity is high.  

Yu et al. [20] proposed a QoS-aware traffic classification 

method in SDN by DPI. A semi-supervised machine learning 

algorithm is combined with DPI for SDN. This method 

classifies the arrived flows into different QoS classes. A neural 

network-based traffic matrix is constructed for traffic 

prediction. The authors in [21] use long short-term memory 

recurrent neural networks (LSTM RNNs). From the current 

history of traffic, future network traffic is predicted. LSTM and 

RNN consume significant time for traffic prediction and 

require substantial processing time. Tajiki et al. [22] have 

considered congestion control and joint QoS for traffic 

prediction in SDN. This paper solves two optimization 

problems including an exact solution and fast suboptimum one. 

The authors consider the bandwidth and delay constraints of 

SDN. In routing, modules for resource allocation and resource 

re-allocation are used. The rerouting module consumes time 

which is not negligible. 

2.2. Routing schemes 

Park et al. [23] presented a network situation-aware framework 

(NSAF) for handling application routing in SDN. The route 

must be based on the QoS requirements and dynamic network 

status changing. It consists of application registration, network 

status monitoring, violation detection, and routing control. For 

different service classes (application type), different serv class 

is incorporated such as packet loss, delay, and jitter. It does not 

manage the dynamic network changes and control paths when 

application requirements change. Further, NSAF uses 

Dijkstra's routing and genetic algorithms in routing, which 

induces high computational overhead. Saha et al. [24] proposed 

a traffic-aware QoS routing in SD-IoT networks. In general, the 

route is constructed for two types of applications: delay-

sensitive and loss-sensitive. A greedy approach-based K-

shortest paths algorithm is proposed to compute the optimum 

routing path in which QoS requirements are considered for each 

packet. In this step, the controller is deployed with adaptive 

flow rules for routing switches. Moreover, IoT users do not 

only request delay-sensitive and loss-sensitive applications. In 

a large-scale network, different heterogeneous devices with 

various requirements are present.  

A simulated annealing based QoS-aware routing (SAQR) 

algorithm is proposed in [25]. It adaptively adjusts the weight 

of delay, loss rate, and bandwidth requirements to determine 

the best routing path with meeting the QoS requirements. 

Experiments were conducted to validate this approach 

concerning loss rate, delay, and bandwidth. Also, authors select 

the best path using Dijkstra’s algorithm, which is a blind search 

algorithm that consumes significant time for processing.  

Routing is a compelling solution for balancing the load and 

overhead in the network. Low-cost load balancing route 

management (L2RM) is an effective framework proposed by 

Wang et al. [26]. Adaptive route modification is implemented 

to avoid flow table overloading. Further, L2RM uses dynamic 

information polling (DIP) scheme, which queries switches to 

know the current queue utilization. When failure occurs, the 

response time of the controller increases and it leads to poor 

network management. Another similar research can be found in 

[27] and it is called load-balanced aware routing on the SDN 

controller. It addresses the problem of load balance routing in 

both controllers and links and thus it minimizes the controller 

response time and link utilization rate. Two update mechanisms 

are proposed such as area bound update and controller load 

update. Experiment results show that the controller response 

time is greatly reduced by balancing the load, but it fails to 

minimize the overhead among switches. 

2.3. Offloading schemes 

SDN controller is fully capable of offloading the tasks 

dynamically. Detour [28] proposes a dynamic allocation of 

tasks and resources in software-defined Fog networks for IoT 

applications. IoT devices are connected to fog nodes using 

multi-hop IoT APs. The SDN controller collects network 

information through the southbound interface and performs 

optimum task allocation thanks to the global view of the 

network. The idea is to decide whether the task will be 

performed locally or on a remote device, select the ideal fog 

device, and select the optimum path to forward the task to 

another device. The M/M/1 model is applied to the task queue 

to select the appropriate application to perform the task after 

reaching the fog node. The limitation is that the end-to-end 

delay is significant in terms of sending load balancing requests 

to the SDN controller, and high-priority tasks have to wait a 

long time. Neghabi et al. [29] presented the solutions for load 

balancing using Meta-Heuristic algorithms. The authors have 

presented some benefits of using these algorithms for 

improving network performance. However, these optimization 

algorithms do not solve the problems of large network loads 

and most of them face the problem of falling into the local 

optimum and premature convergence. 

Authors in [30] have considered a load-balancing issue by 

deploying a virtual SDN controller (VController). When 

network traffic is high, the virtual SDN controller is deployed 

over the network. For this purpose, a virtual network function 

(VNF) is used with primary and secondary VControllers. When 

the load of the primary controller increases, the secondary 

controller splits the load and processes the part of requests. The 

second controller has a copy of the primary controller and it 

balances the load among switches. A large number of load 

balancing actions are required and poor QoS is achieved due to 

virtual controller placement. In Machine to Machine (M2M) 

networks, traffic-aware load balancing is proposed [31]. It is 

implemented in SDN assisted IoT. The processes involved in 

this paper are: (1) determining traffic flow at arrived switches 

using packet header information, (2) the route is considered and 

the determined traffic flow is forwarded and processed via the 

route, and (3) flow table is updated if the latency exceeds the 

threshold value. For traffic-aware load balancing, only delay 

and type of service are considered which is not sufficient for 

delay-tolerant applications (M2M services).  
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A distributed multi-controller environment-based switch 

migration is proposed in [32]. The authors proposed the 

strategy called efficiency aware switch migration (EASM) for 

distributed controllers load balancing. The load different matrix 

and trigger factor are used to estimate the controllers' load 

balancing. The migration efficiency problem considered load 

balancing rate and migration cost for optimum migration of 

switches. EASM is not suitable for switch migration in a large 

scale network environment.  

Authors in [33] have focused on dynamic load balancing with 

hybrid genetic and ant colony optimization algorithms. In GA, 

the fitness value is computed by path length, energy 

consumption rate for packets transmission and reception, and 

energy status of all switches. In ACO, the optimum path is 

identified and the packet is forwarded towards the selected 

path. Search speed for path selection is sufficient, but criteria 

for path selection are insufficient to find the real optimum path. 

In [34] authors proposed a predictive adaptive real-time model 

that is used to select cloud for random service prediction 

available in the virtual network services over a multi-cloud 

environment. Different types of cloud provide different 

services with different QoS. For this purpose, dynamic virtual 

placement was applied in this study. With this dynamic virtual 

placement, different kinds of traffic were served for users from 

a different region. When arrived users' traffic is reached from 

the expected level, then more virtual placement is required. 

Hence, dynamic offloading among switches will be helpful in 

this case. 

2.4. Rule placement schemes 

Flowstat [35] presents flow-rule placement considering three 

processes, namely route selection, rule installation, and rule 

redistribution. The authors formulated the Max-Flow-Min-Cost 

optimization problem for optimum forwarding paths selection. 

For the computed path, flow rules are installed. Furthermore, 

rule distribution is considered for flow rules traffic congestion 

in the network, which decreases the network traffic. It 

minimizes the end-to-end delay for packet forwarding and 

flows rule installation in the data plane. When the path is 

frequently selected, the installation of flow rules for the 

particular path is high and it causes flow table overloading in 

switches. The controller does not consider the adequate metrics 

for forwarding path selection, which causes severe issues in 

QoS improvement.  

Rule placement is a challenging issue due to the memory 

limitation of the switches. A novel approach is proposed [36] 

for rule placement according to two possible connections 

between neighboring switches: serial and parallel relationship. 

For rule placement handling, in this paper, a new data structure 

called OPTree (Ordered Predicate Tree) is proposed. It is used 

to represent rules in the device and is suitable for checking if a 

rule is contained in an existing rule. Two OPTree algorithms 

have been created for setting up rules and searching. Although 

the approach presented considers the positional relationship for 

adjacent devices, the number of rules being set is still large, 

which places a heavy burden on the controller. The use of fat-

tree or star topologies increases the number of rules that are 

added, making network topology an important factor for global 

network management. In [37], the SDN controller computes 

and places new rules for switches flow table. If a switch 

receives the data packet, but it does not match with the flow 

table rules, the switch directly communicates to the controller. 

In this paper, the controller places the flow rule for a particular 

switch and also gives the best path for processing a packet. 

Then the packet is transmitted to neighboring switches. For 

flow rule installation, switch-controller delay and switch-to-

switch delay is computed for packet transmission via the path. 

Computation of path delay between switch–controller and two 

switches is relatively high. Traffic overhead is increased and 

the flow table of the switch is overloaded within a few packets 

processing. 

III. PROBLEM DESCRIPTION 

Based on the previous state-of-the-art analysis, in this section, 

we defined the problems on the four concepts focused on QoS 

enhancement. Fig. 2. presents the problem statement 

undertaken in the AI-aided SD-IoT model. Further, we address 

the following research questions.  

 (RQ1). How our AI-aided SD-IoT model can efficiently 

process a large number of requests from IoT devices? 

 (RQ2). What are the performance benefits of proposing a 

new model in SD-IoT with subject to QoS provisioning? 

 (RQ3). Is it best for forwarding large flow requests from 

the multi-controller environment?  

 (RQ4). How AI-aided SD-IoT model is best for resource-

constrained IoT devices? 

Fulfill QoS in IoT via SDN under massive 

requests from users IoT devices 

Design traffic differentiated QoS model for 

routing and dynamic flow offloading in 

multi-controller SDN

Traffic 

Classification

QoS-based 

Traffic 

Routing 

Dynamic 

Flow 

Offloading

Flow Rule 

Placement

Artificial Intelligence Approaches 

1. Global Objective ?

2. Problem Statement 

?

3. Subobjectives ?

4. Methods to solve ?

 
Fig. 2. Problem statement representation 

In the previous section, several heuristic optimization 

algorithms are illustrated. These algorithms produce large 

communication overhead since they can provide a single 

optimum solution and poor scalability. For SD-IoT based 

networks, a large AI model is required, which eliminates the 

communication overhead, packet loss, and latency issues. Also, 

the AI model is needed for environments with a large amount 

of traffic and providing results within the expected delay.  

In [38] authors have contributed with three operations 

including network dimension reduction by Principal 

Component Analysis (PCA), Queue Utilization (QU) 

prediction, and load-balanced routing by Deep Neural Network 

(DNN). In the local router, packets arrived status is monitored 

and the next hop is selected for transmission whereas the central 

router is used to detect the QU and traffic rate of all local 

routers. This model has several drawbacks as follows: it is a 

time-consuming operation, it does not produce the meaningful 
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network patterns, the packet loss rate is high because it does not 

consider the link quality, extracting network topology is a 

tedious task, and it does not result with effective SDR 

representation. Load balanced routing for next-hop selection is 

based on QU which is predicted by DNN, which is not 

sufficient to achieve load balancing. A task with high priority 

(real-time) is required to wait for a longer time. Furthermore, 

SDR is not suited for a large-scale environment because the 

central router would lead to a single point of failure.  

To avoid the frequent flow migrations from one controller to 

another, fractional level switch migration is proposed in [39] 

by the dynamic controller mapping algorithm. There are 3 steps 

incorporated: (1) load imbalance detection, (2) target 

controllers and switches selection, and (3) switch migration 

(target controller load is balanced). Subsequently, controllers 

are reordered. In a large multi-controller environment, search 

spaces for finding the target controllers are difficult and the 

solution can be suboptimum. To minimize the number of new 

assignments, an absolute prediction of switches load is 

significant to consider.  

A new routing strategy is proposed in [40], which is called 

Segmented Routing. A segment refers to Instruction and a node 

segment consists of a unique label of next switch to reach. 

Initially, the Multi-Objective Particle Swarm Optimization 

algorithm is presented for link weight optimization to load 

balancing and path cost. With the use of optimized 

Weighted_Matrix between the source node and the destination 

node, K-number of shortest paths is selected and the best path 

is selected based on user preferences. For user preferences, QoS 

is evaluated using the Key Performance Index (Delay, Jitter, 

and Packet Loss). The KPI is computed by the Fuzzy AHP 

algorithm (Analytic Hierarchy Process). Segment routing using 

the MOPSO algorithm is a very time-consuming task, and also 

Fuzzy AHP for weight matrix computation is not effective 

since it is a relatively complex method and it requires a large 

size of mathematical computations in measuring priority. To 

deal with the load balancing issue, the arrival packet rate is one 

of the most important metrics, which must be considered for 

load-balanced routing. The authors of this paper have not 

concentrated on this issue.  

In this paper, we concentrated on the core issues to upgrade the 

QoS of the network. These problems are solved by the proposed 

solutions in this paper and are elaborated in the next section.
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Fig. 3. System model
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IV. AI-AIDED SOFTWARE-DEFINED IOT 

In this section, we present the system model of the AI-aided 

SD-IoT model. The notations used in this paper are listed in 

Table 1. 

4.1. System overview 

In this paper, we assume that our proposed model for SD-IoT 

is employed with heterogeneous IoT devices constrained in 

resources. They are connected and communicating via the 

Internet over the same IP assisted gateways, which are called 

Edge Routers (ERs). Our proposed work consists of distributed 

controllers including Dominant Controller and Leaf 

Controllers, Switches, ERs, and IoT devices. Fig. 3. shows the 

AI-aided SD-IoT architecture. Assume that SD-IoT 

environment is an undirected graph 𝒢 =  (𝕊, 𝕃, 𝕔) , where S 

represents the set of all switches, L represents the links between 

switch i and j, and c is a controller. The link between switches 

are: 

𝕃 =  {(𝑖, 𝑗)|(𝑖, 𝑗) ∈ 𝑠 × 𝑠, 𝑖 ≠ 𝑗} (1) 

As mentioned earlier, links between switches are a key point in 

the SDN. The DC communicates with the LCs and LCs 

communicate with switches via OpenFlow protocol. 

The communication between the SDN controller and the 

application layer is obtained via Application Programming 

Interface (API). There are three layers incorporated for 

designing our proposed model:  

 Devices Layer: In this layer, several heterogeneous 

IoT devices are 𝐷1 … 𝐷𝑛. From device 𝐷𝑖 , the request 

is sent to the ER, which performs the traffic 

differentiation by multi-criterion based deep packet 

inspection.  

 Data Plane Layer: In this layer, several switches are 

deployed in a partially connected network topology. 

Switches verify the flow rule and take the action based 

on the flow table information.  

 Control Plane layer: This layer consists of 

fragmentation optimized distributed controllers. It 

reduces the problems caused by the centralized and 

distributed controller environments.  

There are four operations involved in our approach: Traffic 

Differentiation, Topology Discovery, Traffic Differentiated 

Routing and Rule Placement, and Dynamic Offloading. In the 

following sub-sections, we elaborate on these operations.  

4.2. Traffic differentiation 

In the first layer, IoT devices are deployed and sensing is 

started. The sensed information is acquired and transferred via 

ERs. In the ER, traffic is classified into four classes and put into 

individual queues: 

(1). Real-Time Delay Intolerant (RTDI) Queue  

(2). Real-Time Delay Tolerant (RTDT) Queue  

(3). Non-Real-Time Mission Critical (Non-RTMC) Queue  

(4). Non-Real-Time Non-Mission Critical (Non-RTNMC) 

Queue 

Traffic from IoT devices is differentiated (see Fig. 4.) to meet 

the QoS requirements.  

Real-time and Non-

real-time traffic Classifier

Edge Router 

RTDI

RTDT

Non-RTMC

Non-RTNMC

Multi-Criterion based 

Deep Inspection Model 

using Mutual Tsallis 

Entropy

Scheduler (1)

Scheduler (2)

Scheduler (3)

Scheduler (4)

 

Fig. 4. Traffic differentiation 

Some of the applications are video streaming (YouTube, 

Dailymotion, and Netflix), P2P torrent (BitTorrent, and 

VUZE), video chat or VoIP (Gtalk, Facebook Messenger, 

Skype, WhatsApp, Twitter), cloud access (AWS, Google 

Drive, OneDrive, and Dropbox), online games, email sending 

or receiving. This traffic classification is suited for various 

application examples. Each IoT device’s traffic request is 

measured in bps. In ER, we have used Deep Packet Inspector 

and Traffic Classifier. We split the input traffic into four classes 

using four criteria: (1). Packet Deadline 𝑃𝐷(𝑖), (2). Packet Size 

𝑃𝑆(𝑖) , (3). Protocol Used 𝑃𝑅𝑇(𝑖), and (4). Type of Service 

Request 𝑇𝑆𝑅(𝑖).  

Table 2. Traffic differentiation 

Traffic 

Class 

Example 

service 

Required 

data rate  

Packet 

Delay  

Priority 

RTDI 

video 

conferencing, 

and VoIP 

1.5-8Mbps <50ms 1 

RTDT 
Video or 

Audio 
2-10Mbps <200ms 2 

Non-

RTMC 
E-commerce 1.5-150Mbps <500ms 3 

Non-

RTNMC 

Email or 

Web 
Kbps-Gbps <1000ms 4 

 

Algorithm 1: Traffic Differentiation  

Begin 

Input: n packets arriving at the ER δ 

Output: Four traffic classes (RTDI =1, RTDT =2, Non-

RTMC=3, and  Non-RTNMC =4) 

// Apply Mutual Tsallis Entropy computation for all 𝑝(𝑖) 

for each packet p(i) do 

If p(i) ∈ RTDI_level then  

Put p(i) into RTDI; 

else 

If p(i) ∈ 𝑅𝑇𝐷𝑇_level then 

Put p(i) into RTDT; 

else 

If p(i) ∈ 𝑁𝑜𝑛 − 𝑅𝑇𝑀𝐶_level then  

Put p(i)into Non-RTMC; 

else  

Put p(i)into Non-RTNMC; 

end if  

end if  

end for 
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In deep packet inspectors, these four criteria are evaluated and 

forwarded to the traffic classifier with the inspected result. 

Table 2. depicts traffic differentiation in detail. 

Based on the packet delay and the required data rate, traffic is 

differentiated in traffic classifier and priority is given. 

Algorithm 1 shows the procedure for traffic differentiation. 

When the arriving traffic is RTDI, then the packet is 

immediately forward to the switches for taking an action. For 

packet (traffic) classification, our proposed multi-criterion 

based deep inspection model follows Mutual Tsallis Entropy 

function. The Mutual Tsallis Entropy function is defined by 

δ>1 and it is computed according to the equation: 

𝑀𝜀𝛿
𝓉 =  ℎ𝛿

𝓉  (𝑥) −  ℎ𝛿
𝓉  (𝑥|𝑦) =  ℎ𝛿

𝓉 (𝑦) −

    ℎ𝛿
𝓉  (𝑦|𝑥) =  ℎ𝛿

𝓉  (𝑥) + ℎ𝛿
𝓉  (𝑦) − ℎ𝛿

𝓉  (𝑥, 𝑦), 
(2) 

ℎ𝛿
𝓉  (𝑥, 𝑦)  is an upper bound value that has positive and 

symmetric Tsallis joint entropy. It shows the correlation 

between two criterions 𝑥 and 𝑦. After that normalized Tsallis 

mutual entropy is: 

𝑁𝑀𝜀𝛿 
𝓉 (𝑥, 𝑦) =  

𝑀𝜀𝛿 
𝓉 (𝑥;𝑦)

ℎ𝛿
𝓉  (𝑥,𝑦)

 (3) 

The entropy values are taken in the interval of 0 and 1. When 

the value is 0 then 𝑥 and 𝑦 are independent, and also 𝛿 = 1. 

The value 1 is taken if and only if 𝑥 = 𝑦. In this way, mutual 

information-based entropy values are computed for all criteria 

used for traffic classification. 

4.3. Switches topology discovery 

In the Data Plane, we firstly construct network topology for 

switches deployed in the network. We presented a Partially 

Connected Topology. For routing, we extract topological 

information. For topology construction, the ISOMAP 

algorithm is used to analyze the topology connectivity. It 

defines each switch connection to neighbor switches via its 

Nearest Euclidean Neighbors. ISOMAP algorithm takes as 

input the distances 𝐷(𝑠𝑖 , 𝑠𝑗)  between all pairs (𝑖, 𝑗)  from 𝑁 

data points in the high-dimensional input space 𝑋.  

ISOMAP is a manifold learning algorithm, which performs 

better than PCA, and other dimensionality reduction 

algorithms. It is easy to discover the low-dimension spatial 

structure in data. The key advantage of Isomap for topology 

design is that it uses the Geodesic distance to estimate the 

dissimilarity between two switches and it generates relatively 

high accurate neighbor switches according to the Error-Prone 

Distance Information. 

Assume that the SDN consists of 𝑀  switches {𝑠1, … , 𝑠𝑚} 

deployed in a 2D space. Let 𝑠𝑖 ∈  ℝ2 denote the location of the 

switch 𝑠𝑖. Without loss of generality, we suppose that the first 

𝑛  switches are considered for topology design. We use 

Euclidean distance metric as a domain-specific metric for 

similarity (distance) computation and the distance between 

every pair of switches is computed as:  

𝐷(𝑠𝑖 , 𝑠𝑗) =  (∑ (𝑠𝑖𝑘 − 𝑠𝑗𝑘)
2𝐷

𝑘=1 )
2

 
(4) 

Where 𝐷 = 2 for 2D space and similarly 𝐷 = 3 for 3D space. 

When compared to PCA, ISOMAP preserves the Intrinsic 

Geometry of switches location since it captures the Geodesic 

Manifold distances between all pairs of switches. We consider 

the following attributes for switches: 

(1). CPU computing resources: It is the basic and significant 

component in a switch, and it contains the primary entities 

such as Buffer, Operator, and Controller. It receives the 

instructions and performs action and processes requests. 

If the CPU of the switch is sufficient, then it can process 

a large number of requests.  

(2). Node degree: It is the direct indicator that reflects the node 

centrality in the network topology. The switch with a 

higher degree is selected since it can process more 

requests.  

(3). Queue Utilization (QU): It represents the available space 

in the switch buffer which reflects its ability to keep and 

store the packets. As for path selection, the higher switch 

buffer is selected to reduce the packet loss rate in a high 

network traffic scenario. However, switches must be 

underloaded, so we properly select the switch 𝑖  for 

intermediate node. It is computed as: 

𝑄(𝑖) =  
𝑁(𝑝𝑖) 𝑖𝑛 𝔡 (𝑖)

𝑆𝑖𝑧𝑒 𝑜𝑓 𝔡 (𝑖)
 (5) 

Where 𝑁(𝑝𝑖) 𝑖𝑛 𝔡 (𝑖) represents the number of packets in 

the buffer of the switch 𝑖. 
(4). Link Quality: This metric describes the relationship 

between the switches concerning the packet received rate 

𝑝ϓ  and packet transmission rate 𝑝ţ𝑟 , and hence link 

quality 𝒢ℓ is computed as: 

𝒢ℓ =  𝛼 ∗ 𝑝ϓ +   β ∗ 𝑝ţ𝑟  (6) 

Where 𝛼  and β  are the coefficient parameters for 

computing the link quality that ranges from 0 to 1. With 

this value, link quality is computed differently. 
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Fig. 5. Partially connected topology 

Fig. 5. depicts the connectivity of switches. Therefore, the 

network topology 𝑇1×𝑁 =  [𝑇(1), 𝑇(2), … 𝑇(𝑀)] can represent 

connectivity and availability of switches for choosing the 
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particular node for path 𝑝. We calculate the parallel and serial 

relationships between the switches 𝑠𝑖 and 𝑠𝑗 . A switch 

containing higher connectivity (serial and parallel) is selected 

as the intermediate node for packet transmission. Based on the 

connectivity, 𝐿𝐶𝑖 deploys the rules in switches. 

4.4. Traffic differentiated routing and rule placement 

After network construction, we allow data packets from the 

queue. Firstly, we process packets from the RTDI queue since 

they have absolute priority (delay<50ms). Towards that, we 

process other queues based on the delay tolerance for 

application services. When a data packet arrives into a queue, 

we must check the flow rule for the corresponding packet in a 

switch. If the flow rule is matched in the flow table, then the 

packet is processed. For that packet, we establish the route. 

Based on the packet traffic type we construct the route. Hence, 

we called it Traffic-Aware Routing.  

To find the optimum path, several criteria are considered: 

Packet Loss 𝑝𝑙 , RTDI Packets Queue Utilization Rate 𝑄𝑢 , 

Latency 𝐿, Bandwidth 𝐵, Hop Count 𝐻, and Distance between 

two Switches 𝐷. For traffic-aware routing, we propose a Deep 

Alternative Neural Network (DANN), which provides better 

performance than DNN and conventional machine learning 

methods.  
Input Layer Alternative Layer

S1

S3

Sn

S2

Output

O1

O2

O3

O4

Yes

Yes

Yes

No

Max Pool Layer

Soft Max Layer

Fig. 6. DANN structure 

 

Table 3. DANN hyperparameters 

Layers  Description   
6-Alternative layers  64, 128, 256, 256, 512, 512 

kernel response maps  
  

Activation function  ReLU   
3-Fully connected 

layers  

Size = 2048    

Layer kernel size  3× 3 × 3   
1 volumetric max 

pool layer  
2× 2 × 2   

Learning rate  0.1   
Input neurons  512   

Batch size 100   
Data Samples  1000   
Window size 5   

 

DANN is a combination method, which contains the strengths 

of CNN and RNN. It is depicted in Fig. 6. In DANN 

architecture, we deal with the alternative layers. Each 

alternative layer is a convolutional layer followed by the 

recurrent layer. With the use of Adam Optimizer, DANN 

parameters are selected and optimized (see Table 3.). To 

perform DANN training and testing, operations Pyramid 

Generation and Feature Map Combination were used. It is 

explored in alternative layers. The recurrent layer in the 

alternative layer has provided merits such as every element 

incorporating contexts in an arbitrarily large region in the 

current layer. When the time steps increase, then the state of 

every unit is influenced by the other elements that are also 

increasing, and it is a larger neighborhood in the current layer. 

If the flow rule does not match with the flow table, then the 

switch requests the path from the corresponding leaf controller. 

Then the controller gives the path. With the partially connected 

topology (parallel and serial relationships to switches), the 

switch has verified whether the flow rule is present for all 

switches in the available path. If the rule for a data packet is 

present in all switches in the available path, then no Rule 

Placement is required. Otherwise, flow rules are deployed for 

switches. In this way, rule placement is invoked. The flow table 

entries according to the traffic class are illustrated in Table 2. 

4.5. Dynamic offloading 

Offloading refers to offloading the various computational 

expensive flow requests to the underloaded nodes based on 

their current load. In this paper, we applied a dynamic 

offloading scheme on both the data plane and the control plane. 

Most of the research is focused on balancing the load in either 

switches or controllers, which degrades the system 

performance. Hence, in this paper, we propose the concept of 

dynamic offloading on both the data plane and the control plane 

at the same time as described below. 

4.5.1. Offloading in the data plane 

In the data plane, packets are offloaded from the overloaded 

switch to the underloaded switches based on the current load of 

the switches. It is called optimum relays selection. For dynamic 

offloading, we proposed a ranking-based entropy function. This 

process is held in the leaf controller. We consider several 

criteria for packets offloading such as packet arrival rate 𝑝𝑎𝑟 , 

no. of packets in buffer 𝑛𝑝𝑏𝑓, the packet loss rate 𝑝𝑙𝑟 , expected 

delay 𝜀𝑑 , no. of flow entries 𝑛𝑓𝑒 , and total no. of packets 

correctly processed in history ∑ 𝑝(ℎ)𝑛
𝑖=1 . We compute the 

entropy value 𝐸(𝑖)for all switches in the network for offloading 

overloaded switch packets into under loaded switches. An 

attribute set ∁ is used for switches selection: 

∁= {𝑝𝑎𝑟 , 𝑛𝑝𝑏𝑓 , 𝑝𝑙𝑟 , 𝜀𝑑, 𝑛𝑓𝑒 , ∑ 𝑝(ℎ)𝑛
𝑖=1 } (7) 

The mathematical formula to calculate 𝐸(𝑝(𝑖)) can be defined 

as: 

𝐸(𝑝(𝑖)) = − ∑ 𝜌(𝑖) log2 𝜌(𝑖)𝑘
𝑖=1  (8) 

Where 𝜌(𝑖) denotes the probability of switch 𝑖 being selected 

in the controller for offload. Information entropy function is 

used here to address the uncertainty issue. The minimum 

entropy represents the switch has lower uncertainty and the 
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expected entropy is achieved by the higher uncertainty. For all 

switches, we compute the expected entropy value according to 

the attribute set ∁ to ᶃ  (conditional Entropy), which is 

computed as: 

𝐻(ᶃ|∁) =  ∑ 𝜌(ᶃ𝑖)
𝑛
𝑖=1  𝐻(ᶃ𝑖) 

 

(9) 

Now, we determine the Information Gain 𝔾  between the 

entropy and expectation values as follows: 

𝔾 (ᶃ, ∁) = 𝐻(ᶃ) − 𝐻(ᶃ|∁) (10) 

Then we compute GainRatio Ғ for each switch 𝑆𝑖 ∈ 𝐿𝐶𝑖 

according to the attribute set ∁ and select the switches with 

maximum Ғ.  

Packet
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Fig. 7. Workflow diagram 

 

4.5.2. Offloading in controller plane 

In this section, we define the controller overloading in the 

controller plane. Controller load measurement is done in the 

𝐷𝐶 to report the load statistics for all 𝐿𝐶(𝑖). The flow statistics 

include the number of flow table entries 𝑁(𝜁𝑒), the average 

packet arrival rate 𝐴𝑝𝑟  of each switch 𝑖 , the round-trip time 

ℝ𝒯ţ, and the current load 𝐿𝐶(𝑖).  

The current load of LC is calculated by the number of packets 

waiting to be processed and currently running on the switches 

at time ȶ: 

𝐿𝐶(𝑖) =  
∑ 𝑆𝑖(ℽ)𝑛

𝑖=1

ℽ
 (11) 

Where 𝑆𝑖=1…𝑛 denotes the number of switches, and 𝑆𝑖(ℽ) is the 

number of packets from switch 𝑖 . Each entity's purpose is 

depicted in Fig. 7. Also, we compute 𝐿𝑜𝑎𝑑𝑅𝑎𝑡𝑖𝑜 for all 𝐿𝐶(𝑖) 

by the abovementioned factors: 

𝐿𝑜𝑎𝑑𝑅𝑎𝑡𝑖𝑜 = 𝑎𝑁(𝜁𝑒) +  𝑏𝐴𝑝𝑟 + 𝑐ℝ𝒯ţ + 𝑑𝐿𝐶(𝑖) (12) 

In equation (12), 𝑎, 𝑏, 𝑐, 𝑑 are the coefficient weights and their 

sum is equal to 1.0. Based on the 𝐿𝑜𝑎𝑑𝑅𝑎𝑡𝑖𝑜, 𝐷𝐶 determines 

the overloaded 𝐿𝐶(𝑖) and switches connected to it. 

When compared to other offloading approaches in SDN, our 

proposed solution is better in three perspectives: 

 Consistency and completeness: The network is full-

fledged and it is not discontinuing its services at any time. 

When the offloading action is taken, then the consistency 

or stability of switches is high and offloading action is not 

required for a longer time.  

 Overload: In this stage, we compute the amount of 

overload and overhead in the data plane and controller 

plane imposed on the system.  

 Scalability: The performance is increased and not affected 

when the number of IoT devices increases. 

V. RESULTS 

This section contains the evaluation of the AI-aided SD-IoT 

model with a description of experiments and simulation 

analysis. In the following subsections, the simulation setup, 

comparison results, and motivating application are given. 

5.1. Experimental setup 

To evaluate the QoS for the proposed AI-aided SD-IoT model, 

we used NS3.26. It is a discrete event network simulator written 

by C++ programming language, and python scripts are used. 

Table 5. describes the simulation parameters that are 

considered for the simulation. Our simulation testbed consists 

of 50 IoT devices, 6 ERs, 21 OpenvSwitches, 4 Open Daylight 

Controllers (3 leaf controllers, and 1 dominant controller). 

The simulated topology is partially connected topology to 

connect n switches to the controller. Each switch is connected 

to a single device and reactivity of switches is investigated in 

the controller and the status of partially connected topology is 

updated. 
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Further, simulation class libraries were employed to perform 

the simulation. Our three-layered simulation topology is given 

in Fig. 8.  

Tables 4. and 5. represent the configuration of the system, 

testbed, and simulation settings respectively. In Table 6., C1, 

C2, and C3 represent the workload of local controllers 1, 2, and 

3 respectively and DC is the dominant controller workload. 

Table 4. Configuration of system and testbed 

 Operating System Ubuntu 14.04 

LTS (32bit) 

System 

Configuration  

Implementation 

Tool 

NS3.26 

 Processor  Dual-core and 

above 

 RAM 2GB and above  

Testbed 

Configuration 

IoT Devices 

(Hosts) 

3.3GHz, 4-cores, 

4GB RAM 

 OpenvSwitch 3.3GHz, 4-cores, 

4GB RAM 

 Open Daylight 3.3GHz, 4-cores, 

4GB RAM 

Table 5. Simulation settings 

Simulation Parameters Values 

Communication range 1000×1000m 

IoT 

Devices 

No of devices  50 

Topology  Partially Connected 

Topology  

IoT application 

size 

4000-100000MI 

Trained 

applications  

50 per minute 

Devices type Hosts  

Application type Real-time and non-real-

time 

No of ERs 6 

SDN 

No of controllers 4 

No of switches  21 

Connection Speed  1000Mbps 

Flow table size 1000 entries 

Interval for flow 

request 

0.001s 

Flow size 100bytes 

Learning rate  0.025 

Switch degree minimum 3 

CPU of switch 5 units (packets per 

second) 

buffer length 8 

Start load  100 applications/sec 

Traffic Type  TCP, UDP, IP, HTTP, 

RTP 

Packet Size 512 bytes 

Number of packets  1,00,000 

Packet Interval 50ms 

Simulation time 300s 

Training Data Samples 10000 

Testing Data Samples 5000 

Table 6. Controller load statistics 

Workload  Value 

Maximum workload (C1) 1000 (events/sec) 

Maximum workload (C2) 1100 (events/sec) 

Maximum workload (C3) 1200 (events/sec) 

DC maximum work load  5000 (events/sec) 

 

 
(a) 

(b) 

Fig. 8. Simulation testbed: (a) Simulation diagram; 

(b) Simulation in NetAnim 

5.2. Performance metrics 

In this section, we define the significant QoS metrics with the 

necessary formulas considered in this paper for performance 

evaluation and validation.  

(1). End-to-End Delay – It is a time duration caused by the 

transmission of the packet from the source to the 

destination. The achievement of QoS leads to the 

minimization of end-to-end delay. It is computed by: 

𝐸𝑛𝑑 − 𝑡𝑜 − 𝐸𝑛𝑑 𝐷𝑒𝑙𝑎𝑦 =  
∑ 𝑑𝑒𝑙𝑎𝑦𝑝(𝑖)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 
 (13) 

(2). Packet Loss Rate – It is a significant phenomenon that 

leads to the loss of packets traveling from the source to 

the destination node. The main reason for packet loss is 

the queue overflow in switches. It is computed as: 

𝑃𝑎𝑐𝑘𝑒𝑡 𝐿𝑜𝑠𝑠 𝑅𝑎𝑡𝑒 =  
𝑁(𝐿𝑝𝑐) 𝑎𝑡 𝑠(𝑖)

𝑠𝑢𝑚 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑎𝑟𝑟𝑖𝑣𝑒𝑑 𝑎𝑡 𝑠(𝑖)
 (14) 
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Where 𝑁(𝐿𝑝𝑐) represents the number of lost packet count 

in switch 𝑖.  
(3). Switch Failure Rate – It is defined as the number of 

packets failed on switch 𝑖 at time ţ. 
(4). Controller Failure Rate – It is defined as the number of 

switches failed at the controller at time t.  

(5). Throughput – It is defined as the increased packets 

transmission and reception status of all IoT devices in the 

network. However, it is based on the capability of 

hardware components and their configurations. In this 

paper, we define the throughput metric in the following 

way: “the number of packets successfully forwarded from 

switch 𝑖 per unit of time”. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
∑ 𝑡𝑟𝑎𝑛𝑚𝑠𝑖𝑠𝑠𝑖𝑜𝑛 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑝(𝑖)

ţ
 (15) 

(6). Rules Placement – Through flow rule installation, we 

avoid the packet loss, and service requirements meet the 

user/device QoS requirements. Also, rules placement 

must be reduced to avoid the flow table overloading. 

𝑅𝑢𝑙𝑒 𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑁(𝑅𝑃) 𝑎𝑡 𝑠(𝑖)  ∈ 𝐿𝐶𝑖   (16) 

Where 𝑅𝑃  refers to the number of rules placed in the 

switch 𝑖.  
(7). Load Balance Rate – It is the rate of load balancing among 

switches and controllers. It is a positive metric so it 

requires a high value to obtain better QoS. 

5.3. Comparative study 

In this section, we demonstrate the experiment results for the 

proposed AI-aided SD-IoT model, as well as qualitative and 

quantitative comparison with the previous approaches in SDN 

and IoT. We have primarily focused on investigating the 

performance in four previous approaches, namely Sway [24], 

DNN-SR [38], FSM [39], and FRI [37]. In Table 7., we 

compare the performance by the aforementioned significant 

metrics. 

5.3.1. End-to-end delay 

The computation of delay for any kind of network is important 

to show the effectiveness of QoS. It is mainly caused by packets 

waiting in a queue. To avoid this delay, an optimum path is 

selected between the source to the destination. Fig. 9. indicates 

the performance of the end-to-end delay for the proposed model 

compared to the Sway and DNN-SDR.  

From the analysis and trend line in Fig. 9., it is clear that the 

proposed model gains a lower end-to-end delay to transmit 

packets. In this paper, we differentiate the traffic arrived from 

various IoT devices. Based on the deep packet inspection, we 

classify the packets, and routing is implemented according to 

the classified traffic. 

 
Fig. 9. End-to-end delay vs. Packets per second 

 

In Sway, traffic type is considered, but it fails to select the 

optimum path, which results in high end-to-end delay. 

Similarly, DNN-SDR uses software-defined routers to send the 

packets to the destination router. It requires the optimum path 

and traffic differentiated route to forward the packets. The 

proposed work uses an optimum path according to the traffic 

type and decreases the end-to-end delay by above 45%.

Table 7. Qualitative comparison 

Prior Works Key Idea Advantages Limitations 

FSM 
Fractional level switch 

migration 

(1). Does not require frequent flow 

migrations  

(2). Less overhead 

(1). Not suited for a large-scale 

environment 

(2). Absolute switch prediction is not 

possible 

Sway 

Traffic aware QoS routing 

(delay-sensitive and loss-

sensitive applications) 

(1). The route is constructed for 

multimedia traffic  

(2). K-paths are determined  

(1). Not suited for heterogeneous 

devices  

(2). Low throughput  

(3). Low scalability 

(4). Low Load balance rate  

DNN-SDR 
Load balanced routing via 

queue load rate prediction 

(1). Network dimensionality is 

reduced  

(2). Achieved load balance rate  

(1). Time-consuming 

(2). Poor scalability 

(3). Single point of failure  

FRI 
Flow rules placement in 

switches  

(1). Predicts the best path for traffic  

(2). Low packet loss rate  

(1). Low throughput 

(2). Traffic overhead is high  

(3). Large delay in best path selection  

AI-aided SD-

IoT 

Traffic differentiation, QoS 

routing, rules placement and 

dynamic offloading  

(1). High QoS 

(2). Less complexity  

(3). High scalability  
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5.3.2. Efficacy of packet loss rate 

In a large-scale network, the packet drop rate is high in 

transmission and reception. The unit of packet loss rate is % 

and it must be low to show better performance. Fig. 10. shows 

the effectiveness of the packet loss rate of the proposed model 

compared to the previous approaches.  

 
Fig. 10. Packet loss rate vs. Packets per second 

When compare to Sway, DNN-SDR, and FSM, our proposed 

AI-aided SD-IoT model has shown good performance. This is 

achieved by optimum switches selection for transmitting 

packets and the selection of the method to provide the optimum 

solutions. 

In SD-IoT, packet loss is a general issue, but it is not easy to 

recover it. In this paper, we effectively addressed this issue by 

proposing the optimum path and effective algorithms. In DNN-

SDR, queue utilization is predicted by DNN for all SDRs, but 

the packet is transmitted via Dijkstra path selection. It causes 

higher packet loss rates. Our proposed model reduces the 

packet loss rate by up to 30%. Table 8. shows the packet loss 

rates comparison of the proposed model with FSM, DNN-SDR, 

and Sway. 

Table 8. Packet loss rate 

QoS works # of packets 

sent 

# of lost 

packets 

Packet loss 

rate (%) 

FSM 5000 226 4.51% 

Sway 5000 175 3.24% 

DNN-SNR 5000 125 2.5% 

Proposed 5000 50 1% 

5.3.3. Efficacy of switch failure rate 

Providing load balancing in conditions where a large number 

of packets are processed from IoT devices is challenging. It 

must be taking into account that the size of the flow table is 

limited and that the switch may fail due to overfilling. The 

switch failure rate must be low because one of the basic 

assumptions of SDN is global network management, and this is 

reflected by minimizing the number of switch failures. Fig. 11. 

shows the switch failure rate versus packets per second. The 

computational delay between switch and controller is less 

because of partially connected topology created using the 

ISOMAP algorithm and the flow installed for some of the 

switches, which decreases the flow table overloading by the 

installation of new flow rules. Hence, the switch failure rate is 

decreased. Sway does not concentrate on the switch failure rate.  

 
Fig. 11. Switch failure rate vs. Packets per second 

When the packet is transmitted via frequent switches, it can 

cause failure even if the packet is forwarded on the same switch. 

To avoid this issue, switches failure must be handled promptly 

and it must be active when all packets are processed. In this 

paper, we considered multiple optimum criteria for switches 

routing. Due to the topology discovery and the type of network 

topology (fragmentation-optimized distributed controller), we 

achieved a lower switch failure rate. When compared to Sway, 

the AI-aided SD-IoT model has reduced the switch failure rate 

by up to 35%. Likewise, a 10.5% reduction was achieved 

compared to DNN-SDR and FSM. 

5.3.4. Efficacy of controller failure rate 

Similar to the switch failure, controller failures must be avoided 

in SDN since it directly affects the QoS. Controller failure 

happens when all the switches connected to the controller fail 

to process the incoming request.  

Today, applications requested by the IoT users are different. 

Some of them are delay tolerant, and some of them are delay 

intolerant. For sensitive IoT applications, the delay must be 

lower. While handling a large number of applications with 

various QoS requirements, the computing resources for the 

controller may become unavailable. To overwhelm this 

problem, load balancing is introduced, but the effective load 

balancing mechanisms are still required. The performance of 

the controller failure rate for the proposed model and FSM, 

Sway, and DNN-SDR is given in Fig. 12. 

 
Fig. 12. Controller failure rate vs. Number of 

controllers 
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In comparison to the previous approaches, our model achieved 

a lower controller failure rate. The DC is responsible to take the 

action of offloading the packets in a dynamic time interval. It 

increases QoS efficiency and decreases the controller failure 

rate. When compared to Sway, FSM, and DNN-SDR, our 

proposed model has reduced controller failures by 15%. 

5.3.5. Efficacy of throughput 

It is a significant and positive metric in SD-IoT. It is reduced 

due to traffic congestion at large scale networks. In a dense 

network area, a huge number of packets are forwarded and 

received. It results in poor performance in terms of network 

throughput. Fig. 13. demonstrates the performance of the 

throughput versus network load. 

 
Fig. 13. Throughput vs. Network load 

In sway, FSM, and DNN-SDR, the network traffic pattern is 

not highly concentrated and it is not based on the applications 

request from IoT devices. To meet this demand, in this paper, 

we introduce two core concepts, namely topology discovery 

and traffic differentiation by Isomap and deep packet 

inspection method. The proposed AI-aided SD-IoT model 

increases throughput by up to 12% compared to FSM, Sway, 

and DNN-SDR.  

5.3.6. Efficacy of rules placement 

In this paper, we first achieved the installation of flow rules in 

routing effectively. With the use of partially connected 

topology and all LCs in the network the switch's relationships 

can be verified.  

 
Fig. 14. Number of switches vs. No. of rules placed 

A minimum degree of a switch in a controller is 3 and based on 

that the flow rules are deployed over the switch. This step helps 

to reduce the number of rules placement and prevents the flow 

table overloading. Fig. 14. shows the performance of the rule 

placement versus the number of switches.  

We compared our proposed AI-aided SD-IoT model with FRI. 

In FRI, large numbers of flow rules are deployed, which 

increases the size of the flow table. When the switches are 

overloaded, packets migration is employed. A large number of 

switches migration degrade the QoS level and affect the 

controller performance. 

5.3.7. Efficacy of load balance rate 

The proposed model introduced the concept of dynamic 

offloading of IoT device requests (packets/tasks) in 

fragmentation-optimized distributed controllers. 

 
Fig. 15. Load balance rate vs. packets per second 

The comparison of the load balance rate for the proposed and 

previous approaches is given in Fig. 15. To avoid the controller 

failures due to overloading issue, the multi-controller 

environment is established. The FSM approach only migrates 

the switches from the overloaded controller to the underloaded 

controller. It produces a better load-balancing rate on the 

control plane, but the frequent migration from one switch to 

another increases the overhead in the controller. Also, FSM 

does not concentrate on the data plane. In Sway and SDR, the 

load balance rate is reduced due to poor network management. 

5.3.8. QoS validation 

From the above analysis, we see that the proposed AI-aided 

SD-IoT model is capable of achieving high QoS in terms of 

end-to-end delay, packet loss rate, switch failure rate, controller 

failure rate, throughput, rules placement, and load balance rate. 

In particular, our proposed model achieves the best 

performance in QoS guaranteed factors, which is illustrated in 

Tables 9. and 10. We observe that the AI-aided SD-IoT model 

has satisfied QoS factors since it uses traffic differentiation, 

optimum routing via best switches, dynamic offloading, and 

rules placement.  

In this paper, delay constraints, load balancing constraints, and 

flow constraints are satisfied. In traffic differentiation and 
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routing, the path is established based on the delay-sensitive and 

loss-sensitive applications flow. 

Table 9. QoS guarantee factors 

State-

of-the-

art 

Delay Through-

put 

Packet 

Loss 

Rate 

Load 

Balance 

Rate 

Scalability 

Sway      

DNN-

SDR 
     

FSM      

FRI      

AI-

aided 

SD-

IoT 

     

 - TRUE (Does meet the QoS requirement) 

 -FALSE (Does not meet the QoS requirement) 

Table 10. Quantitative comparison 

QoS 

Parameters 
FSM Sway 

DNN-

SDR 
FRI 

AI-

aided 

SD-

IoT 

End-to-End 

Delay (ms) 
- 3.016 3.7416 - 0.625 

Packet 

Loss Rate 

(%) 

0.1029 0.1098 0.0955 - 0.0325 

Switch 

Failure 

Rate (%) 

4.25 10.27 4.75 - 5.2 

Controller 

Failure 

Rate (%) 

12.75 28 20.75 - 8.75 

Throughput 

(Kbps) 
357.9 321.2 344.4 - 404.5 

Rules 

Placement 
- - - ≅ 31 ≅ 10 

Load 

Balance 

Rate (%) 

0.325 0.181 0.275 - 0.737 

5.4. Motivating application 

The usefulness of our proposed AI-aided SD-IoT model is 

given in this section by providing an example. We have tested 

our proposed model in Industry 4.0 applications, which is also 

referred to as IIoT. There are several IoT devices deployed in 

the industrial environment, namely RFID, BLE, Modbus, 

CANbus, EtherCAT, Profibus, and Profinet. From the IIoT 

devices, the task request is forwarded to the controller in XML 

or JSON format. 

Fig. 16. shows the Industry 4.0 application implemented in SD-

IoT. To ensure communication of IoT devices with Router, 

different communication protocols are used, such as HTTP, 

CoAP, MQTT, BLE, Modbus, and CAN-open Ethernet. 

Controllers 

RFID 

BLE

Modbus

EtherCAT

CANbus Profibus

Profibus

Router

Switches

 

Fig. 16. Industry 4.0 in SD-IoT (Use case) 

5.5. Computational complexity analysis 

We evaluate the performance of the proposed solution by 

determining the amount of overhead and overload on the 

network. To analyze it, we calculated the computational 

complexity. IoT devices are resource-constrained and they 

must save energy to be able to operate for a longer time. Hence, 

we compute the time complexity of the proposed solution.  

Time complexity refers to the order of growth the proposed 

algorithm requires in execution time for the given input. For 

representing the time complexity, Big-O notation is used. In 

this paper, the time complexity is predicted using three factors, 

namely, complexity, topology, and traffic pattern. Our 

proposed AI-aided SD-IoT model time complexity is compared 

with the previous state-of-the-art research and depicted in 

Tables 11. and 12. 

Table 11. Time complexity computation 

State-of-

the-art 

Complexity Type 

(Time) 

Topology Traffic 

Pattern 

Sway Non-deterministic 

polynomial time  

  

DNN-SDR Exponential time    

FSM Log linear    

FRI Cubic   

Proposed Logarithmic    

The statistical performance of time complexity is evaluated 

through simulations. Performance is compared with Sway, 

DNN-SDR, FSM, and FRI. 𝐷 is the number of IoT devices and 

n represents the number of required operations. When network 

traffic is unevenly distributed to the SDN controller, then time 

complexity increases because switches are bandwidth 

constrained and need low response time for sensitive 

applications. 
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Table 12. Time complexity computation 

 

Algorithm 

Time Complexity (3 Cases) 

Linear Best Worst 

Sway ~𝑂(1) ~𝑂(𝑛𝐷) ~𝑂(𝑛2) 

DNN-SDR ~𝑂(𝑛𝐷) ~𝑂(𝑛2𝐷) ~𝑂(2𝑁𝐷) 

FSM ~𝑂(𝑛2𝐷) ~𝑂(𝑛2𝐷) ~𝑂(𝑛2𝐷) 

FRI ~𝑂(𝑛𝐷) ~𝑂(𝑛2𝐷) ~𝑂(𝑛2𝐷) 

Proposed AI-

aided SD-IoT 
~𝑂(𝑛𝐷) ~𝑂(4𝑛𝐷) ~𝑂(𝑛2𝐷) 

After the time complexity evaluation based on above factors, 

we have found that the proposed model requires 𝑂(4𝑛 × 𝐷), 

and 𝑂(4𝑛) represents execution time required for completing 

the four processes such as traffic differentiation, topology 

discovery, traffic differentiated routing, dynamic offloading 

and rule placement. From the time complexity analysis, if the 

number of devices increases and devices are resource-

constrained, then the stronger mechanisms are required to 

improve the level of QoS. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a novel AI-aided SD-IoT model for 

traffic differentiated routing and dynamic offloading. We 

focused on AI concepts for all layers of the proposed model. To 

mitigate the issues of multi-controller environment-based load-

balancing mechanisms, we presented fragmentation-optimized 

distributed controllers enabled SD-IoT environment.  

We presented four new concepts in this paper to improve the 

QoS: traffic differentiation, topology discovery, traffic 

differentiated routing and rule placement, and dynamic 

offloading. We showed that the QoS is increased through the 

proposed concepts and algorithms, and we showed our 

proposed model is an effective and scalable solution for any 

kind of application environments (sensitive, non-sensitive, 

delay-tolerant, and delay intolerant). Moreover, we proved that 

our AI-aided SD-IoT model achieves 12% of reduced end-to-

end delay, 30% of reduced packet loss rate, 35% of reduced 

switch failure rate, 15% of reduced controller failure rate, 12% 

of increased throughput, 65% of reduced rule placement and 30% 

of increased load balancing rate.  

In the future, we plan to work on the 5G environment, which 

provides a high data rate and less latency in smart IoT 

applications, and we plan to test our proposed solution in the 

different real-world application scenarios. 
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