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The effect due to the photon mass is explored in the hydrogen atom. Specifically, the ground-state energy of
the hydrogen atom within Proca’s electrodynamics is considered. The resulting correction term is compared with
the experimental precision of the ground-state energy of the hydrogen atom. From this, the limit of 3× 10−42g
on the photon mass is obtained.

I. INTRODUCTION

The photon is the particle that mediates the electromagnetic
interaction. This particle appears as a result of the
quantization of Maxwell’s theory with the peculiarity that
has no mass [12]. Furthermore, Proca [22] in 1936
introduced a relativistic generalization of the Maxwell
equations which, after quantization, lead to a photon with
mass [12]. Although the scenario of Maxwell has been
extensively tested experimentally, Proca’s scenario draws
attention because it seems more intuitive that every particle
in nature possesses mass. Consequently, the controversy that
the photon possesses mass or not should be determined only
by experimental verification. A similar controversy arose with
the neutrino, which is the particle that mediates the strong
nuclear interaction. This particle was considered massless like
the photon, but recently, neutrino oscillation has been observed
experimentally, which is only possible if the neutrino has mass
[19][15]. Therefore, finding the photon mass (unlike neutrino
mass) stands as an open and fundamental particle physics
subject.

From a theoretical perspective, Proca’s scenario involves the
insertion of a mass term in the Lagrangian of quantum
electrodynamics which breaks the gauge invariance, which
implies that the theory can not be re-normalizable. However,
this is not the case for the Proca Lagrangian, since it can be
viewed as a gauge-fixed version of the Stückelberg Lagrangian
[30], which restores gauge invariance [25]. In addition, a
finite photon mass is perfectly compatible with the general
principles of elementary particle physics. Of course, the
enormous successes of quantum electrodynamics has led to an
almost total acceptance that the photon has no mass. However,
despite this acceptance, a substantial experimental effort has
been made to determine, directly or indirectly, whether the
photon mass is zero or nonzero.

From the experimental point of view, the difficulty of detecting
the photon mass is that it can be extremely small. In this
regard, the uncertainty principle in its energy-time version (i.e.
∆E∆t ≥ ~/2) allows setting a final limit of the photon mass.
Considering that mγ is the mass of the photon and ∆t = 1010

years (age of the universe), then mγ ≈ ~/ (∆t) c2 = 10−66g.
As mγ can be extremely small, the best we can do is placing
even tighter limits on its size.

The procedure for establishing a limit on mγ depends on the
studied phenomena, which can be classified into two types,
namely, type 1: long-range and/or low experimental precision
phenomena, or type 2: short-range and high experimental
precision phenomena. Among the phenomena of type 1 are
the measurements of deflection of the magnetic dipole field
of the earth made by Fischbach et al. [6] and Goldhaber and
Nieto [10]. A more extensive list of methods of type 1 can
be found in the revision of Tu et. al. [33] and Goldhaber
and Nieto [9][11]. Among the tests of type 2 phenomena, we
have the highly accurate test of the Coulomb law by William et
al. [34] and the cryogenic experiment by Ryan et al. [26].
As in the phenomena of type 2 precision is critical, then it
is reasonable to explore quantum phenomena in which this
requirement is present. Boulware and Deser were the first to
explore quantum scenarios by studying the quantum Aharonov-
Bohm effect with Proca’s theory [2]. Subsequently, the same
approach was extended to other quantum effects of the same
type as the Aharonov-Casher effect [7], the electron-positron
effect [29] and Tackchuk effect [32]. The effect of type AB
neutron proposed by Sangster et. al. [27] was studied by M.
Rodriguez [23]. To broaden the discussion on the photon mass
in quantum scenarios, one can consult the paper by Spavieri et.
al. [28].

Recently, Caccavano and Leung [3], have explored the effect
of the photon mass in atomic spectrometry, specifically, they
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have recalculated the hyperfine interaction using the theory of
Proca and they have obtained a correction term for line 21cm
hydrogen. However, Caccavano and Leung [3] do not set a
limit on mγ because the correction term is too small to be
detected with current spectroscopic technology. Following this
approach, in this work the effect of the mass of the photon on
ground-state energy of the hydrogen atom is explored and an
experimental limit on mγ is obtained. Our work is organized
as follows: in section II Proca equations are presented and
from these the electrostatic potential for a charged particle
is derived. In section III the Schrödinger equation with the
potential found in section II (Yukawa potential) is presented
and some approximate analytical methods are mentioned to
find the ground-sate energy. In Section VI a limit on mγ is
established. Finally, in section V the results are discussed.

II. PROCA’S EQUATIONS AND YUKAWA POTENTIAL

Proca’s equations

The set of equations of the electromagnetic field leading to
massive photon known as Proca equations, which in SI units
are as follows:

∇ ·E =
ρ

ε0
− µ2

γφ, (1)

∇×E = −∂B
∂t
, (2)

∇ ·B =0, (3)

∇×B =µ0J + µ0ε0
∂E

∂t
− µ2

γA, (4)

where E is the electric field, B the magnetic field, ρ the charge
density, J the current density, φ the scalar potential, A the
vector potential, µ0 y ε0 the permittivity and permeability of
free space and µγ a characteristic length of the related theory
(through quantization [12])) with the photon mass, i.e.:

mγ =
µγ~
c
. (5)

Additionally, the potentials maintain their standard form,

B = ∇×A, (6)

and

E = −∇φ− ∂A

∂t
, (7)

with the condition of Lorentz

∇ ·A+
1

c2
∂φ

∂t
= 0, (8)

which it is necessary for the validity of the conservation of
charge. Should be noted that due to parameter µγ present in
equations (1) and (4) E and B fields acquire an exponential
attenuation, additional natural dependence on the distance,
hence Proca’s electrodynamics is also known as finite-range
electrodynamics .

Yukawa potential

To obtain the equation of scalar potential in the Proca’s theory
(7) is replaced (as is usual in Maxwell’s theory) in Gauss’s law
modified (1), provided ∂tA = 0, this gives,

(
∇2 − µ2

γ

)
φ (r) = −ρ (r)

ε0
, (9)

which has the form of an inhomogeneous modified Helmholtz
equation. For a point particle ρ (r) = qδ (r) and (9) becomes
as follows:

(
∇2 − µ2

γ

)
φ (r) = − q

ε0
δ (r) . (10)

The solution is [1]:

φ (r) =
q

4πε0

e−µγr

r
. (11)

This potential is known in the literature with several names
depending on the application area. In nuclear physics, it is
known as Yukawa potential and is used to model the strong
interaction between nucleon-nucleon due to the exchange of
a meson [35]. In solid-state physics it is called Fermi-Dirac
potential [18] and in physics of plasmas it is known as Debey-
Huckle potential [16][21].

III. HYDROGEN ATOM WITH YUKAWA POTENTIAL

The Schrödinger equation independent of time for the
hydrogen atom with the Yukawa potential (11) is as follows:

(
− ~2

2m
∇2 +

e2

4πε0

e−µγr

r

)
ψ (r, θ, ϕ) = Eψ (r, θ, ϕ) ,

(12)

where spherical coordinates have been adopted because of the
symmetry of the potential. Applying separation of variables
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ψ (r, θ, ϕ) = R(r)
r Y (θ, ϕ) [13] radial Schrödinger equation is

obtained, that is to say:[
d2

dr2
+ 2m

[
E

~2
+

e2

4πε0~2
e−µγr

r

]
− l (l + 1)

r2

]
Rnl = 0,

(13)
this equation does not allow exact solutions due to the presence
of the exponential term in the potential. Consequently,
many approximate methods have been applied for its solution.
For example, it has been used perturbation theory [31],
variational method [4][24] and group theory [8]. Hamzavi et
al recently [14] obtained by the parametric generalized method
of Nikiforov-Uvarov [20], approximate analytical solutions of
the Schrödinger radial equation. With this method Hamzavi et
al. [14] obtained the energy eigenvalues and the corresponding
eigenfunctions approximate equation (13) in closed form. To
make the analysis of the photon mass in the context of
the hydrogen atom here the results obtained by Hamzavi et.
al. [14] will be used. Specifically, the expression of the
eigenvalues of energy (equation (19) in [14]) will be taken, i.e.:

En,l = − ~2

2m

[
m e2

4πε0~2 − µγn2

n

]2
, (14)

where n = jmax + l + 1, jmax = 0, 1, 2 . . . and l =
0, 1, 2 . . .[13]. Ground state energy is achieved when n = 1.
In this case the expression (14) is reduced as follows:

E1,0 = (E1,0)Y = − ~2

2m

[
m

e2

4πε0~2
− µγ

]2
, (15)

which it has been added the subscript Y to identify which is
the power base of the hydrogen atom with Yukawa potential
state. Note that in the limit when µγ → 0 the expression (15)
is reduced to the ground-state energy of the hydrogen atom with
Coulomb potential, i.e.,

(E1,0)C = lim
µγ→0

(E1,0)Y = − m

2~2

(
e2

4πε0

)2

. (16)

IV: LIMIT ON µγ AND Mγ

The standard procedure adopted to set a limit on mγ is set a
limit on µγ first. This is done by comparing the additional
contributions derived from the equations of Proca with the
experimental precision of the studied phenomenon. This is
useful for writing (15) as:

(E1,0)Y = −

[
(E1,0)C +

(µγ~)
2

2m
− αc (µγ~)

]
, (17)

where E1,C is defined by (16), α is the fine-structure constant
and c is the speed of light. Note that in (17) the last two terms
on the left side satisfy the relation:

(µγ~)
2

2m
� αc (µγ~) .

This is because µγ � 1 and ~2

2m � αc~. Therefore, the first
order expression (17) is reduced to:

(E1,0)Y ' −
[
(E1,0)C −∆E (µγ)

]
, (18)

where,

∆E (µγ) = αcµγ~. (19)

The expression (19) is the correction to be compared with the
experimental error. This expression, also, can be obtanied
like a perturbation when the Yukawa potential is expanded in
Maclaurin to µγ , because µγ � 1. According to the NIST
Atomic Spectra Database [17] the reported ground-energy state
of hydrogen is:

(E1,0)C = −13, 598434005136(12)eV. (20)

Therefore, the experimental error of the ground-state of the
hydrogen atom is (∆E1,0)C = 1, 2× 10−11eV.

So,

∆E (µγ) = αcµγ~ ≤ (∆E1,0)C .

With this the limit on µγ is obtained,

µγ ≤
(∆E1,0)C
αc~

= 8, 4× 10−3m−1. (21)

Finally, substituting (21) in (5) the limit sought is obtained:

mγ = µγ
~
c
≤

(∆E1,0)C
αc2

= 3× 10−42g. (22)

Notice that here we have not considered other interactions such
as spin-orbit or hyperfine-structure, this is because the spin-
orbit is of the order of α4 and the hyperfine-structure is of the
order of (m/mp)α

4mc2 which are terms much smaller than
(19). In fact, in the work of Caccavano and Leung [3] it is
reported that the correction due to the hyperfine structure is
of the order of ∼ (m/mp)α

4mc2a0µ
2
γ , with a0 is the Bohr

radius, m is the electron mass and mp is the proton mass.
Consequently, the greatest order correction obtained due to µγ
is the expression (19) which is proportional to α.

V. CONCLUSIONS

We obtained a limit on the mass of the photon through ground-
state energy of the hydrogen atom. The limit found is 3 ×
10−42g which is 7 orders of magnitude smaller the value
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that can be derived from the work of Caccavano and Leung
[3]. Additionally, the scenario explored here differs from
other methods that have been studied in the sense that the
correction also depends on µγ in equation (17) and not only
square product of the mass of the photon and the dimension
of the phenomenon studied, i.e. (µγD)2 as it expresses
a theorem Goldghaber and Nieto [9]. This is because the
interaction studied does not depend on the dimension of
space. Furthermore, an experimental limit on the coefficient
of shielding Yukawa potential is found (equation 21), which is
often used to compute bound-state normalizations and energy
levels of neutral atoms [5]. In fact, in the work Hamzavi
et al. [14] values of µγ are imposed in order to obtain the
different energy levels. For example, in the case of ground-
state hydrogen Hamzavi et al. [14] reports that µγ = 2 ×
10−14m−1 that would imply a photon mass mγ = 7 ×
10−56g. The point is that for a mass of this value the precision
ground-state energy should be (∆E1,0)C = 2, 7 × 10−23eV
which is 12 orders of magnitude smaller than the precision
currently reported [17]. Finally, it is important to mention
that the limit found represents an improvement by an order
of magnitude with respect to the limits obtained with the
quantum effects by Tkachuk

(
mγ ≤ 2.5× 10−41g

)
[32] and

Sangster
(
mγ ≤ 1.1× 10−41g

)
[23], confirming once more

that quantum approaches are a competitive way to find the limit
of the photon mass.
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