
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 10 (2021), pp. 999-1004

© International Research Publication House. http://www.irphouse.com

999

Descriptive Analysis of the Agile Methodology Extreme Programming (XP)

for its Implementation in Software Development

Holman Montiel Ariza1, Luis F. Wanumen Silva2 and Lely A. Luengas Contreras3

Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá D.C, Colombia.

1ORCID: 0000-0002-6077-3510, 2ORCID: 0000-0002-8877-5681
3ORCID: 0000-0002-3600-4666

Abstract

Agile methodologies are one of the most booming tools in

recent decades; this is because its application in industries not

only in the software development sector, but in all areas has

resulted in the optimization of processes within project

management. Therefore, throughout this document, one of the

most used methodologies is Extreme Programming (XP),

whose structure is specified in detail, covering various factors

such as: values, principles, and practices that when

implemented are focused on strengthening product quality,

customer satisfaction, assertive communication between team

members and others involved, and reducing downtime based on

continuous feedback. Additionally, emphasis is placed on the

phases of the methodology; where the activities that make up

each of them and the roles necessary for the development of the

different processes that compose it are described.

Keywords: Agile Methodology, Project Management,

Extreme Programming, Software Development.

1. INTRODUCTION

The advance of technologies and the continuous development

of innovation has generated that organizations manage in an

ideal way the resources available for the execution of their

projects; this with the aim of achieving efficiency in less time,

with reduced costs and meet the changing needs of customers

[1].

There are two types of methodologies used for project

management within companies, traditional methodologies, and

agile methodologies. Initially in the software development

industries traditional methodologies were applied such as:

classical waterfall model [2], iterative waterfall model, spiral

model [3] or RAD model, which were focused on performing

sequential processes whose phases depended on each other, and

the construction of the product began once the design phase was

defined [4].

On the other hand, due to the rapid growth of the software

development industry in 2001 a group of 17 expert process

analysts discussed the standard characteristics of the applied

methodologies and as a result the Agile Manifesto [5][6] was

obtained, which was written in order to define the basic,

modern and simple principles and values for agile software

development [7].

Given the above, agile methodologies focus on continuous

change, implementing small changes that reflect customer

requirements through iterations allowing a results orientation;

also the organizational structure that conforms them is

collaborative, based on the adaptability and cross-functionality

of the teams, acquiring effective feedback responding quickly

to the environment [8].

Currently, agile methodologies are not only applied in software

development; the search for agility within organizations has

generated that they are implemented according to the criteria or

needs that arise within the processes during the development of

a project; so there are several types such as: Scrum, Crystal,

Kanban, Extreme Programming (XP), Dynamic Systems

Development Method (DSDM), Prince 2, among others

[9][10][11][12].

This paper addresses Extreme Programming (XP) which is a

lightweight software development methodology created by

Kent Beck [13], who developed a book where he explains each

of its components [14], because its structure is based on

simplicity, communication and feedback of the developed code

[15], therefore, it will be analyzed in detail presenting each of

the features that make it for the application within any

organization.

2. MATERIALS AND METHODS

First, the structure of Extreme Programming (XP) will be

analyzed, which is made up of three parts: Values, Principles

and Practices, which will be described in detail in the

development of the document as they are the starting point.

Additionally, the phases of the methodology will be broken

down where the processes that make up each of these phases

and the roles involved in the implementation will be identified.

Finally, the advantages of the application of Extreme

Programming (XP) in organizations are exposed.

3. DEVELOPMENT

The Extreme Programming (XP) methodology among its main

objectives seeks to promote interpersonal relationships through

the strengthening of teamwork; ensure the quality of the

software developed, improve productivity and minimize risk by

acting on project variables (cost, time, scope and quality)

[16][17]; these objectives are oriented to assume the change

naturally to adapt immediately. Likewise, the life cycle of the

XP process [18] is defined as shown in the Figure 1.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 10 (2021), pp. 999-1004

© International Research Publication House. http://www.irphouse.com

1000

Fig. 1. XP Process Life Cycle

 Exploration: It consists of the approach of the client's

requirements through user stories which are important to

develop the first delivery of the product.

User stories are basically a written representation of the

requirements as seen from the end user's perspective; they

are intended to describe for developers in a practical way

what the end user really wants in relation to the

functionality, see Table 1.

Table 1. Example of a user story

Number: User:

Name of the Story:

Priority: Developmental Risk: High ()

Medium () Low ()

Estimated points: Assigned Iteration:

Responsible programmer:

Description:

Like:

I want to:

To:

Validation:

 Planning: The priority of each user story is established, and

the effort involved in their development is estimated.

 Iterations: In this stage, continuous revision of the

generated product is performed, so tests are performed and

a feedback and integration process is maintained.

 Production: Additional tests are carried out and the

performance of the product is evaluated before it is

presented to the customer.

 Maintenance: The updates required by the client are

developed.

 Project closure: At this point the client does not require to

include more user stories, so the final delivery of the

product is done [14].

In contrast, the structure of the methodology is composed of

three parts: values, principles, and practices, each of which is

described below, see Figure 2.

Fig. 2. XP Structure

I. Values

By means of the values, it is sought that the work teams

emphasize a collaborative attitude and effectively face the

changes generated in the project. Therefore, the methodology

is based on the following values.

 Communication: This value is not only focused on

communication between the work team but also on

communication with developers and customers; to obtain

a continuous exchange of information and detect in the

shortest possible time any error.

 Simplicity: It looks for the simplest solution by

developing the functions for each process at the indicated

time; at the same time, it focuses on the creation of simple

programming codes with the objective of facilitating the

understanding of the complete equipment.

 Feedback: By means of this value the client can elaborate

the necessary critiques to obtain the requested product; in

the same way, the processes are executed in short cycles

with the purpose of verifying the code and delivering

advances of the product to the client.

 Courage: It is related to the willingness to acknowledge

mistakes within the product development, analyze the

working methods and sometimes start coding again.

 Respect: It refers to the cordiality of the team, as well as

not to harm the members of the group with negative

modifications that affect the development of any member

[19].

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 10 (2021), pp. 999-1004

© International Research Publication House. http://www.irphouse.com

1001

II. Principles

The principles are the connection between values and practices,

i.e., they are the link between the abstract and the concrete, they

come from the values and the methodology mentions 14:

 Humanity: The software is developed by people.

 Economy: Ensures the economic value of the product

made.

 Mutual benefit: Practices should benefit everyone

involved.

 Self-similarity: Apply known patterns to the solution of

different problems.

 Improvement: Seeks excellence through continuous

review to deliver the expected product.

 Diversity: Getting different ideas for the development of

a product broadens the vision of this and generates new

opportunities for its development.

 Reflection: The cohesion between the work teams allows

to analyze the processes and not to hide the mistakes.

 Flow: Enables continuous delivery of value to the

customer.

 Opportunity: Every problem creates an opportunity for

change.

 Redundancy: Complex parts should be analyzed several

times.

 Failure: Each failure brings new learning.

 Quality: The reduction of quality does not represent

greater speed in the execution of a process.

 Small steps: Each advance within the project must

contribute to the client's requirements and add value to the

product.

 Accepted responsibility: Assigning tasks to a specific

member allows them to take responsibility for their

developments [20].

III. Practices

Extreme Programming proposes practices of planning,

organization, communication, and software development,

which combined with the values and principles generate a

culture of excellence. Kent Beck in the second edition of his

book classifies practices into two groups: primary and

complementary practices; the combination of both optimizes

effectiveness.

Primary

These practices provide immediate benefits in a safe manner.

There are 13 of them and they are detailed below:

a. Sit Together: It is characterized by being an open

space where the whole team works, where meetings

are also held, generating greater productivity, and

strengthening communication.

b. Whole Team: Seeks to build trust to foster support,

growth and learning among team members.

c. Informative Workspace: It is a space assigned to

view the progress of the project graphically, in turn,

user stories are displayed and grouped according to

their status.

d. Energized Work: This refers to performing activities

in such a way that the employee achieves a high level

of productivity during assigned work hours and

effective time management.

e. Pair Programming: The code produced must be

written in pairs, in order to analyze, design, test and

elaborate the corresponding improvements, clarifying

ideas and reaching the required standards [21].

f. Stories: User stories should be written on small cards

indicating the name, description and estimated time

and should be placed in a visible place.

g. Weekly Cycle: It is a short cycle that starts with a

meeting at the beginning of the week to evaluate the

progress to date, the tasks are formulated and assigned

responsible; in the same way, the tests to be performed

during the week are scheduled once the user stories are

complete to be integrated into the project.

h. Quarterly Cycle: It is a follow-up meeting held every

three (3) months in order to evaluate the overall

progress of the project, this is to identify bottlenecks

and choose the stories to be developed during the next

quarter.

i. Slack: It raises a time frame to soften the tension of

meeting impossible commitments, enhances

credibility, and builds relationships based on honest

communication.

j. Ten-Minute Build: It is based on ten minutes to build

the entire system and run the tests, this process should

be automated; as well as the deployment and release

of new features in production. Moreover, testing

should be performed for all parts of the system not

only for the newly added parts.

k. Continuous Integration: The objective is to obtain a

system ready to be launched without any problem, for

this the programmed changes must be integrated, there

are two types of integration:

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 10 (2021), pp. 999-1004

© International Research Publication House. http://www.irphouse.com

1002

 Synchronous integration: This is the one where the

pair of programmers upload the changes a couple of

hours after their elaboration; waiting for the build to

be completed and that all the tests have been passed

without any problem.

 Asynchronous integration: The daily build is

elaborated at night, a new version of the system is built

and if errors occur, the corresponding alerts are

generated to provide the appropriate solution.

l. Test- First Programming: It is an evolutionary

approach that seeks to generate quality code, based on

writing the test first and improving it through

refactoring.

m. Incremental Design: It is the gradual design of the

product with the objective of improving its

functionality at each stage; increasing its value and

bringing it closer to the product expected by the

customer [22].

Complementary

These practices should be implemented once the primary

practices have been mastered and are classified into four groups

as shown in Figure 3.

Fig. 1Complementary Practices

4. DISCUSSION AND APPLICABILITY

From another perspective, the Extreme Programming (XP)

methodology consists of four phases [23] as depicted in Figure

4, which contain specific activities for each phase and roles

related to the activities for its implementation.

Fig. 2XP Methodology Phases

I. Planning: This phase is focused on obtaining an

effective communication between those involved in the project;

and in this way to know the needs presented by the client for

the development of the product. On the other hand, a delivery

schedule is established to start with the iterations process. The

planning has activities or processes that help in the

development of the product and complement the phase, these

activities are:

 User Stories: It is a document written by the client which

details the needs of the system; it is assigned a priority

level for its development and according to this the costs

are estimated and generally calculated according to the

weeks needed for each story. These should be able to be

scheduled between one and three weeks, if it exceeds the

time should be divided into several stories and if less

than a week should be merged with another [24].

 Delivery Plan: In the delivery schedule is planned the

union of user stories to be delivered and the order of

these according to customer priorities.

 Iteration Plan: It starts with a meeting to plan the

iteration, there the user stories are selected and

decomposed into tasks; which are assigned for

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 10 (2021), pp. 999-1004

© International Research Publication House. http://www.irphouse.com

1003

development and testing within each cycle in the

established order.

 Daily follow-up meetings: Meetings are held with the

objective of maintaining communication between the

team and sharing the difficulties and solutions presented.

II. Design: In this phase simple and clear designs are

made to facilitate the development, likewise the following

concepts are used:

 Spike solutions: These are small test programs to

examine various solutions when there is difficulty in

estimating user story times or technical problems.

 Recoding: The process of writing part of a code again

without changing the functionality, but with the aim

of making it simpler and clearer.

 Metaphors: It is the way to explain in a simple way the

purpose, structure, and architecture of a project.

In addition to the previous concepts, it is possible to use

sequence diagrams, which facilitate in this phase the

visualization of the application behavior from a functional

perspective, see Fig. 5.

Fig. 5. Example of sequence diagrams

III. Development: In this phase the developers must

design the unit tests that correspond to each user story; then the

coding is elaborated so that in the implementation it passes the

unit tests.

IV. Testing: It is the phase in which the elaborated code

is implemented, initially it is verified that it does not generate

errors; in case of generating them they must be corrected

quickly and the acceptance tests are performed according to the

user stories, verifying that they have been correctly

implemented [25].

Finally, the methodology has specific roles to conform the

work teams, which generates the assignment of responsibilities

oriented to fulfill the objective of the project, the most relevant

roles are:

 Developer: Writes the code and develops the activities of

the project.

 Customer: Write user stories and set priorities.

 Tester: Performs the product tests and the quality of the

product depends on him.

 Project Tracker: Monitors the progress of the software and

detects problems in the product.

 Coach: Oversees teamwork and teaches how to

implement more effective practices.

 Doomsayer: Tracks project risks and informs the team

about them [26].

Conclusion

The use and implementation of agile methodologies such as XP

methodology in software development, generates the

minimization of errors due to the planning of short cycles or

iterations; which allow feedback in each process including

customer participation and contributing to the solution of

problems in less time, thus reducing project risks and

increasing product quality in each delivery. On the other hand;

the increase of the productivity of the work teams is reflected

thanks to the fact that the programmers can develop the projects

in the way they consider optimal; either by carrying out

iterations that allow the integration and validation of each of

the components developed to meet the needs of the client;

allowing the execution of their activities to be carried out within

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 10 (2021), pp. 999-1004

© International Research Publication House. http://www.irphouse.com

1004

the assigned working hours with the objective of not having

work overload for the collaborators.

REFERENCES

[1] V. Fustik, “The advantages of agile methodologies

applied in the ICT development project,” Interntational J.

Inf. Technol. Secur., vol. 9, no. 4, pp. 51–62, 2017.

[2] W. Van Casteren, “The Waterfall Model And The Agile

Methodologies  : A Comparison By Project

Characteristics-Short The Waterfall Model and Agile

Methodologies,” ResearchGate, no. February, pp. 10–13,

2017.

[3] S. Dhir, D. Kumar, and V. B. Singh, “Success and Failure

Factors that Impact on Project Implementation Using

Agile Software Development Methodology In: Hoda M.,

Chauhan N., Quadri S., Srivastava P.,” Softw. Eng. Adv.

Intell. Syst. Comput., vol. 731, 2019.

[4] M. Sameen Mirza and S. Datta, “Strengths and Weakness

of Traditional and Agile Processes - A Systematic

Review,” J. Softw., vol. 14, no. 5, pp. 209–219, 2019.

[5] T. Krehbiel et al., “Agile Manifesto for Teaching and

Learning,” J. Eff. Teach., vol. 17, no. 2, pp. 90–111, 2017.

[6] V. Stray, N. B. Moe, and R. Hoda, “Autonomous agile

teams: Challenges and future directions for research,”

ACM Int. Conf. Proceeding Ser., vol. Part F1477, pp. 1–

5, 2018.

[7] S. Shaikh and S. Abro, “Comparison of traditional and

agile software development methodology: A short survey,”

Int. J. Softw. Eng. Comput. Syst., vol. 5, no. 2, pp. 1–14,

2019.

[8] D. Beerbaum, “Applying Agile Methodology to

regulatory compliance projects in the financial industry:

A case study research,” J. Appl. Res. Digit. Econ., vol. 2,

no. Special Issue, pp. 1–11, 2019.

[9] A. López-Alcarria, A. Olivares-Vicente, and F. Poza-

Vilches, “A Systematic Review of the Use of Agile

Methodologies in Education to Foster Sustainability

Competencies,” Sustainability, vol. 11, no. 10, pp. 1–29,

2019.

[10] D. Sánchez, F. Lizano, and M. Sandoval, “Integration of

Remote Usability Tests in eXtreme Programming: A

Literature Review,” Uniciencia, vol. 34, no. 1, 2020.

[11] R. Kumar, P. Maheshwary, and T. Malche, “Inside Agile

Family Software Development Methodologies,” Int. J.

Comput. Sci. Eng., vol. 7, no. 6, pp. 650–660, 2019.

[12] Ö. Uludağ, M. Hauder, M. Kleehaus, C. Schimpfle, and F.

Matthes, “Supporting Large-Scale Agile Development

with Domain-Driven Design. In: Garbajosa J., Wang X.,

Aguiar A.,” Lect. Notes Bus. Inf. Process., vol. 314, 2018.

[13] J. Choma, E. M. Guerra, and T. S. da Silva, “Developers’

Initial Perceptions on TDD Practice: A Thematic Analysis

with Distinct Domains and Languages. In: Garbajosa J.,

Wang X., Aguiar A. (eds) Agile Processes in Software

Engineering and Extreme Programming. XP 2018.,” Lect.

Notes Bus. Inf. Process., vol. 314, pp. 68–85, 2018.

[14] K. Beck and C. Andres, Extreme Programming Explained:

Embrace Change, Second Edi. Pearson Education, Inc.,

2005.

[15] D. Gopaul, Software Methodologies: SCRUM vs Extreme

Programming, Lulu Press. 2017.

[16] J. Pollack, J. Helm, and D. Adler, “What is the Iron

Triangle, and how has it changed?,” Int. J. Manag. Proj.

Bus., vol. 11, no. 2, pp. 527–547, 2018.

[17] S. Kunwar, “Enabling and Limiting factors in eXtreme

Programming (XP) with Evaluation Framework,”

SCITECH Nepal, vol. 14, no. 1, pp. 50–62, 2019.

[18] M. Ibrahim et al., “Presenting and Evaluating Scaled

Extreme Programming Process Model,” Int. J. Adv.

Comput. Sci. Appl., vol. 11, no. 11, pp. 163–171, 2020.

[19] J. C. Salazar, Á. Tovar, J. C. Linares, A. Lozano, and L.

Valbuena, “Scrum vs XP  : Similarities and Differences,”

Tecnol. Investig. y Acad., vol. 6, no. 2, pp. 29–37, 2018.

[20] S. González and L. Fernández, “Programación Extrema:

Prácticas, Aceptación y Controversia,” Culcyt / Softw., no.

14, pp. 55–62, 2006.

[21] O. A. Pérez A., “Cuatro enfoques metodológicos para el

desarrollo de Software RUP – MSF – XP - SCRUM,”

Inventum, vol. 6, no. 10, pp. 64–78, 2011.

[22] F. Anwer, S. Aftab, S. Shah Muhammad Shah, U. Waheed,

S. M. Shah, and U. Waheed, “Comparative analysis of

two popular agile process models: extreme programming

and scrum,” Int. J. Comput. Sci. Telecommun., vol. 8, no.

2, pp. 1–7, 2017.

[23] L. Vázquez, A. Valdez, and G. Cortes, “Use of Extreme

Programming to develop a system in the mining industry,”

CienciaCierta, no. 61, 2020.

[24] M. Ecar, F. Kepler, and J. P. S. Da Silva, “Cosmic User

Story Standard. In: Garbajosa J., Wang X., Aguiar A. (eds)

Agile Processes in Software Engineering and Extreme

Programming. XP 2018.,” Lect. Notes Bus. Inf. Process.,

vol. 314, pp. 3–18, 2018.

[25] N. Hasanah, M. B. Triyono, G. N. I. P. Pratama, Fadliondi,

and I. G. N. D. Paramartha, “Markerless Augmented

Reality in Construction Engineering Utilizing Extreme

Programming,” J. Phys. Conf. Ser., vol. 1737, no. 1, 2021.

[26] R. Jeffries, A. Anderson, and C. Hendrickson, Exteme

Programming Installed, Pearson Ed. Canada, 2001.

