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Abstract 

In this article the use of Arnold Kennedy's theorem and screw 

theory for the analytical determination of the center of rotation 

of four-bar mechanisms is proposed. The natural coordinates 

are mostly Cartesian coordinates located in the kinematic pairs 

or in points of interest of the mechanism, where the main 

advantage of their use is that angular parameters and 

trigonometric functions can be disregarded, which facilitates 

the understanding of the modeling, in addition it is not 

necessary to use trigonometric functions. This tecnique allow 

to reduce the computational cost in a great way, optimizing 

problems where the rotation center has to be calculated many 

times. To achieve this goal, the problem is described and 

formulated in a robust way using natural coordinates and 

operating within the body of complex numbers. Then, to deal 

with the present problem, the mechanism’s kinematics position 

in natural coordinates is modeled and computing and with the 

obtained equations, a program is implemented in MATLAB® 

to show the curve described by the rotation centers of links, 

which is fundamental for the optimal design of polycentric 

mechanisms.  

Keywords Four bar mechanism, rotation center, natural 

coordinates.  

 

1. INTRODUCTION 

The center of rotation of a plane mechanism refers to a common 

point of two bodies not necessarily connected that share the 

same velocity [1]. In this case the center of rotation refers to 

that formed by the coupler and the fixed link, known as the 

zero-speed center of rotation. For spatial mechanisms, the 

rotation center’s analogue to the center of rotation is the 

instantaneous axis of rotation, which is the basis of the 

infinitesimal screw theory [2-4]. The determination of the curve 

that describes the center of rotation is of vital importance in the 

optimal design of mechanisms for lower limb prostheses, where 

the mechanism’s center of rotation must approach the curve 

described by the knee’s center of rotation, this curve is known 

as the poloid [5-7]. Traditionally, the position analysis of a 

four-bar mechanism is based on the vector-loop closing 

equations, and therefore the equations that determine the center 

of rotation are in terms of angular parameters, in addition to 

trigonometric functions, as is done in Amador [8] and Radcliffe 

[9].  

Natural coordinates were first introduced by De Jalon & Bayo 

[10], which are mostly Cartesian coordinates located in 

kinematic pairs or points of interest. The main advantage of 

using natural coordinates to model mechanisms is that the use 

of angles and the trigonometric functions can be disregarded, 

which facilitates the modeling and implementation of the 

obtained equations [11]. In literature, work on natural 

coordinates is not very abundant, however there are several 

important papers on the subject which stand out: Núñez [12], 

where natural coordinates are used to model vehicle steering 

mechanisms up to eight bars; in this paper the kinematic 

equations are solved numerically. In Núñez [13], the problem 

of position of a four-bar mechanism using natural coordinates 

was solved analytically. In Rojas & Thomas [14], a general 

procedure is presented to solve the positioning problem of 

plane mechanisms, using the concept of bilateration that 

focuses in two given points to determine the third point of a 

triangle. 

The general objective of this paper is to determine in an 

analytical way the zero-speed center of rotation in a four-bar 

mechanism using natural coordinates. The equations obtained 

are implemented in MATLAB® to show the curve described 

by the center of rotation, which is of vital importance in many 

applications where mechanism’s stability depends directly on 

the rotation center. 

2. POSITIONING KINEMATICS USING NATURAL 

COODINATES 

Figure 1 display the four-bar mechanism’s modeling using 

natural coordinates, where the natural coordinate vector is 

given by: 
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Figure 1. Four-bar mechanism’s modeling using natural 

coordinates. (Source Author) 

Where C and DD corresponds to the mechanism’s coupler 
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kinematic pair coordinates. A and B are the fixed pair 

coordinates. 

To determine the natural coordinates, the procedure 

developed by Núñez [13] was used; this one is based on 

triangulation, which consists of determining a point of a 

triangle by knowing two points of said triangle. From the 

triangle CBD, the points C and B are known, the point C is 

determined by: 

coscos

sinsin

x

y

A aa
C A

A aa




  
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(2) 

 

Making the distance between C and B be, 

s B C 
 

(3) 

The following relations can be written: 
2 2 2

2

b s cl
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2 2h t b l   
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where t takes values of -1 or 1, that represent the four-bar 

mechanism’s two configurations. From Fig. 1 it can be clearly 

appreciated that D point can be determined by: 
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where R corresponds to a ninety-degree rotation of the vector 

(B - C) The Eq. (6) can be written as follows, 
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where e is the identity matrix. So, point D is determined by: 

 D C N B C  
 

(10) 

In this way the problem of positioning of four bars is solved, 

making use of natural coordinates. The obtained equations are 

simple and easily implemented in a computer. For more 

information on the natural coordinates, consult Avello [11].  

3. ROTATION CENTER DETERMINATION 

In this chapter the rotation center is determined by mean Arnold 

Kennedy theorem and screw theory.   

 

Using Arnold Kennedy theorem 

To determine rotation center, I (Fig. 1), the following relation 

can be written, 

 

I A u B v    
 (11) 

where λ, β are scalars are u, v are unitary vectors determined 

by: 
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From equations (11) it is understood that, 

 u v B A   
 

(14) 

written in matrix form as, 
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and applying Cramer’s rule it can be appreciated that, 
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If, the denominator is equal to zero, the vectors u and v are 

parallel, and the rotation center will hence tend to infinity. In 

this way we can determine the center of rotation of a four-bar 

mechanism for any input angle φ. 

 

Using screw theory   

Figure 2 shows the screw system in a four-bar mechanism. It is 

important to clarify that in this work we do not interest in the 

movement of link 3 relative to link 1. 

 

Figure 2. Screw system of four-bar mechanism  
(Source Author) 

 

The screw of link 3 relative to link 0 can be represented by, 
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and rearranging it yields  
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Now taking 
01 1   as input velocity and using matrix 

notation in Eq. 19 it becomes  
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Solving the Eq. 20 we have that  
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Our aim is to determine the screw of link 2 relative 

to link 0. For this we write  
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Where 
02 02 02v I h     and this equation can 

be rewrite as  

02 02 02 02 02

02 02 02 02

02 02 02 02

2

02

( )

( ) ( )

( ) ( )

v I h
I h

I I

I

   

   

   



    

    

   



 

 

Therefore, the rotation center can be computed as 
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Replacing the correspond values in Eq. 22 result,  
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The denominator    x x y y yB D C D B C    can be 

write as  

     ( )
T

x x y y y xB D C D B C R B D C      

Where  ( ) 0
TR B D C   when the link 1 and link 3 are 

parallel therefore the rotation center is located in the infinity 

as was deduced in the previous method. 

Although the screw method is more laborious, it can be used 

to determine the center of rotation of much more complex 

planar mechanisms 

4. RESULTS 

Obtained equations were implemented in the numeric software 

MATLAB®, for four-bar mechanisms with the dimensions 

shown in Table 1 and Table 2. 

Table 1. Four-Bar Mechanism Dimensions in Centimeters 

a  b  c  xA
  yA

  xB
  yB

  

1.5  3 2  0  0  4.5  0  

 

Figure 2 shows the path described by the center of rotation, 

where the entry angle is in the range - 20 ≤ φ ≤ 100. The center 

of rotation for angles outside this range tends to infinity or does 

not exist because assembly of the mechanism is not possible. 

 

 

Figure 3. Curve described by the rotation center for t =1 
(Source Author) 

 

Figure 4. Curve described by the rotation center for t =-1 
(Source Author) 

The curve described by the center of rotation is shown  

in Fig. 3, where the angle of entry is in the range -100 ≤ φ ≤ 30o. 

Figure 5 shows a double crank mechanism, where it can be seen 

that the curve formed by the center of rotation is closed. The 

Table 2 shows the dimension of mechanism of Figure 5.  

Table 2. Double-crank Four-Bar Mechanism Dimensions in 
Centimeters 

a  b  c  xA
  yA

  xB
  yB

  

7  6 7  0  0   4  0  

 

Figure 5. Rotation center double-crank four-bar mechanism 
for t =-1 

(Source Author) 
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5. DISCUSSION 

The equations obtained and implemented in MATLAB® 

disposes of trigonometric functions, which facilitates the 

interpretation of the model and decreases the computational 

cost. The method proposed here for the rotation center’s 

determination can be generalized, and therefore be applied to 

more complex mechanisms by using screw method. The 

generalization of this method is intended to be developed in 

future papers. It should also be mentioned that in the design of 

lower limb prosthesis, the center rotation is required to describe 

a given curve, this being one of the rotation center’s most 

important applications [6]. 

 

6. CONCLUSIONS 

The equations obtained are simple and compact, which makes 

them ideal to be implemented in a computer.  

By the time this paper was written, the use of natural 

coordinates for the calculation of rotation centers in a 

mechanism was never described, making it the first paper to 

make use natural coordinates for that purpose.  

The use of angular coordinates is discarded, which facilitates 

the understanding of the modeling, in addition it is not 

necessary to use trigonometric functions, which allow to reduce 

the computational cost in a great way, optimizing problems 

where the rotation center has to be calculated many times. 
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