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Abstract  

In the modern world we live in a scenario of constant changes 

and transformations caused by information and communication 

technologies (ICT), which affect in a certain sense in a new way 

of teaching and learning. Therefore, we must seek new ways to 

motivate and achieve new mechanisms to reach knowledge and 

therein lies the importance of the proper use of new 

technologies. In this article we make use of the mathematical 

software GeoGebra as a dynamic means of fundamental 

elements of the topology of metric spaces, which can be seen 

in some abstract sense for its understanding, but through the 

dynamic exploration offered by the software, facilitates the 

development of multiple simultaneous representations of the 

concept to visualize its properties or characteristics, this 

software is an excellent way to experiment, explore, discover, 

see and manipulate mathematical objects carried out within a 

learning process. It is noteworthy that this work is developed 

within the framework of the master's degree in mathematics 

education under the project called the topology of metric spaces 

animated with GeoGebra. 
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I. INTRODUCTION  

Topology is immersed in almost all fundamental areas of 

mathematics, including algebra, geometry, analysis and 

differential equations. Its methods and results facilitate the 

treatment of a variety of problems applied to the 

aforementioned areas. Its beginnings can be placed in the 18th 

century, because until that time mathematical problems were 

linked to the idea of measurement, magnitude or distance, and 

at that time problems began to be posed in which these aspects 

ceased to be important, they are problems that do not depend 

on distance or size but on place. In fact, the first mathematicians 

who approached them gave the study of these problems the 

name of Geometria Situs ó Analysis Situs [1], [2], [3]. 

Leibniz was the first who seems to refer to this type of problems 

with the previous name of Geometria Situs as mentioned by 

Euler in a publication in 1736 where through the problem of the 

Konigsberg bridges he solves problems of this type, that is why 

it can be said that topology arises as an "ally" of geometry [4], 

[5]. These considerations date as the origin of topology, but it 

was Listing who was the first to use the word topology. 

Listing's topological ideas were mainly due to Gauss, although 

Gauss himself chose not to publish any work in topology.  

 

Listing wrote a paper in 1847 entitled Vorstudien zur Topologie 

although he had already been using the word for ten years in 

his correspondence with other mathematicians. In 1861 Listing 

published a paper in which he described the Möbius band (4 

years before Möbius) and studied components of surfaces and 

connexity [6], [7]. 

Many mathematicians of the time were interested in the 

development of such geometry and made great developments 

until in 1906 the French mathematician Maurice Fréchet was 

interested in having a general definition of limit and continuity 

so that it could be applied in various contexts, this first step to 

achieve this was through the concept of metric space, in which 

to calculate the distance between two objects certain properties 

had to be met to make it a useful and applicable operation to 

calculate trajectories, determine geometric locations and for 

more elaborate measurements. If it were the case that one could 

define the distance between any pair of elements of a set that 

met certain established conditions, then the set would be a 

metric space or it was being given a metric structure. 

It is curious that, although the problem of determining the 

distance between two objects is very old, it was only at the 

beginning of the 20th century that its definition could be 

formalized or axiomatized. One of these fundamental metric 

conditions called triangular inequality was introduced by this 

mathematician in his 1904 article Généralisation d'un théoreme 

de Weierstrass and was later developed by him in his 1906 

thesis Sur quelques points du Calcul fonctionnel. From his 

work the triangular inequality was recognized as a central 

notion in the task of calculating distances in any set [4]. 

After 1920, metric topology is the object of exhaustive research 

that achieves its full development and reveals its extraordinary 

unifying power of a whole variety of theories, until then 

dispersed and apparently independent. At present, metric 

topology constitutes a branch of general topology and metric 

spaces a particular case of topological spaces. It is noteworthy 

that all works on general topology devote some space to the 

treatment of metric spaces, either as a particular case of 

topological spaces or as a natural way of introducing them. 

However, the theory of metric spaces is the indispensable 

foundation for a rigorous study of mathematical analysis hand 

in hand with geometric intuition. All this inclines one to think 

that the theory of metric spaces would deserve an independent 

study and not as a part of general topology. 
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Now that the fundamental importance of the study of the 

topology of metric spaces has been highlighted, it is necessary 

to carry out an adequate treatment of its concepts in such a way 

that it can be accessible to the mathematical academic 

community of any educational level, that is why through the 

use of GeoGebra we want to present theoretically and 

analytically the processes that are enlivened in the 

interpretation of concepts, properties and characteristics of the 

topology of metric spaces through visualization and 

representation with animated constructions that allow to rescue 

the new possibilities of treatment of the mathematical concept 

that generates clearer and more precise processes. 

In the development of this article, the use of the technological 

resource GeoGebra, which enables a better use of creativity, 

sensitivity, experience, maturity and mathematical knowledge, 

facilitating the construction of interactive material to induce 

discovery and help to visualize in many ways the results of 

analysis and deepening of concepts. The use of the software 

provides ample possibilities to visualize, explore, analyze and 

conjecture results. The characteristics and properties of the 

software allow the development of dynamic and interactive 

geometric constructions, which strengthen in some way the 

teaching and learning of mathematical conceptualizations. 

This study of the notions of the topology of metric spaces 

animated through GeoGebra will be presented in four sections, 

the first section presents the importance of the use of ICT in 

teaching and GeoGebra as a means of visualization; the second 

section presents the dynamic development of metric spaces 

along with a range of examples animated by the software; in 

the third section an introduction to some notions of the 

topology of metric spaces animated by the software is presented 

and in the last section a discussion of its results is made through 

the presentation of an interactive GeoGebra book that 

dynamically contains the constructions made. 

 

II. USING GEOGEBRA IN MATHEMATICS 

 

The use of ICTs in mathematics education as a tool to facilitate 

pedagogical work fosters creative capacity, creativity, 

innovation and accelerates the process towards change, thus 

presenting a transformation in teaching environments that favor 

didactics and playfulness for motivation and the acquisition of 

different knowledge. The educational use of ICT encourages 

the development of attitudes favorable to learning science and 

technology through the use of interactive programs and the 

search for scientific information. 

The implementation of ICT in mathematics is an aid in 

pedagogical training, i.e., they serve as a complement or 

facilitator in education and the resources offered in the 

preparation of educational material should be used to enhance 

the cognitive abilities of each individual. ICT in the area of 

mathematics allows visualization, understood as the ability to 

represent, transform, generate, communicate, document and 

reflect on the visual information generated through the use of 

technology, the latter being essential for today's life.  

Several researchers have been given the task of reflecting on 

the use of ICT and especially new technologies, which is why 

currently some studies [10], [11,][13], [14] have shown that the 

use of technological resources in a teaching environment 

allows the creation of learning environments in which 

mathematical knowledge can be produced in an alternative way, 

where aspects of the concepts not always explicit in the 

traditional model of presentation are highlighted. The use of 

new technologies allows working in a dynamic way with 

mathematical concepts and their properties, which is why the 

importance of computational tools for mathematics education 

is associated with their ability to offer alternative means of 

mathematical expression and their capacity to offer innovative 

ways of manipulating mathematical objects. 

Currently there are many computational means for teaching 

mathematical entities, one of them of great acceptance by the 

educational community is the mathematical software 

GeoGebra, which is an interactive mathematical software with 

dynamic components for teaching geometry, algebra, calculus, 

among others. It is developed by Markus Hohenwarter together 

with an international team of developers. With this software, 

interactive graphics are generated and related to algebra, 

obtaining dynamic spreadsheets. It covers all educational levels, 

from the most basic school level to the most advanced 

university level, and allows the development of free learning 

materials. 

The mathematical assistant GeoGebra, integrates the work in 

the areas of geometry, algebra and mathematical analysis in a 

dynamic environment enhancing, among others, the 

development of variational thinking. In this sense, by recreating 

dynamic environments, the software allows users to visualize 

and represent variation relationships through the use of sliders. 

Based on the above, this software can be assumed as a didactic 

tool, since it is a physical or symbolic element that, within a 

learning environment, provides tools for the presentation of a 

particular subject, and at the same time provides the user with 

a form of representation, visualization and organization of the 

concepts worked on in the study of certain mathematical 

objects [12-15]. 

The use of this dynamic geometry program allows approaching 

geometry and other aspects of mathematics through 

experimentation and manipulation of different elements, 

facilitating the realization of constructions to deduce results 

and properties from direct observation. The use and 

applicability of the software has been in the focus of several 

researchers in the field, as Godoy states that "GeoGebra is an 

educational software that allows experimental and discovery 

learning, where the designer creates rich environments in 

situations that the user can explore, i.e., they can build their 

elements and draw conclusions according to certain properties" 

[8]. The student must arrive at knowledge from experiences by 

creating their own models of thought, their own interpretations 

of the problem, so it provides an adequate means for our goal. 

 

According to Espina, "the software allows to perform dynamic 

constructions in an easy and intuitive way" [11], in this sense, 

students can work this application in an interactive and simple 

way, affirming that it is not a complicated process and that, in 
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addition, extensive sections are not required for its explanation 

and operation. These appreciations guide us to the use of 

dynamic geometry software as a means of visualization to 

verify concepts, characteristics and properties of these 

mathematical objects through dynamic constructions. 

The virtues of GeoGebra are strengthened by the visualization 

processes that it provides through its dynamic character, which 

is why we present the views of researchers on these processes. 

Arcavi defines visualization as "the ability, process and product 

of the creation, interpretation, use and reflection on figures, 

images, diagrams, in our mind, on paper or with technological 

tools for the purpose of representing and communicating 

information, thinking and developing ideas and advancing 

understanding" [9]. 

It is for this reason that visualization placed at the service of the 

interpretation of concepts or properties of a mathematical 

object can also go beyond its procedural role and inspire a 

general and creative solution. Moreover, representations of 

visual forms can be legitimate elements in mathematical 

demonstrations. 

The main characteristic attributed by Arcavi to visualization is 

that it offers a method of seeing the invisible, hence many 

people believe that visualization is an innate ability and a matter 

that should remain on the margin of educational activity [9]. 

However, in our case, it takes on a fundamental role in the 

understanding of the concepts, characteristics and properties of 

the topology of metric spaces, given the processes of 

manipulating, experimenting and generating visual conjectures, 

through the use of GeoGebra software. 

The visualization made possible with dynamic geometry 

software allows the user to not only see but also explore 

mathematical and conceptual relationships that can be difficult 

to “understand'' without the use of technological resources, 

which is a major reason why it is necessary to incorporate 

resources such as GeoGebra in a teaching environment. 

In our proposal, visualization would be associated with the 

geometric figures presented for the understanding of concepts, 

properties and characteristics of the topology of metric spaces. 

In this sense, with the application of GeoGebra software we 

intend that, from the elements designed in this tool, 

visualization processes are achieved for the understanding and 

construction of knowledge to address the thematic presented. 

 

III. METRIC SPACES USING GEOGEBRA 

ANIMATIONS. 

 

In this chapter we present the definition of metric space 

providing examples that appear naturally in many applications, 

each example of metric space is accompanied by a graphical 

representation made from GeoGebra software as a means of 

visualization of properties and characteristics of each metric 

space. 

It is noteworthy that, as mentioned above, some fundamental 

concepts such as the passage to the limit or the continuity of 

functions in Euclidean spaces are defined exclusively in terms 

of distance. The sets endowed with a distance are called metric 

spaces, whose formal definition was presented by the French 

mathematician Maurice Fréchet, which plays a preponderant 

role in modern mathematics.   

III.I Metric Spaces 

Let 𝑋  be a nonempty set. A metric or distance on 𝑋  is a 

function 𝑑: 𝑋 × 𝑋 ⟶  ℝ that satisfies the following properties: 

i. 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦. 
ii. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋. 

iii. 𝑑(𝑥, 𝑧) = 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

The inequality of property (iii.) is called a triangular inequality. 

A metric space is the set 𝑋 with a given metric d, i.e., (𝑋, 𝑑). 

A very important observation is that the distance between two 

points is never negative, that is, 𝑑(𝑥, 𝑦) ≥ 0  for all 𝑥, 𝑦 ∈ 𝑋. 

This holds because from properties (i.), (iii.) and (ii.) 

respectively it follows that: 

0 = 𝑑(𝑥, 𝑥) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑥) = 2𝑑(𝑥, 𝑦) 

Therefore, 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑋. 

III.I.I Examples of metric spaces 

A variety of examples of particular metric spaces are presented 

below, in each of which the definition of metric is highlighted. 

Discrete metric. 

Let 𝑋  be a nonempty set and 𝑑: 𝑋 × 𝑋 ⟶  ℝ  the function 

defined by: 

𝑑(𝑥, 𝑦) = {
0, 𝑖𝑓 𝑥 = 𝑦
1, 𝑖𝑓 𝑥 ≠ 𝑦 

                   (1) 

The proof that (𝑋, 𝑑) is a metric space is reduced to a simple 

check. The metric space (𝑋, 𝑑) is called discrete, although it is 

of no further interest, given its obvious triviality, it tells us that 

any nonempty set can be provided with a metric. On the other 

hand, discrete spaces are often used as counterexamples. 

Usual metric in ℝ. 

If 𝑋 = ℝ  and the function 𝑑: ℝ × ℝ ⟶  ℝ  is defined by 

𝑑(𝑥, 𝑦) =  |𝑥 − 𝑦|  , for all 𝑥, 𝑦 ∈ ℝ, then (ℝ, 𝑑)  is a metric 

space. 

The metric conditions are immediately deduced from the 

known properties of the absolute value. We will call this metric 

the usual or Euclidean metric of ℝ. 

Euclidian metric in ℝ𝟐. 

If 𝑋 = ℝ2  and 𝑑2: ℝ2 × ℝ2  ⟶  ℝis defined by 𝑥 = (𝑥1, 𝑥2),
𝑦 = (𝑦1 , 𝑦2) ∈ ℝ2: 

𝑑2(𝑥, 𝑦) = √(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2             (2) 
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Figure 1. Euclidean metric in ℝ2. 

Figure 1. shows the usual way of measuring in ℝ2  and 

intuitively verifies the axioms corresponding to the definition 

of metric. This metric is called the usual or Euclidean metric in 

ℝ2. 

Other ways to measure in ℝ2are presented below: 

Taxicab or Manhattan metric in ℝ𝟐. 

If 𝑋 = ℝ2  and 𝑑1: ℝ2 × ℝ2  ⟶  ℝis defined by 𝑥 = (𝑥1, 𝑥2),
𝑦 = (𝑦1 , 𝑦2) ∈ ℝ2: 

𝑑1(𝑥, 𝑦) = |𝑥1 − 𝑦1| + |𝑥2 − 𝑦2|                    (3) 

 

Figure 2. Taxicab metric in ℝ2. 

Figure 2. shows the distance between two points whose 

measurement is determined by a generalization of the usual 

metric on ℝ, in which it mentions that to measure the distance 

between point B and A we first find the horizontal distance and 

add the vertical distance. 

The name comes from the fact that the distance can be 

interpreted as the length of a cab ride, which in a grid city like 

" Manhattan " in New York, goes from one point to another 

with a single turn of the steering wheel. 

 

Maximum or chess metric in ℝ𝟐. 

If 𝑋 = ℝ2 and 𝑑∞: ℝ2 × ℝ2  ⟶  ℝis defined by 𝑥 = (𝑥1, 𝑥2),
𝑦 = (𝑦1 , 𝑦2) ∈ ℝ2: 

𝑑∞(𝑥, 𝑦) = 𝑚á𝑥{|𝑥1 − 𝑦1|, |𝑥2 − 𝑦2|}            (4) 

 

Figure 3. Maximum metric in ℝ2. 

In the maximum metric the distance between two points is 

determined by the maximum horizontal or vertical distance 

between two points. The name is due to the fact that this metric 

can be interpreted in the following way: if we think of a 

chessboard and on it only one piece, the king, it can reach in a 

single move the eight squares that surround it. Well, the 

distance between two squares is the minimum number of moves 

that the king must make to go from one square to the other. 

 

Lift metric in ℝ𝟐. 

If 𝑋 = ℝ2  and 𝑑: ℝ2 × ℝ2  ⟶  ℝ is defined by 𝑥 = (𝑥1, 𝑥2),
𝑦 = (𝑦1 , 𝑦2) ∈ ℝ2: 

𝑑(𝑥, 𝑦) = {
|𝑥2 − 𝑦2|,                                  𝑖𝑓 𝑥1 = 𝑦1

|𝑥2| + |𝑥1 − 𝑦1| + |𝑦2|, 𝑖𝑓 𝑥1 ≠ 𝑦1  
     (5) 

 

Figure 4. Lift metric in ℝ2. 

In the metric of the maximum in ℝ2  (4), the metric of the 

elevator is defined, this can be interpreted as follows: If we 

think of the plane as the union of all vertical straight lines and 

in turn, we think of these as if they were buildings, then the 

distance between two points that are on the same vertical 

straight line, that is, the distance between A and B (see figure 

4.) is just the absolute value of the difference of the vertical 
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coordinates, this can be interpreted as the path of an elevator 

going from one floor to another in the same building, that is, 

from point A which is on floor 9 to point B which is on floor 2. 

If the points are on different verticals, then the distance is the 

sum |𝑥2| + |𝑥1 − 𝑦1| + |𝑦2|, which can be interpreted as the 

route that consists of going down the elevator of the first 

building to the first floor (abscissa line), go down the street to 

the second building and go up the elevator of the second 

building to the floor that indicates the second coordinate of the 

second point, that is, if we wanted to go from point 𝐴 to point 

𝐶 which is on another vertical line we would have to perform 

the movements mentioned above. 

 

Messenger metric in ℝ𝟐. 

If 𝑋 = ℝ2  and 𝑑: ℝ2 × ℝ2  ⟶  ℝ is defned by 𝑥 = (𝑥1, 𝑥2),
𝑦 = (𝑦1 , 𝑦2) ∈ ℝ2: 

𝑑(𝑥, 𝑦) = {
√(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2,         𝑖𝑓 𝑥1𝑦1 = 𝑥2𝑦2

√𝑥1
2 + 𝑥2

2 + √𝑦1
2 + 𝑦2

2, 𝑖𝑓 𝑥1𝑦1 ≠ 𝑥2𝑦2 
   (6) 

 

Figure 5. Messenger metric in ℝ2. 

In the Euclidean space ℝ2  the messenger metric is defined, 

which is considered as the distance between two different 

points of the plane which is equivalent to the sum of the 

Euclidean distances of both points to the origin, that is, to go 

from point 𝐴  to point 𝐶  (see figure 5.) first we find the 

Euclidean distance from 𝐴 to the origin which corresponds to 2 

times the distance between 𝐴 and 𝐵 and we add the Euclidean 

distance between the origin and the end point 𝐶. 

This metric can be interpreted as follows: if one were to 

measure the path taken by a letter leaving from a first point 𝐴, 

arriving at a second point 𝐵 (which is right in the middle of 

point 𝐴 to the origin) and then passing through the post office, 

located at the origin, and from there going to the final point 𝐶, 

where the addressee of the letter is [16]. 

Supremum metric in ℝ𝟐. 

Let 𝒞[𝑎 , 𝑏] be the set of continuous real functions on the closed 

interval [𝑎 , 𝑏]. If 𝑋 = 𝒞[𝑎 , 𝑏]  and 𝑑: 𝒞[𝑎 , 𝑏]  × 𝒞[𝑎 , 𝑏]   ⟶
 ℝ is defined for 𝑓 , 𝑔 ∈ 𝒞[𝑎 , 𝑏]   by: 

𝑑(𝑓, 𝑔) = 𝑠𝑢𝑝{|𝑓(𝑥) − 𝑔(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]}             (7) 

 

Figure 6. Supremum metric in ℝ2. 

The metric of the supremum corresponds to the largest vertical 

separation between the graphs of the functions, in Figure 6. the 

largest vertical distance between the functions 𝑓(𝑥) and 𝑔(𝑥)  

for the interval -2 to 2 is shown in blue. 

Demonstrations that the above examples do indeed correspond 

to metrics can be found in [1]. 

 

IV. TOPOLOGY OF METRIC SPACES THROUGH 

ANIMATIONS IN GEOGEBRA 

In this section the notion of topology associated to a metric 

space is presented by introducing the open balls and from there 

the open sets, closed sets and their properties are studied. 

Graphical representations are presented using GeoGebra 

software of established definitions and properties of the 

topology of metric spaces.  

In metric spaces, there are certain subsets with very remarkable 

properties and which prove to be the indispensable tool for a 

rigorous study of the analysis. These are the open sets. Given a 

metric space 𝑑(𝑥, 𝑦) there are relevant subsets of it capable of 

describing the neighbors of a point by controlling the distance 

(degree of closeness) and which would also be responsible for 

defining the topology inherent to the metric. 

 

IV.I Topology induced by a metric 

Let 𝑋  be a nonempty set. A topology on 𝑋  is a family τ of 

subsets of 𝑋 such that: 

i. ∅, 𝑋 ∈ 𝜏. 

ii. If (𝐴𝑖)𝑖∈𝐼  is a collection of elements of 𝜏 , then 

⋃ 𝐴𝑖𝑖∈𝐼  ∈ 𝜏. That is, the arbitrary union of elements 

of 𝜏 is an element of de 𝜏. 

iii. If 𝐴1, 𝐴2  ∈ 𝜏 , then 𝐴1 ⋂ 𝐴2  ∈ 𝜏 . That is, the 

intersection of a finite number of elements of 𝜏 is an 

element of 𝜏. 

iv. If 𝜏 is a topology in 𝑋, then the pair (𝑋, 𝜏)  is called a 

topological space and the elements of 𝜏  are called 

open in 𝑋. 

A basis for a topology 𝜏 in X is a family 𝓐 of elements of 𝜏 

such that every element of 𝜏 (i.e., every open set of 𝑋) can be 

expressed as a union of elements of 𝓐. For 𝓐 to be a basis for 
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a topology in X it is necessary and sufficient that it satisfies the 

following conditions: 

i. 𝑋 is the union of elements of 𝓐. 

ii. Given 𝐴1, 𝐴2  elements of 𝓐  and 𝑥 ∈ 𝐴1 ⋂ 𝐴2 , then 

there exists 𝐴 ∈ 𝓐 such that 𝑥 ∈ 𝐴 ⊂ 𝐴1 ⋂ 𝐴2. 

IV.I.I Open balls in metric spaces 

Let (𝑋, 𝑑)  be a metric space, 𝑥0  an element of 𝑋 and 𝑟 > 0.  
The set, 

ℬ(𝑥0, 𝑟) = {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝑥0) < 𝑟}                  (8) 

is called an open ball in 𝑋 of center 𝑥0 and radius 𝑟. The set, 

ℬ̅(𝑥0, 𝑟) = {𝑥 ∈ 𝑋: 𝑑(𝑥, 𝑥0) < 𝑟}                  (9) 

is called a closed ball in 𝑋 of center 𝑥0 and radius 𝑟. 

 

Figure 7. Open ball in ℝ2.  

 

Figure 8. Closed ball in ℝ2. 

Let (𝑋, 𝑑) be a metric space and 𝓐𝒅 = {ℬ(𝑥, 𝑟): 𝑟 > 0, 𝑥 ∈ 𝑋} 

the family of all open balls in 𝑋 . Then, 𝓐𝒅  is a basis for a 

topology 𝜏𝑑 on 𝑋, called the topology induced by the metric d. 

It should be noted that a metric space is always considered to 

be endowed with the topology induced by its metric. 

Open ball with discrete metric. 

Let (𝑋, 𝑑𝐷) be the metric space with the discrete metric defined 

by (1). The open ball ℬ(𝑥0, 𝑟)  in this metric corresponds to the 

set: 

ℬ(𝑥0, 𝑟)  = {
{𝑥0}, 𝑖𝑓 𝑟 ≤ 1
𝑋,             𝑖𝑓 𝑟 > 1 

                 (10) 

which corresponds to the set 𝑋 if the radius is greater than 1 

and corresponds to its center when its radius is less than or 

equal to 1. 

Open ball with the usual metric in ℝ. 

In the metric space  (ℝ, 𝑑)  where 𝑑(𝑥, 𝑦) =  |𝑥 − 𝑦|,   as 

defined in (2), for all 𝑥, 𝑦 ∈ ℝ, given 𝑥0 ∈ ℝ and 𝑟 > 0. The 

open ball of center 𝑥0 and radius 𝑟, is the open interval: 

ℬ(𝑥0, 𝑟) = (𝑥0 − 𝑟, 𝑥0 + 𝑟) = {𝑥 ∈ ℝ: 𝑥0 − 𝑟 < 𝑥 < 𝑥0 − 𝑟}   

and the closed ball of center 𝑥0  and radius 𝑟 , is the closed 

interval: 

ℬ̅(𝑥0, 𝑟) = [𝑥0 − 𝑟, 𝑥0 + 𝑟] = {𝑥 ∈ ℝ: 𝑥0 − 𝑟 ≤ 𝑥 ≤ 𝑥0 − 𝑟}   

 

Open ball with Euclidean metric in ℝ𝟐 and  ℝ𝟑. 

In the metric space (ℝ2, 𝑑2 ) we have that: 

ℬ((𝑥0, 𝑦0), 𝑟) = {(𝑥, 𝑦) ∈ ℝ2: (𝑥 − 𝑥0)2  + (𝑦 − 𝑦0)2 < 𝑟2} 

It corresponds to the circle of radius 𝑟  centered at a point 

(𝑥0, 𝑦0)  (see figure 9). 

 

 

Figure 9. Open ball in ℝ2 𝑎𝑛𝑑 ℝ3. 

In the metric space (ℝ3, 𝑑2 ) we have that: 

ℬ((𝑥0, 𝑦0, 𝑧0), 𝑟) = 

{(𝑥, 𝑦, 𝑧) ∈ ℝ3: (𝑥 − 𝑥0)2  + (𝑦 − 𝑦0)2 + (𝑧 − 𝑧0)2 < 𝑟2} 

It corresponds to the interior of the sphere of radius 𝑟 centered 

at a point (𝑥0, 𝑦0 , 𝑧0) (see figure 9, right). 

It should be noted that the geometric appearance of a ball in 

ℝ2 or  ℝ3 is not necessarily spherical, it depends on the metric 

under consideration. 

 

Open ball with the metric of the maximum in ℝ𝟐 and  ℝ𝟑.  

In the metric space (ℝ2, 𝑑∞), the ball with center at (0,0) and 

radius 𝑟, is given by: 

ℬ((0,0), 𝑟) = {(𝑥, 𝑦) ∈ ℝ2: 𝑚á𝑥{|𝑥|, |𝑦|} < 𝑟}      (11) 

The open ball ℬ((0,0), 𝑟) corresponds to the interior of the 

square with center (0,0) and sides parallel to the coordinate 

axes and length 2𝑟 (see figure 10). 

 

 

Figure 10. Open ball in ℝ2 𝑎𝑛𝑑 ℝ3in the maximum metric. 
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The points of the plane that verify the condition 

𝑚á𝑥{|𝑥|, |𝑦|} < 𝑟 is |𝑥| < 𝑟 and |𝑦| < 𝑟, these coordinates 𝑥 

and 𝑦 are in the interval (−𝑟, 𝑟) so the ball will be: 

ℬ((0,0), 𝑟) = (−𝑟, 𝑟) × (−𝑟, 𝑟) 

Similarly the open ball with center at (𝑥0, 𝑦0) and radius 𝑟 with 

this metric, is given by: 

ℬ((𝑥0, 𝑦0), 𝑟) = (𝑥0 − 𝑟, 𝑥0 + 𝑟) × (𝑦0 − 𝑟, 𝑦0 + 𝑟) 

In the metric space (ℝ3, 𝑑∞ ) the ball corresponds to a cube as 

presented in Figure 10, right.  

Open ball with taxicab metric in ℝ𝟐 and  ℝ𝟑.  

In the metric space (ℝ2, 𝑑1 ), the ball with center at (0,0) and 

radius 𝑟, is given by: 

ℬ((0,0), 𝑟) = {(𝑥, 𝑦) ∈ ℝ2: |𝑥| + |𝑦| < 𝑟}          (12) 

The open ball ℬ((0,0), 𝑟) corresponds to the interior of the 

rhombus centered at the origin (0,0) and with vertices at the 

points (0, 𝑟), (0, −𝑟), (𝑟, 0), (−𝑟, 0) (see figure 11). 

 

 

Figure 11.  Open ball in ℝ2 and ℝ3 in the taxicab metric. 

This open ball corresponds to the points of the plane that verify 

|𝑥| + |𝑦| < 𝑟. If we assume that 𝑥, 𝑦 ≥  0 it must be fulfilled 

that 𝑥 +  𝑦 <  𝑟, that is, these are the points of the plane whose 

coordinates are non-negative and verify 𝑦 <  𝑟 −  𝑥; in short, 

the points of the first quadrant that are below the straight line 

𝑦 =  𝑟 −  𝑥. Reasoning in the same way about the possible 

signs of the coordinates we obtain the open ball with this metric. 

In the metric space (ℝ3, 𝑑1 )  the ball corresponds to an 

octahedron as shown in figure 11, right.  

Open ball with metric 𝒅𝒑 in ℝ𝒏.  

We can generalize the above examples and define a metric 

𝑑𝑝 in ℝ𝑛  for every real number 𝑝 ≥  1 , thereby having an 

infinite collection of metrics. If 𝑋 = ℝ𝑛  and 𝑑𝑝: ℝ𝑛 × ℝ𝑛  ⟶

ℝ is defined for 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) ∈ ℝ𝑛 

by: 

𝑑𝑝(𝑥, 𝑦) = (∑|𝑥𝑖 − 𝑦𝑖|𝑝

𝑛

𝑖=1

)

1/𝑝

                    (13) 

For the particular case of ℝ2, Figure 12 presents the open balls 

corresponding to the previous generalization for 𝑝 = 1,2,7 and 

𝑝 = 20. 

 

 

Figure 12. Open balls with metrics 𝑑1, 𝑑2, 𝑑7 and 𝑑20, 

respectively. 

The metric 𝑑𝑝 with condition 𝑝 ≥ 1  should not go unnoticed, 

since in the case 𝑝 <  1 we do not obtain a metric and in its 

corresponding balls it is not verified that the distance from a 

point to the center is less than the radius, as seen in Figure 13. 

 

Figure 13. Open balls with metric 𝑑0.5, 𝑑0.8. 

 

Open ball with lift metric in ℝ𝟐.  

In the metric space (ℝ2, 𝑑), the open ball with center at point 

 𝐴 = (𝑥0, 𝑦0) and radius 𝑟 corresponding to the metric 𝑑 of the 

elevator defined as in (5), corresponds to an extension of the 

ball with the metric of the maximum with center at a point 𝐴 =
(𝑥0, 𝑦0).  

The open ball corresponding to the elevator metric has the 

following specifications according to the place in the plane 

where we consider the center: 

1. If 𝑦0 = 0. 

Let us see which points (𝑥, 𝑦) ∈ ℝ2 belong to the 

ℬ((𝑥0, 𝑦0), 𝑟). Indeed, if 𝑥 = 𝑥0, then 𝑑((𝑥0, 0), (𝑥0, 𝑦)) <
𝑟, that is |𝑦| < 𝑟. Now if 𝑥 ≠ 𝑥0, then ((𝑥0, 0), (𝑥, 𝑦)) < 𝑟, 

that is |𝑦| + |𝑥 − 𝑥0|  < 𝑟. Thus for this case the open ball 

ℬ((𝑥0, 0), 𝑟)  corresponds to a rhombus, without the "edge" 

with vertices at (𝑥0 − 𝑟, 0), (𝑥0 + 𝑟, 0)(𝑥0, 𝑟), (𝑥0, −𝑟), i.e. 

a rhombus on the abscissa axis, as seen in Figure 14.  
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Figure 14. Open balls with elevator metric. Case 1. 

2. If 𝑦0 > 0. 

Let us see which points (𝑥, 𝑦) ∈ ℝ2 belong to the 

ℬ((𝑥0, 𝑦0), 𝑟).  Indeed, if 𝑥 = 𝑥0,  then 

 𝑑((𝑥0, 𝑦0), (𝑥0, 𝑦)) < 𝑟, that is |𝑦 − 𝑦0| < 𝑟. Now if 𝑥 ≠
𝑥0 , then 𝑑((𝑥0, 𝑦0), (𝑥, 𝑦)) < 𝑟 , that is |𝑦0| + |𝑦| + |𝑥 −
𝑥0|  < 𝑟, or what is the same, |𝑦| + |𝑥 − 𝑥0|  < 𝑟 − |𝑦0|. 
We must analyze the case 𝑟 ≤ |𝑦0| and 𝑟 >  |𝑦0|, for the 

first case there are no points (𝑥, 𝑦)  with 𝑥 ≠ 𝑥0 belonging 

to ℬ((𝑥0, 𝑦0), 𝑟), and therefore, for this case the open ball 

corresponds to a line segment, as seen in Figure 15.   

 

 

Figure 15.  Open ball with lift metric. Case 2a.  

For the second case, 𝑟 >  |𝑦0|, , the ball ℬ((𝑥0, 𝑦0), 𝑟) 

consists of the line segment {(𝑥0, 𝑦): 𝑦0 − 𝑟 < 𝑦 < 𝑦0 + 𝑟}  

and the interior of the rhombus with vertices at (𝑥0 + 𝑦0 −
𝑟, 0), (𝑥0 − 𝑦0 + 𝑟, 0), (𝑥0, 𝑟 − 𝑦0), (𝑥0, 𝑦0 − 𝑟) as seen in 

Figure 16. 

  

Figure 16. Open ball with lift metric. Case 2b. 

3. If 𝑦0 < 0. 
This case is analyzed similarly to case 2 and its open balls 

ℬ((𝑥0, 𝑦0), 𝑟) are presented in Figure 17. 

 

 

Figure 17. Open ball with lift metric. Case 2c. 

 

Open ball with messenger's metric in ℝ𝟐.  

In the metric space (ℝ2, 𝑑), the open ball with center at point 

𝐴 = (𝑥0, 𝑦0)  and radius 𝑟  corresponding to the messenger's 

metric 𝑑  (6), corresponds to an extension of the ball with 

Euclidean metric with center at a point 𝐴 = (𝑥0, 𝑦0). 

 

 

Figure 18. Open balls with messenger metric. 

The balls for the messenger metric centered at a point and with 

positive radius consist of the center joined with the Euclidean 

ball centered at the origin and of radius r minus the distance 

from the center to the origin. If the radius is less than or equal 

to that distance, then the ball shrinks to the center [16]. 

 

Open ball with the supremum metric in ℝ𝟐.  

In the metric space (ℝ2, 𝑑),, given 𝑟 >  0  and a function 𝑓0 ∈
𝒞[𝑎, 𝑏], then the open ball ℬ(𝑓0, 𝑟) consists of all continuous 

functions 𝑓(𝑥) whose graphs lie in the area bounded by 𝑓0 − 𝑟 

and 𝑓0 + 𝑟, as shown in Figure 19. The ball ℬ(𝑓0, 𝑟)  is the set, 

ℬ(𝑓0, 𝑟)  = {f ∈ 𝒞[𝑎, 𝑏]: 𝑠𝑢𝑝{|𝑓(𝑥) − 𝑓0(𝑥)| < 𝑟, 𝑥 ∈ [𝑎, 𝑏]}} 

 

Figure 19. Open ball with the messenger metric. 

 

IV. RESULT AND DISCUSSION 

This section presents the fundamental results of the work 

carried out, in which the applets built in GeoGebra are 

presented, which have been shared in the software's own 

network called GeoGebraTube, which allows globalizing the 

knowledge, not only allowing their download, but also 

facilitating their modification to adapt them to particular needs 

[17]. 
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With each of the applets a virtual book has been created in the 

GeoGebra page distributed by chapters, in which we visualize 

the characteristics and properties of the metric spaces. Each 

chapter of the virtual book presents detailed information on 

each mathematical object of the topology of metric spaces and 

its specification to perform the animation using the software. 

 

With this interactive book we can experience all the concepts, 

characteristics and properties of the topology of metric spaces 

by manipulating its applets, since it is an excellent resource to 

visualize and understand the different concepts. The GeoGebra 

book called topology of metric spaces is composed of 4 

chapters, see figure 20, each of them enriched with 

representative illustrations that help to visualize the 

fundamental characteristics of each subject. It should be noted 

that in this article we present only the introductory part of the 

topology of metric spaces, that is, only chapters one and two.  

 

In the first chapter, the definition of distance or metric is 

presented, addressing examples that appear naturally in many 

applications, see figure 21. This chapter contains 14 applets in 

which a brief explanation of the concept is given and the use of 

animations through sliders is mentioned in detail, as shown in 

figure 22, to verify properties or characteristics of the metric in 

question. In chapter 2, as shown in figure 24, the notion of 

topology associated to a metric space is presented by 

introducing the open balls and from there, open sets, closed sets 

and their properties and characteristics are studied. 

In all applets, sliders have been created, as shown in figure 23, 

to animate the image or figure, so that the user can visualize 

and verify the properties of the concepts presented. It is worth 

mentioning that when the automatic animation is activated, a 

button appears in the lower left corner of the graphical view. 

This button allows the user to stop and restart the progress (see 

figure 23, bottom left). It should be noted that a slider is a 

controller that allows you to move or, as its name suggests, 

slide a point over a certain figure and display an animation. 

These controllers or action objects add interactivity and control 

possibilities over the objects. 

In each of the applet's the constructive process is taken into 

account which allows us to analyze the situation in successive 

steps starting from the simplest ones. The sliders presented in 

each applet allow the ease with which we can drag the objects, 

forcing them to acquire many different positions which allow 

the observation of the characteristics and properties inherent to 

the topology of metric spaces, with this we seek to establish 

conjectures by varying the parameters of the slider obtaining 

several representations in a direct way. This dynamism of the 

applet's constructions with GeoGebra allows us to make 

inferences through visualization processes that we experience 

through the use of sliders.

 

 

Figure 20. GeoGebra book on the Web.
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Figure. 21. First chapter of the GeoGebra book: Metric spaces. 

 

 

                  Figure 22. Description of each Applet's.                      Figure 23. Interactive interface with its sliders. 
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Figure 24. Second chapter of the GeoGebra book: Open balls in metric spaces.

V. CONCLUSION 

As a result of the interaction with GeoGebra software through 

the construction of its applets for the visualization of concepts, 

properties and characteristics of the topology of metric spaces, 

it is observed that the geometric character of the topology of 

metric spaces facilitated the construction of dynamic applets in 

GeoGebra for the visualization of concepts, properties and 

characteristics. 

The constructions in GeoGebra are a means that make possible 

the understanding of some concepts, properties and 

characteristics immersed in the topology of metric spaces, since 

they propitiate processes of visualization, experimentation, 

generation and validation of visual conjectures which 

contribute to the production of knowledge. 

learn mathematics in an easier way, but rather we consider that, 

through the dynamic process mediated by thought processes, 

the construction of mathematical knowledge is different and 

seems to harmonize with the elements of a part of our society 

where the use of new technologies has become so powerful and 

incorporated into everyday life that they are now an inherent 

part of the culture. 
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