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Abstract 

The paper proposes an instance segmentation technique to 

label and segment neoplastic cell nuclei from multiple 

instances of whole-slide images (WSI) using a contemporary 

neural network architecture called as the Mask Region based 

Convolutional Neural Network (Mask R-CNN). The main 

objective of this research is to automate the mentioned 

process by generating a pixel-wise binary mask capable of 

segmenting these instances and facilitating the advancement 

of intelligent systems in the field of medical imaging and 

computational pathology. Neoplastic cells are tumorous cells 

which pose detrimental damage to the cells around them and 

are the prologue for cancer development in organs. The 

problem of identifying these cells poses a bottle-neck in the 

research of cancer cure as it is an extremely tedious job to 

manually isolate these from the rest of the cells in the tissue. 

Hence, the automation of this process using deep learning 

(DL) based object-detection and segmentation techniques 

such as Mask R-CNN will allow researchers and pathologists 

to save valuable time otherwise consumed in manually 

identifying these nuclei. This time can instead be devoted to 

developing better cures by conducting more research. The 

paper also focuses on and highlights the best techniques and 

practices that can be employed while training a model for a 

task of such complexity. Using these techniques, a mean 

average precision (mAP) score of 0.756 and a binary panoptic 

quality (bPQ) score of 0.675 for neoplastic cells was 

achieved. 

Keywords:  Medical Imaging, Image Processing, Neoplastic 

cell, Deep Learning, Computer Vision, Segmentation, 

Computational Pathology, Mask R-CNN, Cancer Research. 

 

I. INTRODUCTION  

According to the 2018 Data Science Bowl [1] competition, 

cell nucleus identification is one of the first steps in the long 

procedure of synthesizing cures for diseases. This is because 

DNA of each cell is present in the nucleus and analysis of that 

determines how quickly and effectively a cure can be made. 

Researchers and pathologists spend hours trying to identify 

the required cell nuclei to gauge the level of progress made 

each time a new experiment is conducted. If this process can 

be automated, it can allow researchers to track the cells and 

measure the level of treatment on them, significantly 

improving the number of experimentations that can be 

conducted in a particular time span and consequently, new 

and better cures for diseases such as cancer can be developed 

at a rapid pace. 

With that being said, the process of cell identification and 

labelling is a complex task to automate, as stated by [2] and 

[3]. Firstly, the shape and size of each type of cell varies 

greatly. Secondly, sub-types of certain cells such as red-blood 

cells and white-blood cells are present which induces an 

added layer of complexity in the process of cell identification. 

Thirdly, the various staining techniques that are used to 

visualize cells in Computational Pathology (CPath) can 

generate varied results when coupled with different 

algorithms. Lastly, due to the complex structure and 

arrangement of cells, a lot of the substantial ones can be 

hidden or overlapped, resulting in outliers.  

Deep Learning (DL), in recent years has achieved impressive 

results in the field of Computer Vision (CV) and image 

processing where certain models have outclassed even 

humans. The ILSVRC [4] has facilitated significant 

contributions in the development of Convolutional Neural 

Networks (CNN) which have completely changed the 

paradigm of CV from the ages of hand-engineered algorithms 

to complete end-to-end trainable DL models. Szegedy et al 

[5] proposed the CNN micro-architecture called as the 

“inception module” which allowed CNNs to be trained to 

greater depths yielding greater accuracies on complex 

problems. In this, they branched the inputs to the module into 

different sized kernels and later concatenated the feature 

maps depth-wise. Gaining inspiration from the micro-

architecture models, [6] and later [7] were designed by 

Kaiming He et al. These worked on the concepts of residual 

blocks and identity mappings where the input to a series of 

convolution operations was added to the result of those 

operations. This solved the problem of vanishing gradients 

and allowed CNNs to be trained to depths of 100 or even 1000 

layers. Today CNNs have massively increased in strength and 
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are able to tackle complex applications such as medical image 

diagnosis of novel diseases [8].  

Mask R-CNN [9] is one such modern deep learning 

architecture which is able to perform object detection and 

image segmentation, allowing detected objects to not only be 

localized in images using a bounding-box but also be segment 

able by generating a binary mask of the particular instance of 

that object. It combines novel region of interest (ROI) 

generation networks such as the Region Proposal Network 

(RPN) with a Convolutional Neural Network (CNN) feature 

extractor and region detector by using shared parameters 

across the convolutional operations. This makes the entire 

model end-to-end trainable and reduces the time for inference 

while still giving robust detection results. A model trained on 

this State-Of-The-Art (SOTA) paradigm would be: 

 Capable of generalizing to different tissue types and 

detect neoplastic cells in WSI all on its own. 

 Robust and accurate 

 Able to localize the neoplastic cells with a binary 

mask which can further be used to extract cell data 

for post-processing 

 Able to save a lot of time for histopathology 

researchers and speed up cure development 

This paper gives a detailed description of the dataset used to 

train our model in section 3. This section will also describe 

the different modules of our implementations and highlight 

our model training techniques. Section 4 will describe the 

results obtained and section 5 will present our conclusion and 

remarks on this project. 

 

II. RELATED WORK 

Before DL [10] made its way through to medical imaging and 

cell segmentation, hand-engineered algorithms were used. P. 

Sankaran & V. K. Asari [11] used an adaptive thresholding 

technique to distinguish cell boundaries and applying a low-

pass pre-processing filter while [12] proposed morphological 

techniques to enhance the existing water-shed methods to 

detect cells. Grab-cut [13] was also a popular choice for 

foreground segmentation. 

As DL advanced, it was applied to more complex applications 

such as [21]. Ciresan et al [14] used a deep CNN model that 

was able to classify each pixel of an image based on a pixel-

patch from its neighbours. [15] employed the use of fully 

convolutional networks to train semantic segmentation model 

which combined the abstract features from deeper layers with 

the local pixel-level features of the initial layers. This model 

gave better results than [13] and made it operational towards 

arbitrary dimensions. Drozdzal et al [20] further improved the 

accuracy and lowered overfitting of the U-Net model by 

combining short skips similar to that of ResNet [7] with the 

long skips. Chen et al [19] proposed a hybrid model for faster 

and robust segmentation of small lung cancer. This model 

combined 3d convolutions which learned long-ranged 3d 

features along with the 2d convolutions which learn the short-

range local features. A similar approach was used by [16] 

where they used a set of mixed convolutional blocks to better 

generalize on the dataset. It also made sure that their model 

adjusted quickly to the varying scenarios without 

compromising on accuracy.  

The SOTA Mask R-CNN was built after a series of 

improvement to the CNN based object detection system. In 

the year 2014, Girshick et al published a paper [22] which 

was ground-breaking in the field of object detection. This 

model was called R-CNN and used selective search 

techniques to extract region proposals to detect objects. The 

proposed regions would then be converted into feature maps 

and classified using a SVM based approached. The drawback 

of this method was its speed so they proposed another faster 

system called as the Fast R-CNN [23]. This model was end-

to-end trainable and used a Region of Interest (ROI) pooling 

layer to filter out the large number of ROIs generated by 

selective search. Later Girshick et al published another 

improvement to the Fast R-CNN model which was named 

Faster R-CNN [24]. In this they came up with two 

innovations which was baking the Region Proposal Network 

(RPN) into the architecture itself which eliminated the use of 

selective search and used anchors to generate proposal 

regions. The RPN used a set of two convolutional kernels to 

calculate and separate the foreground from the background 

and generate a bounding-box for the image. This work was 

further improved to generate the Mask R-CNN model. 

In recent years Mask R-CNN has become a highly potent 

choice for segmentation models. [27] used this to segment 

cervical cancer cells. Their model used a shallow base 

network for faster inference speeds. Ma et al [26] used a Mask 

R-CNN to segment abnormal cells by adding attention-based 

mechanisms to their model to generate fixed sized ROIs. 

These ROIs where then combined with the original ROIs to 

generate more accuracy masks. A similar effort was made by 

[25] to utilize attention-based activation maps to train on 

partially labelled cell datasets without losing out on accuracy. 

 

III. METHOD 

This section describes the methodology used in the paper. It 

gives a detailed description of the dataset, model architecture, 

training techniques and hyperparameter values, in the 

following sub-sections. 
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III.I Dataset Explanation 

Powerful CNN architectures almost always manage to overfit 

the data given to them due to surface statistical irregularities 

[28] and subsequently do not generalize well in real-life 

scenarios. Hence training a DL model for the task of cell 

nuclei segmentation should be facilitated by a generalized 

dataset of cells which enables the model to perform with the 

same efficiency regardless of the cell type and tissue area, 

while not localizing to a single region of the body. 

Looking at and considering all the challenges associated with 

training a model for nuclei segmentation, a conclusion that 

the dataset must be just as comprehensive as the model, was 

reached. Hence, this paper works with the PanNuke dataset 

[29] to train the model. This dataset as briefly illustrated by 

Fig 1, consists of 200,000 labelled nuclei across five 

categories; Neoplastic, Non-Neoplastic Epithelial, 

Inflammatory, Connective and Dead. The speciality of this 

dataset is that it doesn’t localize the data to one part or organ 

of the body but rather encompasses 19 different body tissues 

types. This pervasiveness allows the model to combat 

overfitting. Furthermore, since the dataset takes into account 

different body tissues it saves the tedious process of training 

multiple models for different tissue types. According to [30], 

nuclei detection done is this manner also facilitates tissue 

phenotyping in an effective manner. For the purpose and 

scope of our research we decided to work with only labelled 

neoplastic nuclei. After performing data pre-processing and 

extracting the neoplastic cells, we obtained a substantial 

number of labelled nuclei to train our model with. We decided 

to split 80% of the data for training and 20% for validation 

after randomly sampling 490 images as the test set. Detailed 

descriptions of our splits are given in Table 1. 

Table 1. Describes the number of images and their splits 

used for training, validation & testing 

 Training Validation Testing Total 

Images 2950 750 490 4,190 

Labelled 

Cell Nuclei 

67,171 14,434 11,258 92,863 

 

III.II Model Architecture 

In this sub-section a brief description of the architecture of 

the Mask R-CNN model (Fig 2) and highlights of some of its 

features that enable it to perform the segmentation task is 

given. 

 

Fig 2. A flow diagram describing the various modules of the 

Mask R-CNN model used. 

 

Backbone Network: The base network is responsible for 

feature extraction from images so it should be a fully 

convolutional neural network of any architype such as ResNet 

or GoogLeNet. At the moment, looking at the complexity of 

the task, a ResNet 101 backbone is used. While it is not 

mandatory to use a fully convolutional network as at any time 

in the forward propagation process of a CNN one can just stop 

at a certain convolutional layer and retrieve the feature maps, 

it comes with the added advantage of accepting images of any 

spatial dimensions. 

Region Proposal Network (RPN): The RPN is a small fully 

convolutional neural network that acts on the feature maps 

and generates proposals to feed into the deeper layers of the 

model. The RPN uses a set of anchors to generate these 

proposals and based on the scale and aspect ratio, a total of 

nine anchor points can be generated to crop proposal regions 

from the feature maps. This works similar to and thus 

alleviates the needs of having a complex feature pyramid to 

detect objects at varying scales. The RPN also generates an 

objectiveness score for each region and classifies it as either 

Fig 1. A collage showing the cell 

images (left) and instance wise 

segmented ground truth mask for 

neoplastic nuclei (right) 
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positive, negative or neutral. Based on this score, top n 

proposals are selected and propagated to the next layer 

Region of Interest Align Layer: This layer is an improvement 

over the ROI Pooling layer used in the Faster R-CNN 

structure. The job of this layer is to further reduce the ROIs 

from the RPN by cropping out fixed size feature vectors from 

the feature maps. This layer also facilitates the binary mask 

generation by aligning the proposals with the ground truth 

masks. After this the feature vectors propagate through three 

parallel layers 

Fully Connected Branch (FC): This branch includes two out 

of three parallel propagation paths. These are dense fully-

connected layers which provide two outputs at the end. One 

of them of size n+1 where n is the number of classes (one is 

added for background) provides the class labels for the 

dataset. The second FC output is of size 4xn and provides 

bounding-box coordinates namely, (x1, y1, x2, y2). 

Convolutional Branch: This branch was proposed as an 

overhead improvement to the Faster R-CNN model by 

Girshick et al in [9]. This is a parallel path from the ROI Align 

layer which passes through a set of convolutional layers and 

outputs a binary mask at the end of it. The mask is then 

interpolated using nearest neighbour technique and overlayed 

on the input image. 

III.III  Implementation 

To simplify the implementation and reduce complexity and 

time, Matterport’s Mask R-CNN implementation [17] is used 

and the base classes are morphed as needed. This sub-section 

highlights all the training techniques and hyperparameter 

choices made to optimize the model. Note that the loss 

metrics used to train all aspects of the model (bounding-box 

regressors, class probabilities and mask generation) are used 

exactly as stated in [9] and are not mentioned explicitly. 

Stochastic Gradient Descent [31] optimizer with a 

momentum value of 0.9 was used. To train the model, 

Transfer Learning [32] was used in the backbone network. To 

facilitate this, a pre-trained Mask R-CNN model which was 

trained on the MS COCO [33] dataset was used. While this 

dataset has no affiliation with cells, it still helps the CNN 

backbone network learn the features faster as the initial layers 

regardless of the dataset, learn similar kinds of rudimentary 

low-level features such as lines and shapes. While using 

Transfer Learning, first only the heads of the network 

encompassing the feature pyramid network, RPN and the 

Mask R-CNN bounding box and mask heads were trained for 

20 epochs. This facilitates smoother overall training and lets 

the whole model in the later stages make better updates. Later 

the entire model along with the backbone was trained for 50+ 

epochs till the training plateaued.  

Traditionally, while training model of such complexity, the 

learning rate (LR) is dropped by a factor of 10 each time the 

losses start to plateau. While this is very effective, a custom 

learning rate decay function was used in this paper which 

showed improved results in our experiments against using a 

sharp learning rate decay. A simple linear decay function 

which decayed the learning rate by a factor of approximately 

16 between two sets of epochs was used. While training the 

heads, the LR was dropped linearly from 1e-3 to 9.9e-5 over 

20 epochs. With the whole network training, the LR was 

dropped from 1e-4 to 3.33e-6 over 30 epochs. The formula of 

the learning rate decay is shown in Equation 1. 

𝑒𝑛𝑑𝑙𝑟 = 𝑠𝑡𝑎𝑟𝑡𝑙𝑟 ∗ (1 − (
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑒𝑝𝑜𝑐ℎ

𝑓𝑖𝑛𝑎𝑙𝑒𝑝𝑜𝑐ℎ
))

𝑝𝑜𝑤𝑒𝑟

           (1)    

In the Equation 1, end_lr is final decayed LR, start_lr is 

current LR at epoch, current_epoch is currently running 

epoch, final_epoch is max epoch to train model to, power is 

1.0 (for decay to be linear in nature) 

Since a ResNet101 backbone was used, the model started to 

overfit after the commencement of the second stage of 

training, irrespective of the size of the dataset. This is where 

some strong regularization techniques were used to train the 

model. A weight decay [34] value of 1e-4 and a gradient 

clipping normalization value of 5 was employed. 

Furthermore, Data Augmentation was used to improve 

validation accuracy at the expense of training accuracy. An 

image augmenter randomly flipped the training data along the 

horizontal and vertical axis and also rotated it by 10 degrees. 

This level of augmentation is possible to use in the Mask R-

CNN model because of its translation invariance property [9]. 

Also, since the masks are aligned by the ROI Align layer at 

the end of the model, we decided to use a mini-mask function 

which resizes the mask to a smaller dimension to reduce 

computational power.  

 

IV. RESULTS 

Initial experiments: This sub-section highlights the initial 

experiments conducted with the Mask R-CNN model. At the 

beginning, the model was trained in three parts- heads, 

ResNet 4+ layer modules and the full model. Later it was 

found that training the model in two parts only gave better 

accuracy. Nevertheless, these results are included to show the 

effects of using augmentation even though the training data is 

sufficiently large. Fig 3 shows two stages of the training 

process. The training process without augmentation (Fig 3a) 

overfit by epoch 37, while the process using augmentation 

(Fig 3b) doesn’t and gives considerably good results. This 

experiment proved the potency of data augmentation, which 

was used in the final experiment as well. 
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Fig 3a. Graph showing training results without the use of 

augmentation techniques. 

 

Fig 3b. Graph showing training results with the use of 

augmentation techniques. 

Final results: Fig 4 shows the final experiment conducted 

which bore the best results. As shown training the model in a 

two-stage process generates better accuracy towards the end 

and the model remains relatively stable throughout the 

training process. 

In order to evaluate the effectiveness of the model, two 

inference metrics, namely mean Average Precision (mAP) 

[35] and binary Panoptic Quality (bPQ) (a version of the PQ 

score that assumes all the cells belonging to one class and 

differentiating only between cells and background; which is 

sufficient for our case, having only two classes) [36] are used 

in this paper. The paper by S. Graham et al [18] explain the 

merits of using bPQ as being one of the modern metrics in 

evaluating cell nucleus segmentation tasks. For both these 

metric calculations only those predictions whose Intersection 

over Union (IoU) score was above 0.5 were considered. Table 

2 describes the bPQ value across the various tissues and 

compares it to the Mask R-CNN baselines given in the 

PanNuke paper [29]. 

 

Fig 4. Final experiment results where all mentioned training 

techniques are used. Losses start to plateau after 47 epochs. 

 

Fig 5. A collage showing output from model inference. (1st 

Column) Original cell nuclei image. (2nd Column) Detected 

and segmented neoplastic cells with an alpha mask outputted 

from the model. (3rd Column) Ground truth neoplastic 

nuclei binary mask thresholded to max pixel intensity for 

visibility 
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Table 2. Comparison table of bPQ scores of our Mask R-

CNN model and the model mentioned in the PanNuke paper 

 

We also compare the average PQ (aPQ) score of our model 

and the PanNuke Mask R-CNN model only for the task of 

neoplastic cell detection. Results are shown in Table 3 

Table 3. A table showing comparison of the neoplastic cell 

detection average PQ score between the two models 

For the purpose of training this model and for inference, we 

used Nvidia’s RTX 2070 Super Max-Q GPU. The time taken 

to perform inference and segment the cell nuclei was 1.32 

sec/per image. 

Fig 5 shows a collage of some of the results obtained by our 

model. 

 

IV. CONCLUDING REMARKS 

As seen in Table 2 and 3, we think that our model shows 

improvement over the base Mask-RCNN model for the 

following stipulated reasons: 

 Due to the differences in the inference technique and 

the data splits used 

 Our model only tackles neoplastic cell nuclei while 

the base paper tackles four other classes 

 The backbone used by us is more comprehensive 

than used in the base paper 

 Best training practices used by us has improved the 

efficiency of the model 

To make this research more thorough, we plan on using better 

and more efficient training strategies in the future. We would 

also test our model on more external datasets similar to 

PanNuke and fine-tune the model using these datasets.  

Finally, we believe that the current model presented by us is 

very robust in its detection and should at least work as an 

assistive intelligent agent for researchers when they tackle the 

problem of neoplastic cell nuclei segmentation. The model 

being extremely fast in its inference time satisfies all of its 

proposed objectives and is a step forward in the use of 

intelligent systems for computational pathology. 
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