
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 241-248

© International Research Publication House. http://www.irphouse.com

241

Class schedules assignment in a school in Colombia through

Boolean satisfiability

A. Ramirez-Restrepo1, Y.F. Ceballos2* and L.E. Muñoz3

1,2 Grupo Ing. y sociedad. Ingeniería Industrial, Universidad de Antioquia Calle 70 No 52-21, Medellín 050010, Colombia.
3Universidad Tecnológica de Pereira.Pereira, Colombia.

*Corresponding Author (ORCID: 0000-0001-5787-8832)

Abstract:

Introduction: NP-Complete sentences are difficult problems

to find a solution since they are part of the set of decision

problems that can be solved in polynomial time. Some of them,

such as the Boolean satisfiability problem and the traveling

salesman problem, have been the protagonists of several

resolution methods, among them graph coloring, simulated

travel, genetic algorithms, among others. The allocation of

schedules is classified as one of them, which consists of

assigning a series of subjects to daily work schedules in an

educational institution or in a company. Although in some

educational institutions this work is easy to do, it is a problem

that involves programming and analysis skills. This is since

generally there is very little time to make a feasible schedule,

as well as other important factors such as the configuration of

the days, the subjects, the restrictions of teachers and spaces;

the professors whose subjects must be taught according to the

academic profile of each one; the classrooms where each

teacher must work and what subjects are related, among others.

Objective: propose an adjusted method for the problem of

assigning class schedules based on Graph Colorization and

Boolean Satisfaction (SAT) to be applied in an educational

institution in Colombia. Methodology: The Visual Basic 6.0

programming language was used as a tool, a powerful

programming system that allows to build applications quickly

and efficiently for Microsoft Windows. Results: The

experiments carried out show that, in all the test cases, the

algorithm based on graph coloring and Boolean satisfiability

SAT finds better solutions than those obtained with the manual

method, in a reasonable computational time. Conclusions: The

generated model allows obtaining schedules for each teacher

and each group of students. Although the problem was modeled

and solved specifically for just one educational institution, the

model allows adjusting to many scheduling problems in

different educational institutions and other workspaces,

providing great flexibility in resolution.

Keywords: Algorithm; Graph Coloring, Educational

Institution, NP-Complete; Boolean Compliance Programming;

Software

I. INTRODUCTION

The problem of assigning class schedules consists of assigning

a class series daily for work schedules in an educational

institution and belongs to the NP-Complete problems. NP-

Complete problems are difficult to solve and are part of the NP

complexity class, which is the set of decision problems that can

be solved by a non-deterministic machine in polynomial time

[1], [2]. This class contains many problems that you usually

want to solve in practice, including the Boolean satisfiability

problem and the traveling salesman problem, a Hamiltonian

path to go through all vertices only once [3], [4]. All problems

of this class have the property that their solution can be

effectively verified. This problem has been studied extensively

since there is much interest in finding efficient methods for its

resolution and several methods have been proposed to solve the

problem, among them graph coloring, the simulated path,

genetic algorithms, among others [5]–[7].

The aim of this work is to propose a new method for solving

the problem of assigning class schedules based on Graph

Coloring and Boolean Satisfaction (SAT). The proposal to

attack the problem of assigning class schedules in Educational

Institutions is prevent two or more teachers from being

assigned several subjects or groups at the same time in a single

day. The graph coloring algorithm is suitable because it

proposes a feasible solution since it is possible to do the

implementation by substituting the color entity for the groups

of an Educational Institution. After this, a solution is proposed

through Boolean Satisfaction (SAT); that is, it will show how

to translate the vertices and edges of a graph (G) to a set of

clauses in Conjunctive Normal Form (FNC). After having all

the clauses in Conjunctive Normal Form, the DPLL algorithm

(Davis-Putnam-Logemann-Loveland) will be applied to find

the SAT solution, to find the truth values that make the formula

in Conjunctive Normal Form satisfactory [2], [8], [9].

In this document the basic concepts about Boolean Satisfaction

(SAT), graph coloring and complete algorithms for the SAT

solution are presented. Some of the different methods that exist

for solving the class schedule problem through SAT and graph

coloring will be presented. At the end, the implementation in a

software project, the results obtained, and the respective

conclusions and future work are shown.

II. THEORETICAL BACKGROUND

To solve the assigning class schedules problem, various

algorithms have been designed and solution strategies have

been applied. This paper explains the use of techniques based

on the SAT satisfiability problem and Graph Coloring;

however, it is worth mentioning only a few solution strategies

that have been implemented so far. This section will briefly

discuss an overview of the main techniques (algorithms or sets

of algorithms) and strategies (solution development).

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 241-248

© International Research Publication House. http://www.irphouse.com

242

In Academic Assignment Model of Loads and Organization

of Schedules for UJAT, the scheduling problem was

represented, modeled as an Optimization problem. So many

hard and soft constraints are modeled for the problems of

academic load assignment (ACA) and class schedules

organization (OHC), as well as the definition of an objective

function for each problem [10]. This model is show in the

equations (1) to (8).

 Academic load assignment (ACA).

max 𝑍 = ∑ 𝑆𝑐𝑣. (1)

𝑠𝑡

𝐻𝑐𝑣 = 0 (2)

𝑆𝑣𝑐 = 𝑤𝑒𝑎𝑘 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠. (3)

𝐻𝑐𝑣 = 𝑆𝑡𝑟𝑜𝑛𝑔 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠. (4)

 Class schedules organization (OCH)

min 𝑍 = 𝑆𝑐𝑣. (5)

𝑠𝑡

𝐻𝑐𝑣 = 0 (6)

𝑆𝑣𝑐 = 𝑤𝑒𝑎𝑘 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠. (7)

𝐻𝑐𝑣 = 𝑆𝑡𝑟𝑜𝑛𝑔 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑠. (8)

In Tabu Search-Based Algorithm for Class Scheduling

Problem, an algorithm based on the Tabu Search metaheuristic

is presented to solve the class schedules assigning problem at

the Computer Department of the Experimental Faculty of

Sciences and Technology of the University of Carabobo

Venezuela. The experimental results showed that, in general,

the developed algorithm produces better solutions than the

manual method, in terms of the quality of the schedules

obtained and the amount of time used to generate them [11].

Academic Load Allocation Model using Genetic Algorithms

presents a computational model capable of finding the optimal

assignment of classes, teachers and schedules using a genetic

algorithm. Tests were carried out on the model, taking as a basis

the requirements in each period of the Computer Systems

Engineering (ISC) career at the Nuevo Laredo Technological

Institute (ITNL) and a list of available teachers and their

schedule, finding better results than those obtained manually

[12].

Evolutionary algorithms for the resolution of a Timetabling

problem research method focuses on finding a solution to the

schedules allocation problem that exists in the teaching hours

of Engineering in Applied Computer Science and Civil

Engineering Computer Science of the University of Valparaíso.

The solution must satisfy a restriction set, which occur

frequently in the academic environment. To solve this

assignment problem, Evolutionary Algorithms were used,

which belong to the group of meta-heuristic techniques; those

techniques are methods that consist in systematizing ideas, in

order to develop efficient algorithms capable of delivering

optimal solutions to the problem of assigning schedules [13].

In this research: Integer Programming Models for a Schedule

Problem for Universities, a problem of Schedule Programming

in Universities has been characterized, modeled, and solved

through Linear Programming, obtaining Models and Methods

that allow solving large problems in reasonable Computational

Times. Four Solving Methods based on Integer Linear

Programming were proposed to solve the problems. Two

Methods can obtain optimal solutions for any instance where a

solution exists. The first Method directly assigns classes to

periods and classrooms (Timetabling); the second assigns the

classes to periods and Classroom Types that later, by the

algorithm, assigns Classroom Types to specific Classrooms

that belong to each Type (Timetabling with Classroom Types).

These two named Methods allow problems solving satisfying a

desired Quality Level but in a high Computational Time,

existing large problems, in which it was not possible to obtain

results in a reasonable Computational Time [14].

For this reason, two Methods were proposed that do not

guarantee obtaining optimal solutions and even finding a

solution, for instances in which there may be a solution. These

Methods are based on relaxing restrictions in a first stage that

increase the complexity of the problem, obtaining solutions that

allow setting variables and solving smaller problems for each

day in a second stage. Similarly, one Method includes assigning

directly to each classroom (Timetabling with Relaxation

Strategy) and another, initially assigning to Classroom Types

(Timetabling with Classroom Types and Relaxation Strategy).

For each proposed problem, a solution was found in a

reasonable Computational Time and satisfying a desired

Quality Level, for the last two Methods named above.

University of Manizales Planning Software. This software

that works under Windows operating systems, was developed

with the FoxPro database manager, this software allows

manual, semiautomatic, automatic assignments of classrooms

and class schedules, also allows the management of teachers,

buildings, and faculties [15]–[17].

III. METHODOLOGY

The software for assignment of class schedules through

Boolean satisfiability was fully developed in the Visual Basic

6.0 programming language, this software was chosen because

it is a powerful programming environment, with which it can

be built quickly and efficiently applications for Microsoft

Windows. Regarding the database, it is necessary to point out

that the results will be stored in an Access file and will be read

by Visual Basic and will show the results in a user-friendly

manner. The purpose is to solve the problem of assigning class

schedules in Educational Institutions to prevent two or more

teachers from being assigned several classes or groups at the

same time in a single day.

The graph coloring algorithm is suitable because can propose

a feasible solution substituting the color entity for the class

groups of an Educational Institution. After this, a solution is

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 241-248

© International Research Publication House. http://www.irphouse.com

243

created through Boolean Satisfaction (SAT); that is, it will

show how to translate the vertices and edges of a graph (G) to

a set of clauses in Conjunctive Normal Form (CNF). After

having all the clauses in Conjunctive Normal Form, the DPLL

algorithm (Davis-Putnam-Logemann-Loveland) will be

applied to find the SAT solution, to satisfy the truth values that

make TRUE the formula in Conjunctive Normal Form.

Guidelines for the AHOSAT Solution. a) Conversion of the

problem from Assigning class schedules to Graphs. The initial

conditions are: The schedule for three classes is generated, the

three classes are taught by three different teachers, the number

of groups that receive the classes are three, the number of days

in the schedule is one and the number of hours that the groups

receive per day are also three. For the representation in the

software, we use one of all possible combinations (In fig. 1 we

show the problem as a graph).

Fig. 1 Graph initial conditions. Source: Author

Reduction of the graph to the Conjunctive Normal Form

(FNC): The graph must be converted to clauses and SAT

instances and this reduces a graph to clauses in conjunctive

normal form (FNC). In this state, the full DPLL method is

applied to solve the SAT satisfiability problem. Once the truth

values that satisfy the formula have been assigned, the variables

values are interpreted in the context of graphs from which the

color number is obtained, as well as the graph coloring.

The equation (9) is the general clause to solve the problem.

D = day, H = hour, G = Group, M = Class and P = Teacher

𝐷𝐾𝐻𝑖𝐺𝑖𝑀𝑖𝑃𝑖 where k = 1 and i = 1,2,3 (9)

The restriction is that any class can be assigned on any day

at any time and the clauses are grouped as shown in equation

(10).

(D1H1G1M1P1 v D1H1G1M2P2 v D1H1G1M3P3) ^

(D1H2G1M1P1 v D1H2G1M2P2 v D1H2G1M3P3) ^

(D1H3G1M1P1 v D1H3G1M2P2 v D1H3G1M3P3) ^

(D1H1G2M1P1 v D1H1G2M2P2 v D1H1G2M3P3) ^
(D1H2G2M1P1 v D1H2G2M2P2 v D1H2G2M3P3) ^

(D1H3G2M1P1 v D1H3G2M2P2 v D1H3G2M3P3) ^

(D1H1G3M1P1 v D1H1G3M2P2 v D1H1G3M3P3) ^

(D1H2G3M1P1 v D1H2G3M2P2 v D1H2G3M3P3) ^

(D1H3G3M1P1 v D1H3G3M2P2 v D1H3G3M3P3)

 (11)

A teacher can only give a class to a group on the same day at

a certain time (equation (12))

(~D1H1G1M1P1 v ~D1H1G2M1P1) ^
(~D1H1G1M1P1 v ~D1H1G3M1P1) ^

(~D1H1G2M1P1 v ~D1H1G3M1P1) ^

(~D1H2G1M1P1 v ~D1H2G2M1P1) ^

(~D1H2G1M1P1 v ~D1H2G3M1P1) ^
(~D1H2G2M1P1 v ~D1H2G3M1P1) ^

(~D1H3G1M1P1 v ~D1H3G2M1P1) ^
(~D1H3G1M1P1 v ~D1H3G3M1P1) ^
(~D1H3G2M1P1 v ~D1H3G3M1P1) ^
(~D1H1G1M2P2 v ~D1H1G2M2P2) ^

(~D1H1G1M2P2 v ~D1H1G3M2P2) ^

(~D1H1G2M2P2 v ~D1H1G3M2P2) ^

(~D1H2G1M2P2 v ~D1H2G2M2P2) ^
(~D1H2G1M2P2 v ~D1H2G3M2P2) ^

(~D1H2G2M2P2 v ~D1H2G3M2P2) ^

(~D1H3G1M2P2 v ~D1H3G2M2P2) ^

(~D1H3G1M3P3 v ~D1H3G3M3P3) ^
(~D1H3G2M3P3 v ~D1H3G3M3P3) ^

(~D1H1G1M3P3 v ~D1H1G2M3P3) ^

(~D1H1G1M3P3 v ~D1H1G3M3P3) ^

(~D1H1G2M3P3 v ~D1H1G3M3P3) ^
(~D1H2G1M3P3 v ~D1H2G2M3P3) ^

(~D1H2G1M3P3 v ~D1H2G3M3P3) ^

(~D1H2G2M3P3 v ~D1H2G3M3P3) ^

(~D1H3G1M3P3 v ~D1H3G2M3P3) ^

(~D1H3G1M3P3 v ~D1H3G3M3P3) ^

(~D1H3G2M3P3 v ~D1H3G3M3P3)

 (12)

Only one class can be taught in the combination of day, time,

and group (equation (12)).

(~D1H1G1M1P1 v ~D1H1G1M2P2 v ~D1H1G1M3P3) ^

(~D1H1G1M1P1 v ~D1H1G1M2P2 v ~D1H1G1M3P3) ^

(~D1H3G1M1P1 v ~D1H3G1M2P2 v ~D1H3G1M3P3) ^

(~D1H1G2M1P1 v ~D1H1G2M2P2 v ~D1H1G2M3P3) ^

(~D1H2G2M1P1 v ~D1H2G2M2P2 v ~D1H2G2M3P3) ^
(~D1H3G2M1P1 v ~D1H3G2M2P2 v ~D1H3G2M3P3) ^
(~D1H1G3M1P1 v ~D1H1G3M2P2 v ~D1H1G3M3P3) ^

(~D1H2G3M1P1 v ~D1H2G3M2P2 v ~D1H2G3M3P3) ^
 (~D1H3G3M1P1 v ~D1H3G3M2P2 v ~D1H3G3M3P3)

 (12)

A class can only be taught for one hour on the same day

(equation (13)).

DHG

CP1

DHG

CP2
DHG

CP3

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 241-248

© International Research Publication House. http://www.irphouse.com

244

(~D1H1G1M1P1 v ~D1H2G1M1P1) ^
(~D1H1G1M1P1 v ~D1H3G1M1P1) ^

(~D1H2G1M1P1 v ~D1H3G1M1P1) ^

(~D1H1G2M1P1 v ~D1H2G2M1P1) ^

(~D1H1G2M1P1 v ~D1H3G2M1P1) ^
(~D1H2G2M1P1 v ~D1H3G2M1P1) ^

(~D1H1G3M1P1 v ~D1H3G3M1P1) ^

(~D1H1G3M1P1 v ~D1H3G3M1P1) ^

(~D1H2G3M1P1 v ~D1H3G3M1P1) ^
(~D1H1G1M2P2 v ~D1H2G1M2P2) ^

(~D1H1G1M2P2 v ~D1H3G1M2P2) ^

(~D1H2G1M2P2 v ~D1H3G1M2P2) ^

(~D1H1G2M2P2 v ~D1H2G2M2P2) ^
(~D1H1G2M2P2 v ~D1H3G2M2P2) ^

(~D1H2G2M2P2 v ~D1H3G2M2P2) ^

(~D1H1G3M2P2 v ~D1H3G3M2P2) ^

(~D1H1G3M2P2 v ~D1H3G3M2P2) ^
(~D1H2G3M2P2 v ~D1H3G3M2P2) ^

(~D1H1G1M3P3 v ~D1H2G1M3P3) ^

(~D1H1G1M3P3 v ~D1H3G1M3P3) ^

(~D1H2G1M3P3 v ~D1H3G1M3P3) ^
(~D1H1G2M3P3 v ~D1H2G2M3P3) ^

(~D1H1G2M3P3 v ~D1H3G2M3P3) ^

(~D1H2G2M3P3 v ~D1H3G2M3P3) ^

(~D1H1G3M3P3 v ~D1H3G3M3P3) ^

(~D1H1G3M3P3 v ~D1H3G3M3P3) ^
(~D1H2G3M3P3 v ~D1H3G3M3P3)

 (13)

Once the problem is presented in clauses in Conjunctive

Normal Form, the DPLL algorithm is applied for the SAT

solution, to find the truth values that satisfy the formula. The

pseudocode is shown at algorithm 1.

Algorithm 1. Pseudocode select and simplify

Select (var, V): var is selected from a set V of

proportional variables, once selected, var is removed

from the set V.

Var = applied clause

Value = 1 or 0

S = complete set

Ss = Return value (S simplified)

C = Each clause.

Satisfactible(S):

If S = = {1} then true,

Else false

End

Insatisfactible(S):

If S = = {0} then true,

Else false

End

Simplify(var, valor, S, Ss):

Ss = ;

If valor = = 1 then

If S = = {C}  var  C then Ss = {1}

// if the set has only one clause, return set 1

otherwise retrieve each clause.

Else for all C  S {

If var  C then;

// if it is contained with the same sign,

the entire group is eliminated.

Else if var C then

 // if it is contained but with the

opposite sign, it removes only the

clause.

{

Cs = C – {var};

If Cs = =  then {

Ss = {0};

Break;}

Else Ss = Ss  {Cs}

}

Else Ss = Ss  {C}}

Else if valor = = 0 then

If S = = {C}  var  C then Ss = = {1}

Else for all C  S

If var  C then {

If C = {var} then {

Ss = {0};

Break;}

Else {

Cs = C – {var};

Ss = Ss  {Cs}}

Else if var  C then;

Else Ss = Ss  {C}

Inputs: S: Set of Clauses. It is assumed that in S there are no

repeating clauses, and that no clause has repeating literals, V:

Set of propositional variables that occur in S. Outputs:

"Satisfactory", "Unsatisfactory". See algorithm 2.

Algorithm 2. Pseudocode DPLL

DPLL(S):

 If S = {{1}} then return “Satisfactible”,

If {0}  S then return “Insatisfactible”,

DPLL2: if {L}  S then {

 If L = var then simplify (var, 1, S, Ss)

 Else if L = var then simplify (var, 0, S, Ss)

DPLL(Ss)}

DPLL3:{ Select (var, V);

Simplify (var, 1, S, Ss)

If DPLL(Ss)=“Satisfactible” then return (“satisfactible”);

Else if DPLL (Ss) = “Insatisfactible” then

 {Simplify (var, 0, S, Ss)

 DPLL(Ss)}}

IV. IMPLEMENTATION

To solve the schedule generating problem, data type

structures and function modules were created in Visual Basic

programming language necessary to implement the Davis-

Putman SAT solution algorithm were used.

The list of data structures and function modules created for

the project are a list of structures: Clause and condition

structure and a list of function modules: GenerationFNC and

AlgorithmDP

Structures are complex data types in a programming

language that are used to represent sets of data that can be

manipulated by the program as complex units made up of

different data types.

The Clause structure is used to represent a variable within the

universe of schedule variables, this variable is composed of the

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 241-248

© International Research Publication House. http://www.irphouse.com

245

following definitions: a unique "identifier" value used to record

the clause, a "day" value that represents the day on which the

variable can be assigned within the schedule, a value "hour"

that represents the time of day in which the variable can be

assigned within the schedule, a value of "user" that represents

the teacher's code, a value "class" That represents the class code

and a "group" value that represents the group code to which the

schedule will be assigned. The structure in code of the Visual

Basic programming language as shown in algorithm 3.

Algorithm 3. Public type clause

Public Type clausula

 identifier As Long

 day As Long

 hour As Long

 user As Long

 class As Long

 group As Long

End Type

The condition structure is used as a data type that represents

a condition that must be fulfilled for the hour assignment

through the SAT solution. The structure must contain an

identifier that represents the clause unique number that will be

identified with the condition, a sign value (1 or -1, true or false

respectively) that represents the Boolean result after evaluating

the condition, a value that represents the group to which the

condition belongs and a constraint value that represents the

constraint number to which it belongs. This structure is used

directly by manipulating the Boolean value to find the solution

to the time assignment problem with the Davis-Putman SAT

algorithm. The structure in code of the Visual Basic

programming language as shown in algorithm 4.

Algorithm 3. Public type condition

Public Type condition

 identifier As Long

 sign As Long

 restriction As Long

 group As Long

End Type

The GenerationFNC.bas module contains the necessary

functions to generate the group of conditions in conjunctive

normal form FNC that will be evaluated by the Davis-Putman

SAT solution algorithm. The module contains the function

Generation_FNC that generates the conditions structure in FNC

(conjunctive normal form). For the Davis-Putman SAT

algorithm used to solve the problem of generating schedules,

the different conditions must appear in FNC, below, a pseudo-

code is shown to illustrate how the structure generated by the

function is at equation (14):

{X11 v X12}^{X21 v X22}^{X31 v X32}^{X41 v X42}^

{~X11 v ~X12} ^ {~X21 v ~X22} ^ {~X31 v ~X32} ^

{~X41 v ~X42} ^ {~X11 v ~X31} ^ {~X12 v ~X32} ^

{~X11 v ~X21} ^ {~X12 v ~X22} ^{~X21 v ~X41} ^

{~X22 v ~X42} ^ {~X31 v ~X41} ^ {~X32 v ~X42}

(14)

Where X11, X12, X21 ... X42 are problem conditions that will

be evaluated by the Davis-Putman SAT algorithm, the symbol

"^" represents the logical conjunction of variables (in this case

of conditions) and "v" represents the logical disjunction

variable (in this case of conditions). The prototype of the

Generation_FNC function is Public Sub Generation_FNC()

The getClause function is responsible for returning a clause

stored in an array of clauses or variables set for the problem,

considering the identifier. The values entered by parameters are:

"value" is the unique identifier of the clause and "clauses ()" is

the array that contains all the clauses or variables proposed for

the problem. The prototype of the getCover function in the is

Private Function getClosure (ByVal value As Integer, ByRef

clauses () As clause) As clause.

The assignGroupClass function allows assigning to a

condition the group to which it belongs (grouping conditions

means that they are part of the FNC structure together with

other conditions by means of the symbol "^" conjunction)

considering premises such as the day, the group, and the class

to assign within the schedule. The values entered by parameters

are: "conditions ()" array that contains the conditions in FNC

form, "clauses()" is the array that contains all the clauses or

variables set for the problem and "clause" is the variable to

which group assignment is in progress. The prototype of the

AssignGroup function is: Private Function

assignGroupClass(ByRef condition() As condition, ByRef

clausule() As clause, ByRef clauseActual As clause) As Integer

The function assignGroupProfesor allows assigning to a

condition the group to which it belongs, considering premises

such as the day, the time, and the teacher to be assigned within

the schedule. The values entered by parameters are: "conditions

()" array that contains the conditions in FNC form, "clauses ()"

is the array that contains all the clauses or variables set for the

problem and "clause" is the variable to which group assignment

is in progress. The prototype for the assignTeacherGroup

function is: Private Function assignGroupProfesor (ByRef

conditions() As condition, ByRef clausule() As clause, ByRef

clauseActual As clause) As Integer.

The function assignGeneralGroup allows assigning to a

condition the group to which it belongs, considering premises

such as day, time, and class. The values entered by parameters

are: "conditions ()" array that contains the conditions in FNC

form, "clauses ()" is the array that contains all the clauses or

variables proposed for the problem and "clause" is the variable

to which group assignment is in progress. The prototype of the

assignGeneralGroup function is: Private Function

assignGeneralGroup (ByRef conditions () As condition, ByRef

clauses () As clause, ByRef clauseActual As clause) As Integer.

The fitArrayString function is a utility function that allows to

resize the String array to fit the desired size considering the

number of String elements. The values entered by parameters

are: "strings ()" which is the array of String to be adjusted and

"quantity" which is the size to which the arrangement is to be

adjusted. The prototype of the fitArrayString function is: Public

Function fitArrayString (Strings () As String, Amount as

Integer) As String ()

The function fitArrayConditions is a utility function that

allows you to resize the Condition array to fit the desired size

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 241-248

© International Research Publication House. http://www.irphouse.com

246

considering the number of elements that the Condition structure

contains. The values entered by parameters are: "conditions ()"

which is the arrangement that contains the elements of the

condition structure to be adjusted and "quantity" which is the

size to which the arrangement is to be adjusted. The prototype

of the function adjustArrayConditions is: Public Function

adjustArrayConditions (conditions () As condition, quantity As

Integer) As condition ()

The function adjustArrgloClausulas is a utility function that

allows you to change the size of an arrangement type Clauses

to fit the desired size considering the number of elements of the

Clause structure it contains. The values entered by parameters

are: "clauses ()" which is the arrangement that contains the

elements of the clause structure to be adjusted and "quantity"

which is the size to which the arrangement is to be adjusted.

The prototype of the function fitArrangeClausulas is: Public

Function fitArrangeClausulas (clauses () As clause, quantity As

Integer) As clause ()

The findIndex function allows you to find the location of a

subject within the group of subjects established for the group.

The main purpose of this function is to help generate the clauses

or variable that will be resolved by the Davis-Putman SAT

Algorithm, where each variable is represented by the values

day, hour, teacher, class, and group (DiHiGiXiMi) where i =

0 ... n for each variable. The prototype of the findIndex function

is: Private Function findIndex (userxassignment () As String,

index As Integer, key As String) As Integer

DPL algorithm module contains a set of functions that will

be detailed. The initiators function allows to initialize the arrays

of clauses and conditions that will be used to store the variables

and their results after evaluating the different variables

(translated into conditions) with the Davis-Putman SAT

algorithm. The prototype of the initiators function is: Public

Sub initiators ()

The AlgorithmDPLL function represents the Davis-Putman

SAT algorithm that evaluates the different conditions (they

represent clauses or variables) and generates a satisfiability

result that allows generating a Class Schedule. The values

entered for the parameters are: "conditions ()" array containing

the conditions in FNC form. The prototype of the

AlgorithmDPLL function is: Public Function AlgorithmDPLL

(ByRef conditions () As condition) As String.

The function writeSolution represents the first utility

function of the Davis-Putma SAT algorithm, its main task

assigning the Boolean value (1 or -1 for true and false

respectively) assigned by the evaluation of the Davis-Putman

SAT algorithm for a specific condition. The values entered for

the parameters are: "condition" represents the condition to

which the Boolean value will be assigned, and "value"

represents the Boolean value to be assigned: Public Sub

writeSolution (conditionActual As condition, ByVal value As

Integer)

The Simplify function represents the second utility function

for the Davis-Putman SAT algorithm, its main task is to

simplify a specific group of conditions considering a Boolean

value (true or false) for any of the conditions that is part of the

group. The values entered for the parameters are:

"conditionEvaluated" that represents the condition for which

the Boolean value will be assigned, "value" Boolean (1 or -1

for true and false respectively) and "conditions ()" array

containing the conditions in FNC form. The prototype of the

quantityGroup function is: Public Function Simplify

(conditionEvaluated As condition, ByVal value As Integer,

conditions () As condition) As condition (). This function

receives the condition to be evaluated, the value that is assigned

to the condition and the group of conditions. This returns the

simplified group of conditions.

The group quantity function is a utility function and indicates

whether the first condition belongs to a group with a single

element, within the set of grouped conditions. The values for

the entered parameters are: "conditions ()" array containing the

conditions in FNC form. The prototype of the quantityGroup

function is: Private Function quantityGroup (conditions () As

condition) As Integer

The getSoloGroup function is a utility function that allows

you to obtain the identifier of the group to which the current

condition that is being evaluated with the Davis-Putman SAT

algorithm belongs. The values entered for the parameters are:

"identifier" unique value that identifies the condition (same

identifier as the clause) and "idGroup" value that represents the

unique identifier of the group and "conditions ()" array that

contains the condition type elements that they are evaluated by

the SAT algorithm. The prototype of the getSoloGroup

function is: Private Function getSoloGroup (ByVal identifier

As Integer, ByVal groupid As Integer, conditions () As

condition) As condition ()

The validateGroup function is useful and allows you to

validate if a group (grouping of conditions) has already been

previously omitted by the evaluation of the Davis-Putman SAT

algorithm. The values entered by parameters are: "group"

unique identifier of the group, "groupOmitidos ()" array that

contains the identifiers of the groups already omitted by the

SAT algorithm and "quantity" number of elements in the array

of omitted groups. The prototype of the validateGroup function

is: Private Function validateGroup (ByVal group As Integer,

ByRef groupsOmitidos () As Integer, ByVal amount As Integer)

As Integer

VI. EXPERIMENTAL RESULTS

The SAT Boolean satisfiability-based class scheduling

algorithm was implemented in the Microsoft Visual Basic 6.0

programming language and Microsoft Access. The program

was tested with several test cases to determine the solutions

quality and in turn, compare the results with those obtained

through the manual method.

The following test was carried out for six groups of Marco Fidel

Suarez Educational Institution of the Municipality of Andes, on

any given day of the week with six teachers who teach each of

the classes. The software presented a feasible schedule to be

taught at the institution. The software solution can be seen at

table 1.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 241-248

© International Research Publication House. http://www.irphouse.com

247

Table 1. Assignment of class schedules for the 10th and 11th groups, with their respective teachers on one day of the week.

Source: Author

 Group

H 11A 11B 11C 10A 10B 10C

1 Gym - T1 English - T2 Computers - T5 Math - T6 Chemistry - T4 Spanish - T3

2 Spanish - T3 Computers - T5 English - T2 Chemistry - T4 Math - T6 Gym - T1

3 Computers - T5 Math - T6 Chemistry - T4 Spanish - T3 Gym - T1 English - T2

4 English - T2 Chemistry - T4 Math - T6 Gym - T1 Spanish - T3. Computers - T5

5 Chemistry - T4 Spanish - T3 Gym - T1 English - T2 Computers - T5 Math - T6

6 Math - T6 Gym - T1 Spanish - T3 Computers - T5 English - T2 Chemistry - T4

VII. CONCLUSIONS

The problem of assigning class schedules is extremely

complicated due to the restrictions that vary according to the

policies and rules of the educational institution where it is

required, as well as the criteria with which said restrictions are

applied.

The generated model allows obtaining schedules for each

teacher and each group of students. Although the problem was

modeled and solved specifically for the educational institution

Marco Fidel Suárez of the Municipality of Andes Antioquia;

The model allows adjusting to many scheduling problems in

different educational institutions, providing great flexibility in

resolution. The algorithm based on graph coloring and Boolean

satisfiability SAT for assigning class schedules has been

developed, tested with real data, and compared with results

obtained through the manual method.

The experiments carried out show that, in all the test cases,

the algorithm based on graph coloring and Boolean

satisfiability SAT finds better solutions than those obtained

with the manual method, in a reasonable computational time.

This leads us to think that the algorithm should, in general, find

good solutions to the problem of assigning class schedules at

the educational institution in the municipality of Andes.

Comparisons in the distribution of academic load obtained by

the satisfaction algorithm and the manual process, showed that

the solution proposed by the SAT algorithm is better.

For future work, the following recommendations are given

research for other possible secondary restrictions, and their

corresponding terms in the cost model, to improve the quality

of schedules.

REFERENCES

[1] G. Aloupis, E. Demaine, and a Guo, “Classic nintendo

games are (np-) hard,” arXiv Prepr. arXiv1203.1895, pp.

1–21, 2012, [Online]. Available:

http://arxiv.org/abs/1203.1895.

[2] A. I. Diveev, O. V. Bobr, D. E. Kazaryan, and O.

Hussein, “Some methods of solving the NP-difficult

problem of optimal schedule for the university,” in

Procedia Computer Science, 2019, vol. 150, pp. 410–

415, doi: 10.1016/j.procs.2019.02.071.

[3] P. Kalla, Z. Zeng, and M. J. Ciesielski, “Strategies for

solving the Boolean satisfability problem using binary

decision diagrams,” J. Syst. Archit., vol. 47, pp. 491–

503, 2001.

[4] W. Zhang and R. E. Korf, “A study of complexity

transitions on the asymmetric traveling salesman

problem,” Artif. Intell., vol. 81, no. 1–2, pp. 223–239,

1996, doi: 10.1016/0004-3702(95)00054-2.

[5] T. Januario, S. Urrutia, C. C. Ribeiro, and D. De Werra,

“Edge coloring: A natural model for sports scheduling,”

Eur. J. Oper. Res., vol. 254, no. 1, pp. 1–8, 2016, doi:

10.1016/j.ejor.2016.03.038.

[6] Z. Zaeniah and S. Salman, “Designing class schedule

information system by using taboo-search method,” J.

Pilar Nusa Mandiri, vol. 16, no. 2, pp. 241–248, 2020,

[Online]. Available:

https://doi.org/10.33480/pilar.v16i2.1661.

[7] V. F. Suárez, Á. Guerrero, and O. D. Castrillón,

“Programación de horarios escolares basados en ritmos

cognitivos usando un algoritmo genético de

clasificación no-dominada, NSGA-II,” Inf. Tecnol., vol.

24, no. 1, pp. 103–114, 2013, doi: 10.4067/S0718-

07642013000100012.

[8] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving

SAT and SAT modulo theories: From an abstract davis

- putnam - logemann - loveland procedure to DPLL(T),”

J. ACM, vol. 53, no. 6, pp. 937–977, 2006, doi:

10.1145/1217856.1217859.

[9] H. Youness, M. Osama, A. Hussein, M. Moness, and A.

M. Hassan, “An Effective SAT Solver Utilizing ACO

Based on Heterogenous Systems,” IEEE Access, vol. 8,

pp. 102920–102934, 2020, doi:

10.1109/ACCESS.2020.2999382.

[10] J. L. Gomez and J. F. Solis, “Modelos de asignación de

cargas académicas y organización de horarios para la

UJAT,” Perspect. docentes, no. 34, pp. 39–48, 2007.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 241-248

© International Research Publication House. http://www.irphouse.com

248

[11] A. A. Martínez, “Algoritmo basado en tabu search para

el problema de asignación de horarios de clases,” Univ.

Carabobo, p. 11, 2012.

[12] J. B. López Bruno, “Modelo de asignación de carga

académica usando algoritmos genéticos,” Tecnol. Nac.

Mex., no. 5, pp. 1–7, 2007.

[13] J. E. Molina-Araya, “Algoritmos Evolutivos para la

resolución de un problema de tipo Timetabling,”

Universidad de Valparaíso, 2007.

[14] A. Saldaña Crovo, C. Oliva San Martin, and L. Pradenas

Rojas, “Models of Integer Programming for an

University Timetabling Problem,” Ingeniare., vol. 15,

no. 3, pp. 245–259, 2007.

[15] R. Baker, B. Evans, Q. Li, and B. Cung, “Does Inducing

Students to Schedule Lecture Watching in Online

Classes Improve Their Academic Performance? An

Experimental Analysis of a Time Management

Intervention,” Res. High. Educ., vol. 60, no. 4, pp. 521–

552, 2019, doi: 10.1007/s11162-018-9521-3.

[16] J. C. Marín Ángel and P. A. Maya Duque, “Modelo

lineal para la programación de clases en una institución

educativa,” Ing. y Cienc., vol. 12, no. 23, pp. 47–71,

2016, doi: 10.17230/ingciencia.12.23.3.

[17] R. Hernández, J. Miranda P, and P. A. Rey,

“Programación de Horarios de Clases y Asignación de

Salas para la Facultad de Ingeniería de la Universidad

Diego Portales Mediante un Enfoque de Programación

Entera,” RIS - Rev. Ing. Sist., vol. 22, no. 1, pp. 121–

141, 2008, [Online]. Available:

http://www.dii.cl/~ris/tabla.php.

