
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 271-277

© International Research Publication House. http://www.irphouse.com

271

Use of Embedded Systems on Software Simulation Environments Applied to

Virtual Education

Fernando Martínez Santa1, Fredy H. Martínez S.2 and Edwar Jacinto Gómez3

Facultad Tecnológica, Universidad Distrital Francisco José de Caldas, Bogotá D.C, Colombia.

1ORCID: 0000-0003-2895-3084 2ORCID: 0000-0002-7258-3909
3ORCID: 0000-0003-4038-8137

Abstract

This paper describes the implementation of a simulation

platform for embedded systems running a Python language

interpreter. This platform uses Proteus-ISIS® electronics

simulator, a reduced and efficient implementation of Python

language for microcontrollers named MicroPython, and an

implementation of an embedded systems development board

based on an ARM architecture microcontroller. This

simulation platform is proposed in order to be implemented

instead of real laboratories for Electrical Technology and

Engineering students in the Microcontrollers Architecture

subject at Universidad Distrital in Bogotá Colombia. The

process to join these software tools and components as a

complete simulation platform is described in this paper step

by step. At the end some proposed simulation laboratories are

described and the results of implementing this approach

instead of the regular one are shown and analyzed.

Keywords: Simulation Environment, Virtual Education,

Embedded Systems, Python, MicroPython, Microcontroller.

1. INTRODUCTION

Software simulation environments have been priceless support

tools for education and training in engineering and other

multiple areas, allowing the students to do practices without

the necessity of having real tools and instruments. These

simulation software have been used in areas such as physics

[1], [2], building and engineering design [3], [4],

automotive [5], [6], energy efficiency [7], [8], software

engineering and gamification [9]–[12], among others, and

always they have demonstrated their applicability and

efficiency as support tools in education and research. In 2020

due to the world health emergency produced by the COVID-

19 virus most of countries decided to restrict the free

movement of people in the cities and the agglomerations,

which affected the normal way of teaching in schools and

universities, obligating to adopt a new approach of on-line or

virtual education in most of the education institutions. In some

of the undergraduate programs such as engineering most of

the subjects require to do laboratory practices, that is why the

software simulation environments turned from support tools to

a real necessity for completing the students learning

nowadays. In electric and electronic engineering, there are

several simulation software which works really well for

electric analog circuits and basic digital circuits but simulating

complex digital devices such as microcontrollers or FPGAs

requires specialized software [13]–[15] even more if it is

wanted to simulate complex embedded systems or

development boards [16]–[18]. In the embedded systems

area, several researches about simulation implementations

have been done about topics such as networking [19],

system-level modeling [20], co-simulation [21] and

learning [22], [23]. Nowadays, the embedded systems are

used for many different applications, mainly in IoT (Internet

of Things) implementations, which require increasingly more

memory and speed features, due to that the embedded systems

have been highly improved. Those improvements allow using

on them operative systems such as Android or Linux and/or

interpreted languages or virtual machines, doing more

difficult their software simulation. One of the most popular

language used in data science is Python due to it has

advantages in the development time and abstraction than

compiled ones as C/C++, but at the same time it requires a lot

of memory and a working high speed because it has to be

interpreted. Some Python implementations on embedded

systems has been done such as Zerynth® and MicroPython

[24] this last one is an open source implementation, that was

the reason why it was selected for the work shown in this

paper. On the other hand, one of the most used simulation

software for microcontrollers is Proteus ISIS® [25], which

allows simulating complex embedded systems such as

Raspberry Pi® among others. The main objective of the work

reported in this paper is to implement a simulation

environment based on Proteus ISIS® software, which is able

to simulate embedded systems running MicroPython

interpreter, focused on the teaching of electric and electronic

engineering specially on the subjects of microcontrollers and

advanced embedded systems.

2. METHODOLOGY

The order of this work is presented as follows. First, a brief

description of the MicroPython project is presented as an

introduction to the firmware to be simulated, including how to

compile it and download it to a microcontroller. The next

section shows the description and features of the

microcontroller-based development board to be used as

embedded system for the simulation. After that, the step-by-

step process to make the process work, including the source

code download, the setup and compiling process, the firmware

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 271-277

© International Research Publication House. http://www.irphouse.com

272

download and the simulation itself, all of this focused on

Windows® operative system. Finally, the simulation samples

obtained are shown as result of the implemented simulation

architecture and its reliability of being used as educational

supporting tool.

3. MICROPYTHON FIRMWARE

MicroPython is an open-source project that pretends to make

it possible to run Python scripts on microcontrollers restricted

in memory size, this implements a subset of Python 3

language including some of its standard libraries [26]. This

efficient implementation is focused on microcontrollers and/or

constrained environments, but including advance features

such as: REPL (Read Evaluate Print Loop) prompt, list

comprehension, exception handling, adaptable precision

integers, garbage collection, among others. Table 1 shows

some of the microcontrollers supported for MicroPython,

indicating the processor features including the FPU (Float

Point Unit).

Table 1. Summary list of the microcontrollers supported by

MicroPython.

Brand

(Family)
Reference

ROM

[kB]

RAM

[kB]

CPU speed

[MHz]
FPU

ST

Cortex-M7
STM32F722IEK 512 256 216 Yes

ST
Cortex-M4

STM32F405RG 1024 192 168 Yes

ST

Cortex-M4
STM32F401CD 384 96 84 Yes

ST
Cortex-M0

STM32F091RC 256 32 48 No

Microchip

dsPIC
33FJ256GP506 256 16 80 No

Microchip
Cortex-M0+

ATSAMD21G18 256 32 48 No

TI

Cortex-M4
CC3200

32 -

2048
256 80 No

Espressif
LX106

ESP8266
512 -
4096

96 80 - 160 No

Espressif

LX6
ESP32

448 -

16384
520 160 - 240 Yes

Addition ally, MicroPython can run on JavaScript and Unix

platforms, which makes it possible to run it on online

emulators such as Unicorn (http://micropython.org/unicorn/)

and other Linux-based embedded systems like Raspberry Pi®

respectively. On the other hand, the source code of

MicroPython firmware (interpreter and REPL) is implemented

entirely in C language, and it is designed to be compiled

basically by GNU GCC compiler (in some cases it works

along with another specific compiler), that is why the

preferred operative system to do this cross-compilation

process is Linux or another Unix-based one. However, it is

possible to compile MicroPython on a Windows® platform

using some different tools or emulators such as: MinGW,

Cygwin and (WSL) Windows Subsystem for Linux (only for

Windows® 10) among others.

Figure 1. Layer diagram of a typical MicroPython working.

3.1 MicroPython Interpreter

As well as Python, MicroPython needs to be executed by an

interpreter which reads the source code file line by line and

executes the correspondent commands. This interpreter is

written in C language and is compiled for a specific

microcontroller. Once loaded, the interpreter is able to run

Python commands one by one through the REPL (Read

Evaluate Print Loop) which uses a default serial port to

communicate with the user. Likewise, the interpreter is able to

execute a complete Python source code file, in this case it is

necessary to create a file named main.py in the MicroPython

file system, once restarted the microcontroller this file will be

executed. Along with the MicroPython interpreted, the

firmware includes the precompiled hardware API for having

access to the microcontroller peripherals and some

precompiled common-use libraries, those ones are compiled

into MicroPython Bytecode files .mpy which can be executed

also by the interpreted but run faster than .py files. All of the

firmware scheme of MicroPython interpreter is summarized in

http://micropython.org/unicorn/

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 271-277

© International Research Publication House. http://www.irphouse.com

273

the figure 1 as a layer diagram where the user only can access

to the top layer, either the REPL or the MicroPython

Application.

3.2 MicroPython Compiling

When MicroPython is wanted to be used on a real

microcontroller or embedded system, only it is necessary to

download the correspondent precompiled firmware from the

official web page and load it in the microcontroller program

memory. On the other hand, when MicroPython is wanted to

be simulated, generally it is necessary to download and

compile its source code, in order to adapt it to the available

hardware in the simulation software. As previously said,

MicroPython compiling needs a Unix-based platform to be

executed, due to it uses programs such as make and gcc.

Likewise, the installing of the specific toolchain for the

microcontroller to be used is necessary. For Windows® 10

users the use of WSL (Windows Subsystem for Linux) is

highly recommended because it simulates a complete Linux

Kernel. Other alternative are Cygwin and MinGW, which

need to install make and gcc on them for working with

MicroPython.

After installing the Linux or Unix emulator and the

microcontroller toolchain, it is necessary to download the

source code, for this is highly recommended to clone the code

repository via git. Then just get into the specific port directory

(MicroPython version for a specific microcontroller) and run

the command make. After than a .hex or .bin file is generated

ready for being load to the microcontroller program memory.

4. SOFTWARE AND HARDWARE

SELECTION

For the proposed simulation platform Proteus-ISIS® was

selected as electronics simulation software, due to its large

amount of processors, devices and peripherals that can be

simulated on it, including some complete embedded systems

such as Arduino® and Raspberry Pi®. On the other hand, a

microcontroller of the brand ST® was selected, specifically

the STM32F401RE with 512kB of ROM, 96kB of RAM and

84MHz of processor frequency. The main purpose is

simulating an embedded system similar to the NUCLEO-

F401RE development board. Figure 2 shows the diagram of

the board implementation on the simulation software,

including the serial interface (Virtual Terminal) for the REPL.

Likewise, the algorithm 1 show the steps to compile

Micropython for this board.

Algorithm 1. MicroPython compiling for the NUCLEO-

F401RE board.

After compiled, a new directory is created in the

current one, it is named build-<board_name>, inside

it the compiled file firmware.hex is created. Then

only it is necessary to load the .hex file as Program

File in Proteus-ISIS® software and start the

simulation. Figure 3 shows the result of loading only

the basic firmware to the simulation, in this case as

there is no main.py file the interpreter proceeds to

run the REPL. In the example, the user manually

defines two variables and operates them.

Figure 2. Implementation of the NUCLEO-F401RE board on

Proteus-ISIS®.

Figure 3. Execution of the MicroPython REPL on the

Proteus-ISIS® Virtual Terminal.

Once MicroPython is working on the simulation,

next step is load a complete Python script and run it.

For this process there are two different ways, the first

one is loading the source code file in the

MicroPython file system via serial port (in Proteus-

ISIS® using the COMPIM component and one

additional virtual serial port software), and the

second one is including it directly in the compiled

firmware. For this case, the second way was selected

in order to avoid using additional software. Including

the source code inside the firmware requires to

“freeze” it, then it is necessary to modify in the

firmware source code the file manifest.py which is

located in <MicroPython_dir>\ports\stm32\boards

and include the main.py directory as shown in the

algorithm 2. If any other source code file or module

is wanted to be included to the project, the same

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 271-277

© International Research Publication House. http://www.irphouse.com

274

procedure has to be followed for each. After that, the

firmware has to be compiled again following the

commands shown in the algorithm 1.

Algorithm 2. Freezing modules or source code by modifying

the manifest.py file.

5. RESULTS

Six different sample laboratories are developed in

order to be performed on the proposed simulation

MicroPython platform, which are listed as follows:

 Printing messages on the Virtual Terminal.

 4-LED sequence commanded by a switch.

 Printing of the converted value by the ADC.

 LEDs Indication of the state of an analog input.

 Integer counter with four 7-segment displays using a

TM1637 driver.

 Printing messages on a 16x2 LCD using a

PCF8574A driver.

Figure 4. Sample laboratory 2, 4-LED sequence commanded

by a switch.

Algorithm 3. MicroPython source code for the

sample laboratory 2.

The figures 4, 5 and 6 show the correspondent implementation

diagrams for the laboratories 2,4 and 5 respectively. Likewise

the algorithms 3, 4 and 5 shows the source code proposed for

each of the same laboratories.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 271-277

© International Research Publication House. http://www.irphouse.com

275

Figure 5. Sample laboratory 4, LEDs Indication of the state of

an analog input.

Algorithm 4. MicroPython source code for the

sample laboratory 4.

Figure 6. Sample laboratory 5, Integer counter with four 7-

segment displays using a TM1637 driver.

Algorithm 5. MicroPython source code for the

sample laboratory 5

6. CONCLUSION

The proposed MicroPython simulation platform and the

designed laboratories were implemented during the first term

of 2020 in the subject of Microcontrollers Architecture at

Technology Faculty of Universidad Distrital Francisco José de

Caldas in Bogotá, Colombia, specifically on the Electrical

Technology and Engineering undergraduate programs. This

proposal was done in order to give this subject totally

virtually, without the necessity of using real laboratories, all

of this due to the current world health emergency produced by

the COVID-19 virus.

In general, the implementation of the simulations was

successful but some of them run not in real-time, producing

delays in the simulation and in some cases bugs. Almost half

of the students of the Microcontrollers Architecture subject

could run the simulations and obtain successful results, but the

rest realized in at least one of the proposed laboratories that

issues and bugs were presented and in some cases the

simulator locked. The cause of this problem is that each

student worked on its own personal computer, having too

different features among them. Being the Universidad

Distrital a public university most of the students presents a

difficult social and economical situation which makes it hard

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 271-277

© International Research Publication House. http://www.irphouse.com

276

that they can acquire the adequate computer equipment

required to carry out software simulations and computing in

engineering.

ACKNOWLEDGMENTS

This work was supported by the Universidad Distrital

Francisco José de Caldas, specifically by the Technology

Faculty. The authors thank all of the students involved in the

test and evaluation of the simulation platform, and the people

of the research group ARMOS for their support in the

development of this work.

REFERENCES

[1] M. Cápay and N. Klimová, “Engage Your Students

via Physical Computing!,” in 2019 IEEE Global

Engineering Education Conference (EDUCON),

2019, pp. 1216–1223.

[2] L. M. Molías, J. M. C. Ranilla, and M. G. Cervera,

“Pre-service Physical Education Teachers’ self-

management ability: a training experience in 3D

simulation environments,” Retos nuevas tendencias en

Educ. física, Deport. y recreación, no. 32, pp. 30–34,

2017.

[3] P. Rajagopalan, J. P. C. Wong, and M. M. Andamon,

“Building performance simulation in the built

environment education: Experience from teaching two

disciplines,” in Proceedings of the 50th International

Conference of the Architectural Science Association,

2016, pp. 359–368.

[4] C. Xie, C. Schimpf, J. Chao, S. Nourian, and J.

Massicotte, “Learning and teaching engineering

design through modeling and simulation on a CAD

platform,” Comput. Appl. Eng. Educ., vol. 26, no. 4,

pp. 824–840, 2018.

[5] E. Cioroaica, F. Pudlitz, I. Gerostathopoulos, and T.

Kuhn, “Simulation methods and tools for

collaborative embedded systems: with focus on the

automotive smart ecosystems,” SICS Software-

Intensive Cyber-Physical Syst., vol. 34, no. 4, pp.

213–223, 2019.

[6] F. Oszwald, P. Obergfell, M. Traub, and J. Becker,

“Using Simulation Techniques within the Design of a

Reconfigurable Architecture for Fail-Operational

Real-Time Automotive Embedded Systems,” in 2018

IEEE International Systems Engineering Symposium

(ISSE), 2018, pp. 1–3.

[7] L. Bogdanov, “Statement-level energy simulation in

embedded systems using GCC,” in 2016 XXV

International Scientific Conference Electronics (ET),

2016, pp. 1–4.

[8] P. Haririan, “DVFS and Its Architectural Simulation

Models for Improving Energy Efficiency of Complex

Embedded Systems in Early Design Phase,”

Computers, vol. 9, no. 1, p. 2, 2020.

[9] O. Chernikova, N. Heitzmann, M. Stadler, D.

Holzberger, T. Seidel, and F. Fischer, “Simulation-

based learning in higher education: A meta-analysis,”

Rev. Educ. Res., vol. 90, no. 4, pp. 499–541, 2020.

[10] M. Kosa, M. Yilmaz, R. O’Connor, and P. Clarke,

“Software engineering education and games: a

systematic literature review,” J. Univers. Comput.

Sci., vol. 22, no. 12, pp. 1558–1574, 2016.

[11] T. A. Vakaliuk, V. V Kontsedailo, D. S. Antoniuk, O.

V Korotun, I. S. Mintii, and A. V Pikilnyak, “Using

game simulator Software Inc in the Software

Engineering education,” arXiv Prepr.

arXiv2012.01127, 2020.

[12] D. Vlachopoulos and A. Makri, “The effect of games

and simulations on higher education: a systematic

literature review,” Int. J. Educ. Technol. High. Educ.,

vol. 14, no. 1, p. 22, 2017.

[13] D. E. Bolanakis, “A Survey of Research in

Microcontroller Education,” IEEE Rev. Iberoam.

Tecnol. del Aprendiz., vol. 14, no. 2, pp. 50–57, 2019.

[14] K. Mondal and A. Elias-Medina, “Introducing Secure

Design by Scripting in an Undergraduate

Microcontroller Based Design Course,” in Journal of

The Colloquium for Information Systems Security

Education, 2020, vol. 7, no. 1, p. 6.

[15] S. Varoumas, B. Pesin, B. Vaugon, and E. Chailloux,

“Programming microcontrollers through high-level

abstractions,” in Proceedings of the 12th ACM

SIGPLAN International Workshop on Virtual

Machines and Intermediate Languages, 2020, pp. 5–

14.

[16] M. Ben Ayed, Y. Ben Salah, and M. Abid,

“Conceptual/functional Co-simulation technique for

embedded systems,” in 2019 International Conference

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 271-277

© International Research Publication House. http://www.irphouse.com

277

on Computer and Information Sciences (ICCIS),

2019, pp. 1–5.

[17] J. C. Kirchhof, E. Kusmenko, J. Meurice, and B.

Rumpe, “Simulation of Model Execution for

Embedded Systems,” in 2019 ACM/IEEE 22nd

International Conference on Model Driven

Engineering Languages and Systems Companion

(MODELS-C), 2019, pp. 331–338.

[18] J. Kraft, “RTSSim-a simulation framework for

complex embedded systems,” Tech. Rep., 2009.

[19] F. Fummi, D. Quaglia, and F. Stefanni, “A SystemC-

based framework for modeling and simulation of

networked embedded systems,” in 2008 Forum on

Specification, Verification and Design Languages,

2008, pp. 49–54.

[20] C. Erbas, A. D. Pimentel, M. Thompson, and S.

Polstra, “A framework for system-level modeling and

simulation of embedded systems architectures,”

EURASIP J. Embed. Syst., vol. 2007, no. 1, p. 82123,

2007.

[21] J. S. Fitzgerald, P. G. Larsen, K. G. Pierce, and M. H.

G. Verhoef, “A formal approach to collaborative

modelling and co-simulation for embedded systems,”

Math. Struct. Comput. Sci., vol. 23, no. 4, pp. 726–

750, 2013.

[22] L. A. Ajao, J. Agajo, J. G. Kolo, M. A. Adegboye,

and Y. Yusuf, “Learning of embedded system design,

simulation and implementation: A technical

approach,” Am. J. Embed. Syst. Appl., vol. 3, no. 3,

pp. 35–42, 2016.

[23] M. H. Moghadam, M. Saadatmand, M. Borg, M.

Bohlin, and B. Lisper, “Learning-based response time

analysis in real-time embedded systems: A

simulation-based approach,” in 2018 IEEE/ACM 1st

International Workshop on Software Qualities and

their Dependencies (SQUADE), 2018, pp. 21–24.

[24] M. Khamphroo, N. Kwankeo, K. Kaemarungsi, and

K. Fukawa, “MicroPython-based educational mobile

robot for computer coding learning,” in 2017 8th

International Conference of Information and

Communication Technology for Embedded Systems

(IC-ICTES), 2017, pp. 1–6.

[25] A. S. B. F. Rahman and A. R. B. A. Razak, “Proteus

based simulation of a charge controller,” in 2010

IEEE International Conference on Power and Energy,

2010, pp. 539–542.

[26] D. George, “MicroPython,” George Robotics Limited,

2018. [Online]. Available: https://micropython.org/.

