
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

278

Low Power Field - Programmable Gate Arrays Using Approximate

Computing

Murali Dova1, Anuradha M Sandi2

1Research Scholar, Guru Nanak Dev Engineering College, Bidar, Karnataka, India

2Associate Professor, Department of ECE, Guru Nanak Dev Engineering College, Bidar, Karnataka, India

Abstract

In the computing arena, Integrated Circuits (ICs) are created

with Very Large Scale Integration (VLSI) technology since

1970s. Right from its inception, VLSI witnessed rapid growth

in terms of its usage in the industry. However, it needed

appropriate customization with programmable logic

components. Field-Programmable Gate Array (FPGA) with its

Configurable Logic Blocks (CLBs), I/O pads and routing

channels is an ideal design style of VLSI. VLSI is also known

for its energy efficient design. Moreover, FPGA design can be

leveraged with approximate computing phenomenon in

embedded computing devices resulting computing efficiency

and conservation of energy besides reducing overhead.

Approximate computing, unlike exact computing, can

significantly reduce computational complexity and exhibits

acceptable error tolerance. Thus FPGA – VLSI design method

for ICs is improved further with approximation computing

techniques. Keeping the pivotal role of these techniques in

mind, they have attracted attention of researchers and

academia. In this paper we focus on different approximate

computing methods, their pros and cons. It provides valuable

insights pertaining to FPGAs using approximate computing

besides finding research gaps in this area.

Keywords – VLSI technology, FPGA, ICs, approximate

computing, design styles

1. INTRODUCTION

Modern applications associated with financial analysis, social

media, scientific computing and big data analytics demand

highly sophisticated computing and storage facilities. In is

understood by researchers that data centres need to handle 50

times more information in the next decade and there is need

for 10% increase in the number of processers. It shows clearly

the rise in performance demands which will reflect in resource

allocations and budgets and overprovisioning should not be an

ideal solution. In its large spectrum, this problem, can have a

promising solution in the form of a computing paradigm

known as Approximate Computing (AC).

Approximate Computing (AC) is a technique of computation

which may return a probabilistic (approximate) value rather

than very accurate result. Such computing is best used in

applications that expect a value approximately. An

approximate value is sufficient for the given purpose in those

applications. Interestingly AC is based on the observation that

exact computation demands consumption of more resources.

Thus selective approximation can help in achieving

performance while satisfying needs of certain applications.

AC is devised to be an alternative to the computing

phenomenon known as exact computing [1]. AC often trades

off effort needed with quality of computing to meet demands

in terms of performance and constrained budgets. In this

sense, AC has become not only attracting but also imperative.

There are various processing units, memory technologies and

components where AC can be used effectively. The

processing units include Central Processing Unit (CPU),

Graphics Processing Unit (GPU) and FPGA.

There are plenty of applications in the real world that do not

need exact computing. For instance, neural approximation,

machine learning algorithms and other host of methods in

Artificial Intelligence (AI) can tolerate errors or inaccuracy

without compromising the end result that is arriving at correct

decision. In this sense, AC can leverage the presence of code

regions that are error-tolerant. It will help in achieving trade-

offs between accuracy and gains in energy and performance

benefits. There is gap between level of accuracy given by the

computing system and the expectation of an application. This

gap is where AC comes into picture and exploits it for its

benefits. Nevertheless, AC needs to be used appropriately. It

needs judicious decision making otherwise it leads to

mediocre performance. The full potential of AC in the

contemporary world can be achieved by addressing certain

issues. Many techniques came into existence of late for

maximizing benefits of AC.

Table 1: Shows abbreviations used in this paper

Abbreviation Description

AC Approximate Computing

ACT Approximate Computing Technique

AI Artificial Intelligence

BW Bandwidth

CLB Configurable Logic Blocks

CPU Central Processing Unit

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

279

Abbreviation Description

FP Floating Point

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

IC Integrated Circuit

IO Input Output

LSTM Long Short-Term Memory

LVA Load value approximation

MCMA Multiple-Classifiers and Multiple-

Approximators

MFU Memory Fence Unit

MIS Macro Instruction Sequencer

NN Neural Networks

NPU Neural Processing Unit

PDPE Peak Dynamic Power Estimation

QoR Quality of Requirements

QoS Quality of Service

RAM Random Access Memory

RRAM Resistive Random Access Memory

SW Software

TC Texture Cache

TCAM Ternary Content Addressable Memory

UART Universal Asynchronous Receiver and

Transmitter

VLSI Very Large Scale Integration

Various abbreviations used in this paper are provided in Table

1. The contributions in this paper include review of literature

on FPGA designs and AC techniques for leveraging the circuit

development. It provides valuable insights on different

aspects. The remainder of the paper is structured as follows.

Section 2 presents possible opportunities and challenges of

using approximate computing in large scale applications.

Different approximation strategies are explored in Section 3.

Section 4 provides approximate computing techniques used

with FPGA. Section 5 provides summary of findings while

section 6 concludes the paper and also gives directions for

future work.

2. OPPURTUNITIES AND CHALLENGES OF

APPROXIMATE COMPUTING

Approximate computing provides plenty of opportunities to

the world of computing. The computational phenomena

without AC results in overheads that may lead to severe

limitations in machine critical applications. AC can reduce

power consumption in embedded systems where it is more

than required. The applications that have tolerance to errors to

some extent can gain maximum benefits with approximate

computing. In this area, cloud data centres and computing

equipment can gain from this by saving computational effort

and energy consumption. In many areas AC creates

opportunities. They include big data analytics, search

operations, machine learning and multimedia processing to

mention few. AC can save power from 5% to 40% [1]. The

saving of power depends on kind of application and the level

of error-tolerance capability of the application. AC can

accelerate RMS (Recognition, Mining and Search)

applications. The following are specific challenges of AC.

2.1 Domain Limitations

Some application domains are not suitable for AC. For

instance, cryptography is having a class of applications that

cannot use AC. There are some applications where

approximation is allowed to some range of values. For

instance, sin function approximation and approximate inverse

operation have limited possibilities. Moreover, the gains

associated with AC are bounded. For instance, inexact storage

will not be able to leverage AC much.

2.2 Issues Related to Correctness

In presence of aggressive technologies related to AC, there are

some correctness issues. They may prevent termination of

program due to unsolvable problems, may result as corrupt

input that cannot be validated by quality metrics. Or the result

does not meet the quality needs of an application. AC used in

compression technique may provide corrupt output. It also

may interfere with operations like memory ordering and

synchronization thus resulting into a non-deterministic output

that does not help in debugging correctly.

2.3 Need Strategies Specific to Applications

There are some strategies related to approximation that are to

be used based on applications in hand. For instance, uniform

approximation may not be suitable for all kinds of

applications. There are many strategies of AC such as

memorization, precision scaling and so on. As one size does

not fit all, there is no AC technique that can be universally

applied. Therefore, AC strategies need to be application

dependent.

2.4 Scalability and Overhead Issues

There are many overhead issues associated with AC that may

limit scalability as well. For instance, voltage scaling

implementation causes much overhead as it needs voltage

shifters that move data between domains. In the same fashion,

NN implementations involve signal conversions between

analog and digital domains. There are some applications

where developers need to write many versions of AC code.

This may not be able to scale well. There are some

applications that need ISA extensions leading to overhead.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

280

2.5 Achieving Configurability and High Quality

As AC techniques need to consider desired level of QoR and

ensure configurable codes there might be trade-offs between

efficiency and quality. If QoR is less than a given threshold,

then precise computations are necessary which leads to costs

in design and verification. Sometimes, it may defeat the

purpose of the AC usage itself. Therefore, it is essential to

monitor and adapt to the situations at runtime. This may lead

to infeasibility of AC technologies.

3. APPROXIMATION STRATEGIES

This section provides many strategies of AC that can help in

improving performance of many real world applications.

3.1 Precision Scaling

There are many ACTs that try to reduce storage and

computational power by adjusting precision needed or by

changing bit-width. Yeh et al. [20] proposed a precision

scaling method which is dynamic in nature. It could perform

profiling process at the time of design. Experiments are made

with runtime observations in terms of energy consumption

difference among the steps in order to find possible

instabilities. When an instability s found, precision is restored

with certain increase in it. Later on it is reduced progressively

based on the runtime experiences of the program. They found

that there are three optimization possibilities with precision

reduction. First, it converts FP operation into simple operation

so that it does not required FPU. Second, localization is

improved in similar scenarios which will improve coverage

with respect to memorization technique. Third, it results in

faster and smaller FPUs for various computational tasks.

Moreover, it helps in having levels of FPUs like Level 1 and

Level 2catering to different purposes. Based on precision

different levels of FPUs are executed leading to optimizations.

Tian et al. [21] explored a precision scaling technique

associated with off-chip with respect to data access in order to

reduce energy consumption. They employed the techniques to

solve problems of clustering with a mixed model where large

volumes of data of off-chip is needed. Based on the intensity

of operations, it is possible to reduce precision and increase

performance. As clustering process is iterative in nature

labelling can be done in a lazy approach and thus correctness

is achieved besides leveraging performance and flexibility. In

each iteration precision is chosen based on the runtime

manifestations and based on the tolerance of application to

errors. The bit-width is adjusted in memory intensive

applications.

3.2 Loop Perforation Technique

There are ACTs that exploit loop perforation. It is used to skip

some of the iterations and thus reduce overhead on

computational costs. In this regard, Sidiroglou et al. [22]

found many computational patterns at global level that help in

loop perforation and thus the result is to reduce the search

space in many algorithms. Thus it exploits the trade-off

between accuracy and performance. Two algorithms are

investigated to know the efficiency of loop perforation

approach. When the application is error-tolerant, this

technique is useful in choosing optimal performance and

accuracy based on Pareto-optimality concept. A heuristic is

used in order to perform prioritization. There is performance

and accuracy bounding that could help in improving

performance and also see that the result is acceptable.

3.3 Load Value Approximation

When there is an event like load miss in memory cache, the

data needs to be obtained from the other cache or RAM. It

causes more latency that deteriorates performance. In this

regard, (LVA) exploits the nature of systems to find the load

values and make necessary steps related to processor without

causing stoppage of processing. Thus it can effectively hide

the latency caused by cache miss. There are many LVA based

AC techniques.

Miguel et al. [23] studied LVA approaches for multimedia

applications. When they compared the LVA of traditional

predictors, they could fetch blocks needed in order to have

training for approximator. This will get rid of the need for

fetching the data block when there is corresponding cache

miss. Thus it can reduce the usage of memory considerably.

As multimedia applications have capability of tolerating

errors, AC values can be used well without the need for

rollback in case of small differences in the results. Confidence

estimation issued by the technique to ensure AC even when

expected accuracy is relatively high. The degradation of

quality of output (negligible though), the technique improves

performance of the system besides saving energy.

Yazdanbakhsh et al. [24] proposed AC technology which

allows setting of BW constraints and latency with respect to

computational designs such as CPUs and GPUs. Based on the

annotations used in the AC coding, memory access and flow

of control operations are identified and performance is

increased. The loads that really cause large number of misses

are chosen in order to have performance improvement

purposefully. As the loads are involved in subjective

approximation, the quality may be deteriorated due to

selection of approximation. However, it is essential to

improve performance and ensure acceptable accuracy. It is

also possible to reduce BW bottlenecks with this strategy

which is very useful in case of GPUs. Some part of cross

misses is also skipped in order to reduce BW bottleneck.

When cache misses are removed, it can lead to avoiding long

memory stall and the drop rate can be effectively controlled.

Thus efficiency and quality are balanced effectively.

With respect to GPU, every request related to data an SIMD

load is essential to satisfy multiple threads. Each thread’s

value is predicted which led to increase in overhead. Thus

value of similarity is considered across data access scenarios

in different threads in order to have a predictor for multi-value

items. Specialized indicators are used in parallel. Parallel

predictors with their specializations can lead to efficiency.

Miguel et al. [23] showed proof of energy efficiency in both

CPU and GPU with bounded loss of QoR. Sutherland et al.

[25] on the other hand used LVA approach in order to

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

281

optimize GPUs with memory stalls reduction. They used an

ACT that exploits inexact values that are sufficient for

processing. Texture Cache (TC) and threads with associated

texture fetch units, to exhibit capabilities related to

interpolation between cache units in similar neighbourhood. It

will improve performance in processing FP data with TC and

its indices. Thus spatial and temporal correlation has its

impact on the performance. Thus AC has its values obtained

from the TC. As some approximations are pre-loaded in TC, it

will help in speedy processing. They also proved that their

approach could boost in performance besides reduction in

quality loss and that is useful to many applications that are

data-intensive.

3.4 Memoization Techniques

Memoization is an important approach that allows saving

results of procedures to use them later time for similar

functions. This has dramatic effect in improving the

performance of operations. This way the scope of

memoization will be enhanced in case of similar inputs and

similar functions. This is made possible with approximation.

Many ACTs follows this kind of approach. Rahimi et al. [26]

specified that architecture related to SIMD allows parallel

programming besides exploiting value locality. Thus the ACT

can reuse as much of data as possible leading to reduction in

overhead and errors. Unlike temporal memoization, spatial

memoization is used by them for error free running of the

program on the data and reuse as much as possible. With

masking of inputs, it is possible to use ACT while precise bit

by bit matching will not allow usage of ACT.

Reuse of instructions and simplifying FP operations, it is

possible to avoid errors and keep the quality loss in acceptable

bounds. Keramidas et al. [27] opined that modern applications

that involve in graphics extensively depend on high precision.

However, such applications cannot exploit ACTs unless there

are flexible means used in order to use AC techniques. By

enabling them reuse of approximate values, they can be

proved to be successful in saving resources. In order to do so,

they use a value cache concept. The reduction of accuracy is

possible and that is acceptable in many applications.

With respect to fragment shaders, the approximation is

possible in order to gain final colour value associated with a

pixel using math operations that depend on texture fetches. By

relaxing the precision, it is possible to have speedy operations

with negligible compromise on the quality of outputs. Thus

more aggressive relaxation of precision in math operations

can be done to enhance texture related graphics operations.

For instance, 12 bits can be changed to 4 bits’ precision. This

will maximize the value reuse. When there is less error rate

and also speed is sufficient, it is also possible to increase

precision dynamically. This will help in flexible operations

where resource optimization and accuracy are balanced.

3.5 Skipping Memory Access and Tasks

There are many ACTs that follow the strategy of skipping

memory references to see the performance improvement that

is bounded to QoR loss. For instance, Samadi et al. [28]

proposed ACT based on SW that finds similar patterns for

approximation of each pattern. In case of both GPU and CPU

architectures, this kind of approach yields good performance.

They also used memoization in case of memory access

patterns. With respect to prediction patterns, the concept of

sampling is employed in order to reduce computational

complexity. In case of scan patterns, the scan is minimized to

only subset of arrays and the rest of the things are predicted to

reduce time taken and complexity in math operations. With

partition and stencil patterns, neighbours having same values

is used for approximation. OpenCL and CUDA platforms are

well used for this kind of approximations. In every aspect

there is trade-off between performance and quality of outputs

that are balanced. Therefore, their approach to have programs

that can be executed in many HW platforms to have automatic

optimizations. When compared to the executions with

precision, their AC approach could gain many performance

benefits besides achieving acceptable quality loss.

Goiri et al. [29] explored distributed environments like

MapReduce to achieve approximation. They used strategies

that can be employed in such frameworks. For instance, they

used input data sampling and also task dropping besides using

approximation code for tasks. Statistical theories are

employed to take approximation to the next level and reduce

space and time complexity in Map and Reduce operations.

They used Hadoop for the implementation and ensured job

executions to be more efficient. They also focused on the

trading of accuracy for energy efficiency and performance.

3.6 Multiple Versions of AC Code

ACTs may be available in multiple versions. Each version

code can have different capacity in trading off overhead and

accuracy. As explored in Samadi et al. [30] ACT in case of

GPUs have lot of potential. They used a two-phase technique.

It has a static compiler association with CUDA with multiple

versions for offline communication. For the purpose of

runtime, they used a greedy algorithm that is able to adjust

parameters and achieve approximation effectively. They also

used GPU specific architectures to explore approximation.

Further optimization is achieved with thread computations

that reuse threads in tune with AC strategies. Approximate

kernels are employed with GPUs to achieve optimal benefits

besides having desired quality in outcomes. Baek and

Chilimbi [31] proposed a model for programming in order to

have approximation specific to QoS targets. Approximate

versions of functions are used to get this done. Loss in QoS is

bounded and thus performance is achieved. Two phases are

considered such as training and operations. In the former

phase AC technique generates a knowledge model and in the

operations phase, it uses the model for appropriate

approximation without quality loss.

In this aspect, design of inexact circuits and then using ACTs

can help in approximation at architecture level. Kahn and

Kang [32] made experiments with an exact adder. When there

is exactness, the performance went down and when there is

relaxation of exactness, it led to improving performance. With

optimization parameter value of k, the outcomes became

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

282

correct even when approximation is used. However, it needed

bounding to ensure balance. A novel design is presented by

Kulkarni et al. [2011] for inexact 2x2 multiplier. It represents

a match operation with 1112 which is equal to 112*112 rather

than 10012. It is able to use three bits instead of 4 bits saving

one bit. There are many input combinations that will make use

of this approach and save resources. There is trade-off

between power saving and error rate. It is suitable for error-

tolerant applications [33].

Venkataramani et al. [34] used a method for creating inexact

circuits that are based on the specification named Register

Transfer Level (RTL). It has associated QoR metric and also

circuit in hand. According to this there is insensitive quality

function applied to input values in order to see that output is

there with approximation. The application doesn’t worry

about approximation as it gets outputs with reasonable quality

for decision making. The dynamic approach followed in

programming to exploit inexact approaches led to further

enhancement in performance. They achieved both multipliers

and adders with approximation and reduce complexity besides

minimizing energy consumption.

Ganapathy et al. [35] provided a method for reducing errors as

much as possible. They used unreliable memories that is not

similar to ECC approach which takes care of correcting errors.

With every write operation, there is shifting of data-word that

leverages performance and improves reduction of faults. Thus

errors are skewed towards a side and reduce error rate as well.

It also strikes balance between quality and errors by adapting

bit-shifting. The performance is improved when compared

with the traditional zero-failure approaches.

Yet another approach made by Yeti et al. [36] is that it

involves approximate executions with a faulty processor.

Macro Instruction Sequencer (MIS)is employed along with

Memory Fence Unit (MFU) with I/O streaming in order to

have dividends in performance. The observations with

threading and coarse-grained chunks of functions, MIS flows

are found to be limiting the operations needed and thus

complexity is reduced. MFU is capable of skipping references

related to memory or use a dummy location in order to

suppress faults. MFU communicates with the MIS to see that

certain faults are recovered. In case of bounding of I/O, they

found that I/O intensive applications needed AC techniques to

have optimized performance.

3.7 Voltage Scaling

This is a concept in which energy consumption is reduced

when circuits are used by allowing errors to some extent

according to Mittal and Vetter [37]. As an example, reduction

in SRAM supply voltage can save energy consumption and

improve possibility of write failure with bounding anyway as

opined by Sampson et al. [38]. Many ACTs are using voltage

scaling concept and have bounding for trade-off. For instance,

multiple level approximation is used by Chippa et al. [39]

with an ACT technique. Their strategy, at architecture level,

exploits intermediate values to have approximation and

improve scalability. It led to saving energy and at circuit level,

it improved performance with smaller bit-width. It helps in

controlling errors and low-cost correction circuits are used to

get it balanced. Achieving approximation at different levels

and ensuring less QoR loss providers improvements in any

design such as GPU, CPU and FPGA.

Rahimi et al. [40] proposed an ACT to work with GPU

designs. It targeted to save energy consumed by GPUs. With

FPU and Ternary Content Addressable Memory (TCAM) it is

possible to have controlled scaling and avoid over scaling as

well. Thus it is made possible to design error-resilient GPUs.

Grigorian and Reinman [41] proposed a method to overcome

branch divergence problem in the architectures of SIMD. Data

dependent flow of control is characterized and the kernels are

used in order to improve performance and reduce losses due

to the divergence issue. NN based approximation kernels are

employed in order to achieve this. When NNs are injected into

code, the divergence issues are removed but at the cost of loss

in quality. Satori and Kumar [42] proposed two techniques

called branch herding and data herding. These are meant for

reduction in memory usage and also control divergence to

have GPU applications to be error-resilient. In case of GPUs,

there is load instruction that witnessed many requests that may

ultimately lead to memory divergence. To overcome this

problem, memory coalescing is used to control such loads and

achieved desired outcomes.

3.8 Usage of Accelerators Based on Neural Networks

Acceleration is essential in circuit designs. NN techniques

support this kind of acceptation with parallel approaches.

There are ACTs that support mapping of NNs to approximate

code regions. Esmaeilzadeh et al. [43] focused on the

functioning of approximable codes. They exploited

programmatic approach with low-power NPUs. They also

used ISA extensions in order to have better configuration of

NPUs. As NNs can be trained automatically after discovery,

effective approximation is achieved. Olukotun [44] provides a

SW based approach that can accelerate different applications

with NNs. Ansel et al. [45] on the other hand produced an

application structure with different matrices and mapped to

task graphs for flexible resolution levels. Granularity of

approximation is thus reduced and performance is improved

besides witnessing minimal errors.

Eldridge et al. [46] proposed an approach based on MLP and

NN based for approximation of FP operations. They include

pow, log, exp, sin and cos. They employed a neuron pipeline

to have better processing. They also used SW library in order

to exploit accelerators with usage of benchmark suite named

PARSEC. Anolog approaches may lead to noise, limited

accuracy and circuit imprecision. Different approaches are

employed to overcome this problem ad see that the energy

efficiency is improved. Li et al. [47] proposed a framework

known as ReRM-based AC unit to improve approximate

computations. It has 3 layers with NN and designed with HW.

Matrix vectorization is performed with NN approximator to

achieve approximation with acceptable quality loss.

Approximation of NNs is carried by Zhang et al. [48]. The

notion of candidates for approximation is used. Neurons are

exploited to have approximation with given quality range.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

283

With an iterative approach optimization is increased and at the

same time the bounding of quality outcome is revised. Du et

al. [49] designed HW NN accelerator which inexact design. It

used feed-forward NN with 2-layers with approximate

computations for reducing resource consumption. There were

improvements with respect to energy, delay and area.

3.9 Summary of Approximation Strategies

This section provides summary of findings on the approximation strategies found in the literature.

Table 2: Presents summary of approximation strategies

AC Strategy References Key Benefits Limitations

Precision scaling [20], [21] Improves performance with QoS binding -

Loop perforation and load value

approximation

[22], [23], [24], [25] Improves flexibility and causes faster

processing

-

Memoization [26], [27] Significant dynamic power saving, reduction in

area and delay

-

Task skipping [28], [29] Reduces processing time and resources needed -

Memory access skipping [28], [29] Reduces memory I/O operations and improve

speed and reduce resource utilization.

-

Data sampling [28], [29] Reduces complexity of processing. -

Versions of different accuracy [30], [31], [32], [33], [34],

[35], [36]

Suitable for different approaches, flexible -

Usage of faulty HW [23] Reduces cost and improves performance

Voltage Scaling [37], [38], [39], [40], [41],

[42]

Addresses problem of power saving -

Reduction of refresh rate [19] Refresh rate reduction improves optimization -

Inexact reads/writes [23], [24], [24] Saves memory, time and processing power. -

Divergence reduction in GPUs [41], [42], [43] Optimizes GPU performance -

Lossy compression [41], [42], [43] Improves performance, reduces area -

Use of neural network [48], [49], [50] Better approximation and performance -

As presented in Table 2, there are many approximation

strategies used in different contexts. It is important to

understand the suitability of a particular AC technique based

on FPGA design targeted to particular architecture.

4. APPROXIMATE COMPUTING TECHNIQUES FOR

FPGA

Moreauetal. [50] focused on the approximation code that can

be programmable with a chip known as Sock with respect to

FPGA. It is useful in order to offload some codes using

compiler to FPG and also see that programmers will have

fine-grained control over the programmable approach with

FPGA. When it tends to face challenges with respect to FPGA

and CPU, the differences in speeds there still possibility to

increase or accelerate by invoking NNs appropriately. At the

same time, the accelerators do not see that the program is

blocked from execution due to many invocations of

accelerators. This technique helps in implementing efficient

and off the shelf FPGAs even without having close integration

with the computing design like CPU. Thus it is possible to

eliminate changes made to ISA of the processor in question to

enable neural acceleration in the available devices.

Their technique also helps in configuring NN topologies and

compute weights in order to have optimizations. Thus even in

higher level tools of synthesis, the approach can help in

accelerating different ranges of applications. They could

observe energy saving besides speed in the process that is

bounded to reduction of QoR. Lopes et al. [51] identified that

it is possible to use different iterative solvers in order to

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

284

ensure desired level of QoR by reducing precision of

computations that take place as intermediately. Unlike direct

solvers, the intermediate operations with less precision can

reduce complexity and improve performance. With respect to

FPGA, lowering precision can help increase parallel

operations and enhance its performance. Thus an ACT is

proposed by them towards accelerating solution where

mathematical linear equations are employed dynamically on

FPGA. The convergence is found to be good. From the results

it is evident that the computation time is reduced besides

achieving desired QoR. There is thus balance between

iteration count and operation precision adjustment in case of

large applications that need optimal performance with double-

precision implementations meeting desired level of QoR.

Sinha et al. [1] used memorization technique in order to have

better design of low power FPGA. It was targeted towards

optimizations on FPGA with different parameters related to

architectural design. High level of synthesis is enabled with

the proposed memorization based solution. It could reduce up

to 20% power saving and achieve less overhead that is lower

than 5%. Memoization is also studied by Echavarria et al. [3]

to understand the reasons for reducing power consumption

with AC. They observed that memorization techniques do

consume less power and the same is proved with a simulation

study. Rizakis et al. [2] on the other hand employed AC with

FPGA using deep learning technique known as Long Short-

Term Memory

(LSTM). Their LSTM based FPGA design with AC showed

6.5 times better speed and 25 times higher accuracy of the

system in spite of time constraints in computations. Pandey

and Pattanaik [4] witnessed implementations of FPGA for

realizing CPU design with low power settings and that is

clock gating aware. Thus VLSI design could gain benefits of

power optimizations. Such designs include intelligent CG,

flip-flop based CG, latch-based CG and latch-free CG.

Efficient designs at circuit level with FPGA led to energy

saving.

A system identification approach to have an FPGA design is

explored by Hung et al. [5]. It could achieve per module

saving of power with the proposed approach. System wide

saving of power reached to 8%. Programmable optimization

with FPGA is explored by Lazorenko and Chemeris [6]. They

opined that more power consumption is made by memory.

This is reduced by their design based on low power loop

optimization technique for realizing FPGA design. Loop

fusion concept is used for optimization of program. Gaillardon

et al. [7] employed Resistive Random Access Memory

(RRAM) integration for realizing an ultra-low power FPGA

which improves performance without significant

compromises. Low power FPGA architecture CLBs is

described well in [8] while FPGA mapped designs are

explored in [9] for peak dynamic power estimation in FPGA

designs. Tang et al. [10] achieved two objectives such as

delay and energy saving with RRAM-based FPGA

architecture.

Verma et al. [11] focused on low power techniques towards

designing digital systems. They looked at clock design

considerations, RTL coding styles, flattening and

factorization, operand isolation, pre-computation and ACPI

module. Singh et al. [12] explored on FPGA based design of

Universal Asynchronous Receiver and Transmitter (UART)

and used Verilog for simulating the same. He et al. [13]

invented many FPGA circuits and approaches for low-power

consumption. They could produce a patentable work. Winzker

[14] contributed towards the clear description of overcoming

low power electronics with FPGA designs while Rashidi et al.

[15] achieved FPGA design based on digital FIR filter in a

synthesized fashion. AbuShanab et al. [16] simplified the

concepts of FPGA design. Chouhan et al. [17] threw light into

low power FIR filter designs. RAM implementations can also

be made with FPGA. It is evident in the work of Singh et al.

[18] where they implemented a circuit related to RAM with

FPGA with IO standards. Song et al. [19] employed neural

approximate computing to realize designs based on Multiple-

Classifiers and Multiple-Approximators (MCMA) with a

Neural Processing Unit (NPU) chip. All FPGA based designs

are found to be highly flexible and reduce power consumption

and increase performance when they are coupled with AC

technologies described in Section 3.

5. SUMMARY OF FINDINGS

This section presents the summary of findings with respect to

AC techniques and the usage with FPGA based designs.

Table 3: Shows summary of findings related AC techniques used for FPGA designs

Authors & Year Techniques Used Merits Limitations Remarks

[1] Sharad Sinha and Wei

Zhang (2016)

Memoization

based AC

Dynamic power saving,

less area overhead,

better power to signal

noise ratio

Automatic search for

approximate design is

still desired.

Used in low-power

FPGA design

[2] Michalis Rizakis, Stylianos,

Venieris , Alexandros Kouris

and Christos-Savvas Bouganis

(2018)

LSTM based

approximation

Time complexity

reduced, high accuracy

Retraining is needed for

further optimization.

LSTM based FPGA

design

[3] Echavarria, J., Schutz, K.,

Becher, A., Wildermann, S., &

Approximate

computing case

Power consumption is

reduced on FPGAs

Board level

measurements are

AC with FPGA

designs

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

285

Teich, J. (2018) studies recommended.

[4] Bishwajeet Pandey and

Manisha Pattanaik. (2013)

Clock Gating

Aware approach

Clock power reduction Reduction of leakage

power is still desired.

FPGA based ALU

design

[5] Eddie Hung, James J. Davis,

Joshua M. Levine, Edward A.

Stott, Peter Y. K. Cheung and

George A. Constantinides

(2016)

System

identification

approach.

Efficient mapping of

tasks, reduces system

wide power

consumption

Different signal

selection methods are to

be explored

Power estimation in

FPGA design

[6] D.I. Lazorenko and A.A.

Chemeris. (2015)

Loop

optimization

Behavioural

description, low power

consumption

- Low power FPGA

design

[7] Pierre-Emmanuel

Gaillardon, Xifan Tang, Jury

Sandrini, Maxime Thammasack,

Somayyeh Rahimian Omam,

Davide Sacchetto, Yusuf

Leblebici and Giovanni De

Micheli. (2015)

Monolithically

integrated

RRAMs

Reduction in area,

delay and power

consumption

- Low power FPGA

design

[8] Abhijeet Khandale and Dr.

H R Bhagyalakshmi. (2015)

CLB with clock

gating

Reduction in routing

congestion and

dynamic power,

improve timing of

design

- Low power FPGA

design

[9] Anonymous (2016) PDPE problem

solver

Power consumption is

reduced

- FPGA-mapped

designs

[10] Xifan Tang, Pierre-

Emmanuel Gaillardon and

Giovanni De Micheli. (2014)

RRAM based

FPGA

Reduction in area,

delay and power

consumption

- RRAM-based FPGA

[11] Gaurav Verma, Manish

Kumar and Vijay Khare. (2015)

Pow power

techniques

reviewed

Power management

features

- Digital system designs

with FPGA

[12] Sunny Singh, Abhishek

Jain, Amanpreet Kaur and

Bishwajeet Pandey. (2014)

Green

computations

Reduction in area and

power consumption

- UART design with

FPGA

[13] Lei He. (2013) FPGA circuits

and methods,

patented work

Reduction in delay and

power.

- FPGA circuits

[14] Marco Winzker. (2014) Low power

designs review

Power reduction and

improving

performance.

- FPGA based digital

systems

[15] Bahram Rashidi, Farshad

Mirzaei, Bahman Rashidi and

Majid Pourormazd. (2013)

FIR filter Reduce dynamic power

consumption.

- FPGA designs with

FIR filter

[16] Shatha AbuShanab, Marco

Winzker and Rainer Brück

(2015)

Knowledge based

tutorial

Technical knowhow on

energy efficiency

Enhancements in FPGA

technologies

Low power FPGA

designs

[17] Sarita Chouhan and Yogesh

Kumar. (2012)

FIR filters Low power

consumption

- FIR filters design for

FPGA

[18] Deepa Singh, Bishwajeet IO standard based Low power Further exploration on RAM design based on

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

286

Pandey and Manisha Pattanaik.

(2013)

RAM consumption, reduction

in delay

IO standards is desired FPGA

[19] Haiyue Song, Chengwen

Xu, Qiang Xu, Zhuoran Song,

Naifeng Jing, Xiaoyao Liang

and Li Jiang. (2018)

Neural AC Energy efficiency - Approximators

designed with NN

Multi-class based.

As shown in Table 3, the techniques used for approximation

and corresponding FPGA designs used for realizing different

circuit based products like RAM, CPU, GPU etc. The

summary also reveals that there are plenty of designs and also

approximation approaches. It is essential to know the insights

and then choose the ideal ones for better performance based

on the design in hand. Nevertheless, there is some need for

further research on defining more useful approximate

computing technique for FPGA designs.

6. CONCLUSION AND FUTURE WORK

In this paper, we have covered various techniques pertaining

to AC. It includes the potential opportunities of AC and its

challenges. We also threw light on the LPGA designs using

AC. It is understood from the literature that AC is essential in

the contemporary computing world. There are many

application areas that do not need exact computing. AC can

leverage speed, performance besides reducing cost, effort and

also energy consumption. ACTs are found to be useful in

many real world applications where low-power FPGA

designs. There is scope of using AC for large spectrum of

application in the real world. It is understood that the existing

applications developed with conventional languages may not

be able to scale well with AC. There is need for identifying

powerful platform for writing code in order to have maximum

benefits of AC. There is still significant research desired on

the low-power FPGA designs that exploit AC. When AC is

used at saturation level in all possible real applications, there

will be many benefits in terms of performance, resource

optimization and saving time, cost and effort. Particularly

usage of AC reduces power consumption significantly in

embedded systems. ACTs are needed in several systems

including dynamic voltage system, compression techniques

and so on. Smooth integration of AC into commercial

applications is essential to reap benefits of it. There is trade-

off between resource constrainedness and performance

requirements. This gap can be exploited well with

purposefully designed application specific ACTs. From the

literature we believed that AC is an attractive and useful

research area that will have maximum imapact on its

stakeholders across the globe. In the presence of CPU, GPU

and FPGA designs, AC plays crucial role in leveraging their

performance by eliminating precise computations in error-

tolerant applications. It is our future endeavour to focus on

designing a novel ACT and integrate it with low power FPGA

to accelerate growth.

REFERENCES

[1] Sharad Sinha and Wei Zhang (2016). Low-Power FPGA

Design Using Memoization-Based Approximate

Computing. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 24(8), p2665–2678.

[2] Michalis Rizakis, Stylianos, Venieris, Alexandros

Kouris and Christos-Savvas Bouganis

(2018). Approximate FPGA-Based LSTMs Under

Computation Time Constraints. Lecture Notes in

Computer Science, p3–15.

[3] Echavarria, J., Schutz, K., Becher, A., Wildermann, S.,

& Teich, J. (2018). Can Approximate Computing

Reduce Power Consumption on FPGAs? 2018 25th

IEEE International Conference on Electronics, Circuits

and Systems (ICECS). P1-4.

[4] Bishwajeet Pandey and Manisha Pattanaik. (2013).

Clock Gating Aware Low Power ALU Design and

Implementation on FPGA. International Journal of

Future Computer and Communication. 2 (5), p1-5.

[5] Eddie Hung, James J. Davis, Joshua M. Levine, Edward

A. Stott, Peter Y. K. Cheung and George A.

Constantinides (2016). KAPow: A System Identification

Approach to Online Per-Module Power Estimation in

FPGA Designs. 2016 IEEE 24th Annual International

Symposium on Field-Programmable Custom Computing

Machines (FCCM). P1-8.

[6] D.I. Lazorenko and A.A. Chemeris. (2015). Program

Optimization for Low Power FPGA Design. Department

of Mathematical modelling and simulation, p1-4.

[7] Pierre-Emmanuel Gaillardon, Xifan Tang, Jury Sandrini,

Maxime Thammasack, Somayyeh Rahimian Omam,

Davide Sacchetto, Yusuf Leblebici and Giovanni De

Micheli. (2015). An Ultra-Low-Power FPGA Based on

Monolithically Integrated RRAMs, p1-6.

[8] Abhijeet Khandale and Dr. H R Bhagyalakshmi. (2015).

Low Power FPGA Architecture. International Journal

of Science and Research. 4 (6), p1-4.

[9] (2016). Peak Dynamic Power Estimation of FPGA-

mapped Digital Designs, p1-6.

[10] Xifan Tang, Pierre-Emmanuel Gaillardon and Giovanni

De Micheli. (2014). A High-Performance Low-Power

Near-Vt RRAM-based FPGA, p1-8.

[11] Gaurav Verma, Manish Kumar and Vijay Khare. (2015).

Low Power Techniques for Digital System

Design. Indian Journal of Science and Technology. 8

(17), p1-7.

[12] Sunny Singh, Abhishek Jain, Amanpreet Kaur and

Bishwajeet Pandey. (2014). Thermal Aware Low Power

Universal Asynchronous Receiver Transmitter Design

on FPGA, p1-4.

[13] Lei He. (2013). LOW-POWER FPGA CIRCUITS AND

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

287

METHODS. United States Patent, p1-82.

[14] Marco Winzker. (2014). Addressing Low-Power

Electronics in a Digital System and FPGA Design

Course. iJEP. 4 (4), p1-6.

[15] Bahram Rashidi, Farshad Mirzaei, Bahman Rashidi and

Majid Pourormazd. (2013). Low Power FPGA

Implementation of Digital FIR Filter Based on Low

Power Multiplexer Base Shift/Add

Multiplier. International Journal of Computer Theory

and Engineering. 5 (2), p1-5.

[16] Shatha AbuShanab, Marco Winzker and Rainer Brück

(2015). Teaching low-power design with an FPGA-

based hands-on and remote lab. 2015 IEEE Global

Engineering Education Conference (EDUCON). P1-9.

[17] Sarita Chouhan and Yogesh Kumar. (2012). LOW

POWER DESIGNING OF FIR FILTERS. International

Journal of Advanced Technology & Engineering

Research. 2 (2), p1-9.

[18] Deepa Singh, Bishwajeet Pandey and Manisha

Pattanaik. (2013). IO Standard Based Low Power

Design of RAM and Implementation on FPGA. Journal

of Automation and Control Engineering. 1 (4), p1-5.

[19] Haiyue Song, Chengwen Xu, Qiang Xu, Zhuoran Song,

Naifeng Jing, Xiaoyao Liang and Li Jiang. (2018).

Invocation-driven Neural Approximate Computing with

a Multiclass-Classifier and Multiple

Approximators. ACM, p1-9.

[20] ThomasYYeh, PetrosFaloutsos, MilosErcegovac,

SanjayJPatel, andGlennReinman. 2007. The art of

deception: Adaptive precision reduction for area

efficient physics acceleration. In International

Symposium on Microarchitecture.394–406.

[21] Qian Zhang, Ting Wang, Ye Tian, Feng Yuan, and

Qiang Xu. 2015. ApproxANN: an

approximatecomputingframeworkforartiftcialneuralnetw

ork.InDesign,Automa- tion&Test in Europe.701–706.

[22] Stelios Sidiroglou, SasaMisailovic, Henry Hoffmann,

and Martin Rinard. 2011. Man- aging performance vs.

accuracy trade-offs with loop perforation. In ACM

SIGSOFT symposium and the 13th European conference

on Foundations of software engineer- ing.124–134.

[23] Joshua San Miguel, Mario Badr, and Enright Natalie

Jerger. 2014. Load Value Approximation. MICRO

(2014).

[24] Amir Yazdanbakhsh, Gennady Pekhimenko, Bradley

Thwaites, HadiEsmaeilzadeh, Taesoo Kim, OnurMutlu,

and Todd C Mowry. 2015b. RFVP: Rollback-Free Value

Prediction with Safe-to-Approximate Loads. Technical

Report. Georgia Institute of Technology.

[25] Mark Sutherland, Joshua San Miguel, and Natalie

Enright Jerger. 2015. Texture Cache Approximation on

GPUs. Workshop on Approximate Computing Across

the Stack (2015).

[26] Azar Rahimi, Luca Benini, and Rajesh K Gupta. 2013.

Spatial memoization: Concur- rent instruction reuse to

correct timing errors in SIMD architectures. IEEE

Trans- actions on Circuits and Systems II: Express

Briefs 60, 12 (2013), 847–851.

[27] Georgios Keramidas, ChrysaKokkala, and

IakovosStamoulis. 2015. Clumsy Value

Cache:AnApproximateMemoizationTechniqueforMobil

eGPUFragmentShaders. Workshop On Approximate

Computing (WAPCO) (2015).

[28] MehrzadSamadi, DavoudAnousheJamshidi, Janghaeng

Lee, and Scott Mahlke. 2014.Paraprox: Pattern-

basedapproximationfordataparallelapplications.InACM

SIGARCH Computer Architecture News, Vol. 42.35–

50.

[29] ´In˜igoGoiri, RicardoBianchini, SantoshNagarakatte,

andThuDNguyen. 2015.ApproxHadoop:

BringingApproximationstoMapReduceFrameworks.InIn

ternationalConferenceonArchitecturalSupportforProgra

mmingLanguagesandOperating ACM Comput. Surv.,

Vol. a, No. b, Article 1, Publicati. date:2015.

[30] MehrzadSamadi, Janghaeng Lee, D AnousheJamshidi,

Amir Hormati, and Scott Mahlke. 2013. SAGE: Self-

tuning approximation for graphics engines. In

International Symposium on Microarchitecture. 13–24.

[31] WoongkiBaek and Trishul M Chilimbi. 2010. Green: a

framework for supporting energy-conscious

programming using controlled approximation. In ACM

Sigplan Notices, Vol. 45. 198–209.

[32] Andrew B Kahn and Seokhyeong Kang. 2012.

Accuracy-configurable adder for approximate arithmetic

designs. In Design Automation Conference. 820–825.

[33] ParagKulkarni, PuneetGupta, andMilosErcegovac.

2011.Tradingaccuracyforpower

withanunderdesignedmultiplierarchitecture.

InInternationalConferenceonVLSI Design (VLSI

Design).346–351.

[34] SwagathVenkataramani, Amit Sabne,

VivekKozhikkottu, Kaushik Roy, and

AnandRaghunathan. 2012. SALSA: systematic logic

synthesis of approximate circuits. In Design Automation

Conference. 796–801.

[35] ShrikanthGanapathy, Georgios Karakonstantis, Adam

Shmuel Teman, and An- dreas Peter Burg. 2015.

Mitigating the Impact of Faults in Unreliable Memories

for Error-Resilient Applications. In Design Automation

Conference.

[36] YavuzYetim, Margaret Martonosi, and Sharad Malik.

2013. Extracting usefulcompu- tationfromerror-

proneprocessorsforstreamingapplications.InDesign,Auto

mation &Test in Europe Conference & Exhibition

(DATE).202–207.

[37] Sparsh Mittal and Jeffrey Vetter. 2015. A Survey of

Techniques for Modeling and Improving Reliability of

Computing Systems. IEEE Transactions on Parallel and

Distributed Systems (TPDS) (2015).

[38] Adrian Sampson, Werner Dietl, Emily Fortuna,

DanushenGnanapragasam, Luis Ceze,

andDanGrossman. 2011.EnerJ:

Approximatedatatypesforsafeandgeneral low-power

computation. In ACM SIGPLAN Notices, Vol. 46.164–

174.

[39] Vinay K Chippa, DebabrataMohapatra, Kaushik Roy,

Srimat T Chakradhar, and AnandRaghunathan. 2014.

Scalable effort hardware design. IEEE Transactions on

Very Large Scale Integration (VLSI) Systems 22, 9

(2014),2004–2016.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 3 (2021), pp. 278-288

© International Research Publication House. http://www.irphouse.com

288

[40] Abbas Rahimi, AmiraliGhofrani, Kwang-Ting Cheng,

Luca Benini, and Rajesh K Gupta. 2015. Approximate

associative memristive memory for energy-efficient

GPUs. In Design, Automation & Test in Europe. 1497–

1502.

[41] BeaynaGrigorian, NazaninFarahpour,

andGlennReinman. 2015.BRAINIAC: Bring-

ingreliableaccuracyintoneurally-

implementedapproximatecomputing. In International

Symposium on High Performance Computer

Architecture (HPCA).615–626.

[42] John Satori and Ravindra Kumar. 2013. Branch and data

herding: Reducing control and memory divergence for

error-tolerant GPU applications. IEEE Transactions on

Multimedia 15, 2 (2013), 279–290.

[43] HadiEsmaeilzadeh, AdrianSampson, LuisCeze,

andDougBurger. 2012b.Neuralac- celebration for

general-purpose approximate programs. In IEEE/ACM

International Symposium on Microarchitecture.449–460.

[44] Lawrence McAfee and KunleOlukotun. 2015.

EMEURO: a framework for generating multi-purpose

accelerators via deep learning. In International

Symposium on Code Generation and Optimization. 125–

135.

[45] Jason Ansel, Yee Lok Wong, Cy Chan, Marek

Olszewski, Alan Edelman, and SamanAmarasinghe.

2011. Language and compiler support for auto-tuning

variable- accuracy algorithms. In International

Symposium on Code Generation and Optimization. 85–

96.

[46] SchuylerEldridge, FlorianRaudies, DavidZou,

andAjayJoshi.2014. Neural network- based accelerators

for transcendental function approximation. In Great

Lakes Symposium on VLSI.169–174.

[47] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang.

2015. RRAM-based Analog Ap- proximate Computing.

IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (2015).

[48] YeTian, QianZhang, TingWang, FengYuan,

andQiangXu. 2015.ApproxMA: Approximate Memory

Access for Dynamic Precision Scaling. In ACM Great

Lakes Symposium on VLSI.337–342.

[49] Kyungsang Cho, YongjunLee, Young H Oh, Gyoo-

cheol Hwang, and Jae W Lee.2014. eDRAM-based

tiered-reliability memory with applications to low-power

framebuffers. In International symposium on Low power

electronics and design. 333–338.

[50] ThierryMoreau, MarkWyse, JacobNelson,

AdrianSampson, HadiEsmaeilzadeh, LuisCeze,

andMarkOskin. 2015.SNNAP:

ApproximatecomputingonprogrammableSoCsvianeurala

cceleration.InInternationalSymposiumonHighPerforman

ce Computer Architecture (HPCA). 603–614.

[51] Antonio Roldao Lopes, Amir Shahzad, George

Constantinides, Eric C Kerrigan, and others. 2009. More

flops or more precision? accuracy parameterizable linear

equationsolversformodelpredictivecontrol.InSymposium

onFieldProgrammableCus- tom Computing Machines

(FCCM).209–216.

