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Abstract  

The natural convection is a traditional phenomenon that is 

present in different industrial and environmental applications. 

The lattice Boltzmann equation method (LBEM) is used to 

simulate a convective flow on laminar regime, Rayleigh 

numbers Ra < 5E5 and Prandtl number Pr = 0.71, known as 

Rayleigh-Benard problem (Ra-Be). This method has emerged 

at the end of last century as one of the most powerful in 

computational fluid dynamics CFD. The hydrodynamic flow 

field is calculated from the traditional particles distribution 

function (FDP) on the lattice model of two-dimensional and 

nine-speed -D2Q9, and the thermal field is calculated 

introducing a new internal energy distribution function on the 

single two-dimensional lattice with five velocities -D2T5. The 

new thermal model used proved to be stable and the results 

shown high accuracy compared with the existing theory and 

other results obtained numerically by other CFD methods. 

Keywords: Mesoscopic Method, Natural Convection, 

Numerical simulation. 

 

1. INTRODUCTION  

The Lattice Boltzmann Equation method (LBEM) is a 

mesoscopic method, as a different approach to conventional 

computational fluid mechanics (CFD), has achieved 

considerable recognition in the simulation of science and 

engineering problems involving fluid flows and transport 

phenomena. [1] [2] [3] [4]. Some researchers consider that this 

method has the potential to become a versatile CFD platform, 

even superior to existing CFD methods based on the continuum 

theorem [5] [6] [7]. 

Originally, the method only considered conservation of mass 

and momentum. However, in many applications that involve 

transport phenomena it is important, and in most cases critical, 

to consider the thermal effects of the flow. Therefore, in the 

present work, the LBEM is used to simulate and analyze the 

natural convection present in the well-known Rayleigh-Benard 

(Ra-Be) flow. This flow has been widely used as a benchmark 

to validate different methods. In this, a horizontal layer of 

viscous fluid is heated at its lower part while the upper border 

is kept at a low temperature. There is an analytical solution for 

this problem, when the velocity is zero in the entire fluid 

domain (static condition) and the temperature exhibits a linear 

behavior between the cold and hot layers. However, when the 

temperature difference between the plates increases to a critical 

point, the static condition is lost and any disturbance, no matter 

how small, transforms the flow into a convective system [2]. 

Generally, the inclusion of thermal effects in LBEMs fit into 

three models: the multi-speed model, the one-passive scalar 

model, and the double-function distribution model. An 

explanation of the first two can be found in [8] [9] [10], 

respectively. The third model, the double distribution function, 

used in the present work, is based on the work of He et al. [5]. 

In this model an internal energy distribution function is 

introduced to simulate the temperature field, which is 

analogous to the density distribution function to simulate the 

velocity field. The stability and precision of the double-

function distribution model have been verified in the studies by 

Kuznik et al. [6], Qiu et al. [10], and Guo et al. [11]. As in much 

of the bibliography related to natural convection, mainly in 

cavities, the Boussines approach has been implemented in the 

present study. This approximation defines the state in which the 

density changes are small enough to be neglected, except when 

these differences appear in the term of the gravitational force. 

The validation of the computational code developed using the 

LBEM is done by simulating laminar convective flow, numbers 

of Ra  106, which is generated in a square cavity, when it is 

heated in one of its vertical walls. 

 

2. METHOD 

In this section, the two-dimensional LBEM model used for the 
simulation of the Ra-Be free convection flow is described and 
the physical domain of the problem is described. Temperature 
and velocity conditions on vertical walls are assumed to be 
periodic. Taking into account that the linear stability theory 
shows that the critical wave number for Ra-Be convection is 
kc=3.117, which implies that the presence of the vortex that is 
generated by convection develops faster in cells or domains of 
aspect ratio equal to 2π / kc = 2.016. Therefore, in the present 
case a channel with an aspect ratio of 2: 1 has been selected. 
The Prandt number has been set at Pr = 0.71. 

In the Figure 1 a diagram of the simulated problem is shown, 
there Th and Tc describe the temperature of the hot and cold 
wall, respectively, the vertical walls, as mentioned above, are 
adiabatic, u and v describe the horizontal and vertical velocity 
of the flow at the boundaries, respectively, H the height of the 
channel and g describe the acceleration of gravity. 
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Fig. 1. Setting the Rayleigh-Benard convection flow 

 

Coming up next, a simple description is made of the Boltzmann 
equation method in networks and the node model used both for 
the calculation of the velocity field and for the calculation of the 
Temperature field. The detailed mathematical demonstration of 
the model can be seen in Li, et al. [12] and in Quian, et al. [13]. 

The main hypotheses used in the model are: 

 The collision term in the modified Boltzmann equation 
is expressed as a function of a simple relaxation time 
for the local equilibrium 

 Knudsen number is assumed small (continuum theory) 

 The flow is incompressible 

In the present work, to calculate the energy transport 
(temperature field) and the amount of movement (velocity 
field), the LBEM is an iterative scheme where the cavity is 
represented by a kind of lattice and at each site of this be defines 
a group of density and temperature distribution functions. These 
distributions satisfy two transport equations coupled by the 
flotation term, which, together with appropriate initial and 
boundary conditions, lead to the solution of different transport 
phenomena, including natural convection [14]. 
 
The density distribution function fi (x, t) is defined as the 
probability that a particle located at position x on the lattice, at 
instant t, has a velocity ei, with i = 0, b-1. The velocities are 
given by the symmetry of the used grid. In the simulations 
carried out at the present work, a two-dimensional grid model 
and 9 velocities (D2Q9) are used, as shown in Figure 2 (a), 
where b = 9, e0 = (0,0), e1 = (1.0), e2 = (0.1), e3 = (- 1.0), e4 = (0, 
-1), e5 = (1.1), e6 = (- 1.1), e7 = (-1, -1), and e8 = (1, -1).  
 

 
Fig. 2. Discrete directions of a square lattice, for a) model 

d2q9, and b) model d2q5 

 
That is, the particles that make up the distribution function can 
be at rest or moving towards their closest neighbor; with a 
velocity of 1 along the vertical and horizontal directions or a 

velocity R2 of along the diagonals. The distribution functions of 
the particle obey the respective Boltzmann transport equation 
defined by (1). 
 

𝑓𝑖(𝑥 + 𝑒𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) − 𝑓𝑖(𝑥, 𝑡) =
𝛥𝑡

𝜏𝜈
[𝑓𝑖

𝑒𝑞(𝑥, 𝑡) − 𝑓𝑖(𝑥, 𝑡)] + 𝐹𝑖 
(1) 

 

Where, t = 1, τν is the relaxation time of the distribution 
function, related to the viscosity of the fluid by ν = c2 (τν - 0.5) / 
3, here c is the lattice constant, iqual to; c = Δx / Δt , which is 
related to the speed of sound by cs

2 = c2/3 and Fi is the term that 
represents the momentum due to the body or buoyant force, and 

eq

if is the equilibrium distribution function given by equation 

(2). 
 

𝑓𝑖
𝑒𝑞(𝑥, 𝑡) = 𝜔𝑖𝜌 [1 +

𝑒𝑖𝛼 ⋅ 𝑉𝛼
𝑐𝑠
2

+
𝑉𝛼 ⋅ 𝑉𝜆
2𝑐𝑠

2
(
𝑒𝑖𝛼𝑒𝑖𝜆
𝑐𝑠
2

− 𝛿𝛼𝜆)] 
(2) 

 

where ρ and V are the density and velocity defined by: 
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and the subscripts α and λ describe the components of the vector 

quantities. Furthermore, ω = 4/9, 1/9, and 1/36 for ei = 0.1, 

respectively, and δαλ = 1 if α = λ and δαλ = 0, in any other case 

[12] [15][16]. 

Like the particle distribution function, the temperature 

distribution function T is defined by (4): 
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Where b = 5, and Ti are the respective distribution functions that 
obey the transport equation 

        txTtxT
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In the equation (5), the term τT is the relaxation time for the 

temperature field and Tieq is the equilibrium temperature 

distribution function given by (6). 

   uctTtxT ii

eq

i  31 ,  (6) 

 
In the equation (6), the temperature T satisfies the diffusion 
equation with a thermal diffusivity γ, given by γ = cs

2 (τT - 0.5). 
This considering that γ> 0, τT > τ0 [7]. 
 
For the simulation of natural convection, the body or buoyant 
force term at the vertical direction Fi is given by (7). 
 

     iyii cTtxTgtxF 00 , 3,    (7) 

Where ciy is the vertical component of ci, g0 is the acceleration 

of gravity in the lattice, β is the thermal expansion coefficient 
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and T0 = (Th + Tc) / 2; is the reference temperature. This body 

force does not contribute to density, but it does change the 

amount of movement. 

 
The type of lattice used for the temperature distribution function 
is 2-dimensional with 5 discrete directions (D2T5), as shown in 
Figure. 2 (b). where b = 5, e0 = (0,0), e1 = (1,0), e2 = (0,1), e3 = 
(- 1,0), e4 = (0, -1). That is, the particles that make up the 
distribution function can be at rest or moving towards their 
closest neighbor; with a velocity of 1, along the vertical and 
horizontal directions. 
 

2.1 Boundary conditions 
 

The boundary conditions applied to obtain the velocity field 

have been extensively studied for LBEMs, and for specific 

details one can refer to [16] [17] [18] [19]. In the present work, 

two types of them have been used, one for horizontal walls 

(static with zero speed) and others for vertical ones (periodic). 

In the former the well-known "Bounce-back" condition was 

applied. This approach assumes that the particles that collide 

with the static wall are returned in the same direction but in the 

opposite way and without loss of energy, which indicates that 

the collision between the particles and the wall is a totally 

elastic collision. With reference to Figure 3, if it is assumed that 

xl is a fluid node or lattice, it can be determined that xl + ei is a 

solid node or static wall, where ei represents the respective 

discrete velocity within the lattice. For the condition described, 

the bounced f's are obtained by (8). 

 

fi (xl,t + 1) = fi-2(xl,t)         Para  i = 4, 7, 8 (8) 
 

 
Fig. 3. Bounce-back representation scheme for a static wall 

 

For the implementation of the periodic conditions in the LEBM, 
as in most methods, it requires, in the propagation step, that the 
properties at the outlet of the flow return or go directly to the 
input of the flow, and vice versa. For a problem where the length 
of the flow is given by L = n, and n = the number of nodes in the 
direction of the flow, in the present case the horizontal distance 
of the channel, the condition must enforce, for a lattice D2Q9, 
that at the flow outlet: 

f (i, x=1, t) = f (i, x=n, t)         Para  i = 1, 5, y 8 (9) 

 

and at the inlet: 

f (i, x=n, t) = f (i, x=1, t)         Para  i = 3, 6, y 7 (10) 

In the above expression, the subscript i indicates the respective 

direction of the discrete distribution function into the lattice, and 

the subscript t is time. An example of the application of periodic 

boundary conditions, using a D2Q9 lattice model, is shown in 

Figure 4. 

 
 

Fig. 4. Scheme of application of the condition of periodic 

borders, using a D2Q9 lattice 
 

Similarly, to the application of dynamic conditions at the 
boundaries, to simulate horizontal walls with fixed temperature, 
Dirichlet conditions (fixed temperature) are used, while for 
vertical walls periodic conditions are used. For the latter, these 
conditions do not take into account any disturbance that the flow 
may present at its boundary, therefore, they are only suitable to 
apply in physical phenomena where the effects of the surfaces, 
where the condition is applied, do not play a role. Important at 
the developed flow and/or where there are not flow 
disturbances, near the borders themselves, as is the case of the 
phenomenon analyzed in the present work. 
 
2.2 Solution method 
 
The implementation of a LBEM standard code consists of two 
main steps, propagation and collision. An example of the flow 
diagram used to develop the computational code used in the 
present simulation can be seen in Flórez et al. [16], there it is 
only necessary to include the temperature calculations in each 
of the main steps. The grid or domain used in this work has a 
dimension in x and y of 100 x 50. 
 
To simulate natural convection, it is necessary to define, from 
the parameters of the problem, an appropriate characteristic 

velocity (Vc =  g0 T H ), where H is the characteristic length 
of the cavity (number of grids in the vertical direction), to keep 
the flow within the incompressible regime. In addition, the 
Prandtl (Pr) and Rayleigh (Ra) numbers are defined, which 
allow us to have two more equations in the model, one for 

kinematic viscosity ( = V 2H 2 Pr/Ra) and another for thermal 

diffusivity (γ = /Pr). The number of Ra, the number of Pr, the 

viscosity , and the diffusivity γ are used to calculate the 
relaxation time of the distribution function of the f's and of the 
temperature. The viscosity is selected ensuring that the Match 
number is such that the flow is within the incompressible limit. 
 
The convergence criteria used for both cases; velocity and 
temperature, respectively, are: 
 

𝑚𝑎𝑥 |√(𝑢2 + 𝑣2)𝑛+1 − √(𝑢2 + 𝑣2)𝑛| ≤ 10−6 (11) 
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𝑚𝑎𝑥|𝑇𝑛+1 − 𝑇𝑛| ≤ 10−6  (12) 
 
Where u and v are the horizontal and vertical velocity, 
respectively at any point on the lattice, T is the temperature and 
n describe the iteration. 
 
 

3. RESULTS 

For the natural convection at the Ra-Be flow, results have been 

obtained for Rayleigh numbers of; Ra = 103, Ra =104, Ra =105 

and Ra =106, and a Prandtl number Pr = 0.71. The simulations 

are started using a perturbed state in the temperature field, said 

perturbation is imposed by a Gaussian function along the 

horizontal line of the domain and centered with respect to it. The 

initial temperature field is given by: 

𝑇(𝑥, 𝑦) = 𝑇0 𝑒𝑥𝑝 [−
(𝑥 − 𝑏)2

𝑐
] 

(13) 

 

Where b, c and T0 are real constants, besides T0 > 0 and is taken 

as the average temperature between the cold and hot walls T0 = 

(TH + TC) / 2, b is the central coordinate in the horizontal 

direction of the domain, and c defines the width of the function. 

When the Rayleigh-Bénard convective flow is established the 

heat transfer, between the up wall and the down wall, is greater. 

This increase in heat transfer can be described by the Nusselt 

number as: 

𝑁𝑢 = 1 +
⟨𝑢𝑦 ⋅ 𝑇⟩

𝜒𝛥𝑇 𝐻⁄
 

(14) 

Where uy is the vertical velocity, T is the difference 

temperature between the lower and upper wall, H is the height 

of the channel, and · represents the average over the entire flow 

domain. Comparisons with the results of the existing literature 

are carried out for 1E3 <Ra < 5E5 and Pr = 0.71. The results 

obtained confirmed the existence of a critical Ra number (Rac), 

where the disturbances dissipate and the flow velocity gradually 

decreases to zero, while at Ra> Rac the velocity field stabilizes at 

a finite value. The calculations carried out revealed a value of 

Rac = 1710.31, which is remarkably close to the value 

theoretically established by researchers Reid and Harris [14], Rac 

= 1707.76. Figure 5 shows the relationship obtained between the 

Nu number and the Ra number. It also includes the results 

obtained by He et al. [4] and those obtained from the existing 

empirical formulation for this type of problem. Then, the results 

obtained in this work coincide with those obtained by He, up to 

Ra values less than 1E5. For high Ra numbers, the difference in 

the results, with respect to the empirical solution, may be 

because the simulation with the proposed thermal model does 

not include all the effects of heat transfer. 
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Fig. 5. Behavior of the number of Nu as a function of the 

number of Ra 

In Figures 6 and 7 the results obtained for the temperature 

distribution and the current flow of the Rayleigh-Bénard 

convection in steady state can be observed for Ra numbers of 

5E4, 11E4, 1E5 and 5E5. As can be seen, the hot fluid near the 

lower wall flows upward and increases the temperature in the 

central part of the channel, while the cold fluid, near the upper 

wall, decreases and decreases the temperature near the lateral 

limits. When the Rayleigh number increases, two trends are 

observed for the temperature distribution: the improvement of 

the mixing of the hot and cold fluids, and an increase in the 

temperature gradients near the lower and upper limits. Both 

trends improve heat transfer in the channel. 

 

 

Fig. 6. Isotherms of the flow Ra-Be, for values of Pr = 0.71 

and a) Ra = 1E4, b) Ra = 5E4, c) Ra = 1E5, d) Ra = 5E5 

 

 

Fig. 7. Streamlines of Ra-Be flow, for values of Pr = 0,71 Y a) 

Ra = 1E4, b) Ra = 5E4, c) Ra = 1E5, d) Ra = 5E5 
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4. CONCLUSION 

A numerical model has been developed from the Boltzmann 

equation method in networks to simulate the convective flow of 

Ra-Be. This model is derived from kinetic theory and therefore 

has a firm physical basis. The key point in the model is the use 

of two types of distributions: the density distribution to simulate 

the hydrodynamic field and the internal energy distribution to 

simulate the thermal field. 

The Ra-Be problem has been selected for the validation of the 

model considering that this is an application of the convection 

phenomenon of the most used by researchers due to its 

analytical and experimental accessibility. 

Numerical instability has been a primary concern in thermal 

LBEM models. In this study, it was found that the main 

parameters that affect numerical stability are the relaxation 

times τν and τT. In the range of parameters used in this study, 

temperature variation seems to have a minor effect on numerical 

instability. The lowest value for either τν and τT was around 

0.536 and the highest was 1.129 in the Ra-Be convection 

simulation. 

The numerical results have shown that the model of two 

directions and four directions of temperature distribution 

presents an acceptable stability, which allows that the 

computational code developed by the authors can be applied to 

different types of flow configurations where the thermal effects 

must be considerate. 

The authors consider that, the code developed will allow to 

provide engineering students interested in the numerical 

simulation of problems related to fluid flow or fluid mechanics, 

with thermal affectation, a free tool to validate analytical 

solutions to problems related to fluids that exist today and in the 

same way the code can be manipulated to find approximate 

(numerical) solutions to those problems that, due to their 

complexity, do not yet present analytical solutions. 

 

REFERENCES 

[1] S. Succi, (2001). “The Lattice Boltzmann Equation for 

Fluid Dynamics and Beyond”, 1er. Ed. Oxford, Great 

Britain, Cap. 9, pp. 124-141  

[2] L. Jahanshaloo, N. A. C. Sidik, A. Fazeli & M. P. HA. 

(2016). “An overview of boundary implementation in 

lattice Boltzmann method for computational heat and 

mass transfer”. International Communications in Heat 

and Mass Transfer, 78, 1-12. 

[3] Chen, Z., Shu, C., Tan, D., & Wu, C. (2018). “On 

improvements of simplified and highly stable lattice 

Boltzmann method: Formulations, boundary treatment, 

and stability analysis”. International Journal for 

Numerical Methods in Fluids, 87(4), 161-179 

[4] He, X., Zou, Q., Luo, L. S., & Dembo, M. (1997). 

Analytic solutions of simple flows and analysis of 

nonslip boundary conditions for the lattice Boltzmann 

BGK model. Journal of Statistical Physics, 87(1), 115-

136 

[5] L. Wang, S. Tao, X. Meng, K. Zhang & G. Lu. (2020). 

“Discrete effects on boundary conditions of the lattice 

Boltzmann method for fluid flows with curved no-slip 

walls”. Physical Review E, 101(6), 063307. 

[6] F. Kuznick, J. Vareilles, J. Rusaouen, G. Krauss. (2007). 

“A double-population lattice Boltzmann method whit 

non-uniform mesh for the simulation of natural 

convection in square cavity,” Int. J. Heat and Fluid Flow, 

vol. 28, pp. 862-870. 

[7] Tekitek, M. M. (2018). “Multiple Relaxation Time 

Lattice Boltzmann Simulation of 2D Natural Convection 

in a Square Cavity at High Rayleigh Numbers”. 

Advances in applied mathematics and mechanics, 10(1), 

138-158 

[8] C. M. Subhash, M. Bittagopal, K. Tanuj, B. (2009).  

“Silva Solving transient heat conduction problems on 

uniform and non-uniform lattice using the lattice 

Boltzmann method,”. Int. Comunication in Heat and 

Mass Transfer. Vol. 36. pp.322-328. 

[9] Y. Chen, H. Ohashi, M. A. Akiyama. (1994). “Thermal 

lattice Bhatnagar-Gross-Krook model without nonlinear 

deviations in macrodynamic equations,” Phys. Rev. E. 

Vol. 50 (4). pp. 2776-2783. 

[10] Qiu, R. F., Zhu, C. X., Chen, R. Q., Zhu, J. F., & You, Y. 

C. (2018). “A double-distribution-function lattice 

Boltzmann model for high-speed compressible viscous 

flows”. Computers & Fluids, 166, pp. 24-31. 

[11] Z. Guo, B. Shi, and C. Zheng. (2012). “A coupled lattice 

BGK model for the Boussinesq equations”. Int. J. for 

Num. Meth. in Fluids. Vol. 39. pp. 325-342. 

[12] Li, L., Mei, R., & Klausner, J. F. (2017). Lattice 

Boltzmann models for the convection-diffusion 

equation: D2Q5 vs D2Q9. International Journal of Heat 

and Mass Transfer, 108, 41-62 

[13] Y. Quian, D. d’Humieres, P. Lallemand. “Lattice BGK 

models for Navier-Stokes Equation”. Europhys. Lett. 

Vol. 17, pp. 479-484. 1992. 

[14] W. H. Reid and D. L. Harris. “Some further results on the 

Bérnard Problem”, Phys. Fluids. Vol. 1, pp. 102-127, 

1958. 

[15] Yong, W. A., & Zhao, W. (2020). Numerical Analysis of 

the Lattice Boltzmann Method for the Boussinesq 

Equations. Journal of Scientific Computing, 84(2), 1-21 

[16] A. D’Orazio, C. Massimo, C. Gian Piero. “Application to 

natural convection enclosed flow of a lattice Boltzmann 

BGK model coupled with a general purpose thermal 

boundary conditions,”. Int. Journal of thermal Sciences. 

Vol. 43. pp. 575-586, 2004. 

[17] Q. Zou, X. He. “On pressure and velocity boundary 

conditions for the lattice Boltzmann BGK model” . Phys 

Fluids. Vol. 9. pp. 1591-1598. 1997 

[18] E. Flórez, I. Cuesta, C. Salueña. “Flujo de Poiseuille y la 

cavidad con pared móvil calculado usando el método de 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 4 (2021), pp. 355-360 

© International Research Publication House.  http://www.irphouse.com 

360 

la ecuación de lattice Boltzmann”.  Ingeniería y 

Desarrollo. Vol. 24(1). pp. 117-132. Dic. 2008 

[19] J. Huang, & W. A. Yong, (2015). Boundary conditions 

of the lattice Boltzmann method for convection–

diffusion equations. Journal of Computational Physics, 

300, 70-91 

 
 


