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Abstract 

This research explores the combined effects of magnetic field 

and viscous dissipation on the heat field and discusses the 

second law study (generation of entropy) in an electrically 

conducting fluid under the influence of wall mass transfer 

over a continuous, variable viscosity spread non-isothermal 

surface. It is considered that the viscosity of the fluid is an 

inverse linear temperature property. The theory of 

approximation of boundary layers is used to model the 

governing equations of momentum, energy and concentration. 

To transfer the governing partial differential equations into 

ordinary ones, appropriate similarity transformations are used 

and numerical results are obtained by using the shooting 

technique. To measure the entropy generation and the Bejan 

number in the flow region, velocity, temperature and 

concentration distribution are obtained and used. The effect on 

velocity, temperature, concentration, entropy production, and 

Bejan number of the vector viscosity, Schmidt number, 

Hartman and Reynolds number are  are studied and discussed.  

It is found that presences of the variable viscosity parameter 

reduces the fluid friction in the region close to the surface. 

This in turn results in low irreversibility (i.e. entropy) with 

increasing Schmidt number Sc and viscous dissipation 

parameter Ec inside the boundary layer. Further, the Bejan 

number for the variable viscosity case is lower than that for 

uniform viscosity when there is a variation in the values of 

group parameter 
-1BrΩ and Hartman number Ha. 
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1. INTRODUCTION         

Fluid flow over a stretching sheet is important in many 

practical applications such as extrusion of plastic sheets, paper 

production, glass blowing, metal spinning, polymers in metal 

spring processes, the continuous casting of metals, drawing 

plastic films and spinning of fibers, all involve some aspects 

of flow over a stretching sheet or cylindrical fiber (Paullet and 

Weidman [1]). The quality of the final product depends on the 

rate of heat transfer at the stretching surface. Literature survey 

shows that interest in the flows over a stretched surface has 

grown during the past decades. The problem of stretching 

surface with constant surface temperature was analyzed by 

Crane [2]. Later, the stretching sheet flow has been studied by 

several researchers to examine the sole effects of rotation, 

velocity and thermal slip conditions, heat and mass transfer, 

chemical reaction, MHD, suction/injection, different non-

Newtonian fluids or possible combinations effects ([3-8]). 

Elbashbeshy and Basziz [9] studied the effect of variable 

viscosity and internal heat generation on heat transfer over a 

continuous moving surface. Salem [10] Studied the problem 

of flow and heat transfer of an electrically conducting 

viscoelastic fluid having a temperature-dependent viscosity 

over a continuously stretching sheet. Salem [11] has further 

studied the problem of steady laminar free-convection 

boundary-layer flow along a vertical wedge with the effect of 

temperature-dependent viscosity immersed in electrically 

fluid-saturated porous medium in the presence of internal heat 

generation or absorption. Entropy generation is associated 

with thermodynamic irreversibility, which is common in all 

types of heat transfer processes. Different mechanisms are 

responsible for the generation of entropy such as transfer 

across finite temperature gradient, magnetic effect, viscous 

dissipation effects, etc. Sahin [12] introduced the second law 

analysis to a viscous fluid in circular duct with isothermal 

boundary layer conditions. Also, Sahin [13] presented the 

effect of variable viscosity on the entropy generation rate 

through a duct subjected to constant heat flux. The study of 

entropy generation in a falling liquid film along an inclined 

heated plate was carried out by Saouli and Aiboud-Saouil 

[14]. Makinde [15-18] studied the entropy generation analysis 

for variable viscosity channel flow with non-uniform wall 

temperature , also Thermodynamic second law analysis for a 

gravity driven variable viscosity liquid film along an inclined 

heated plate with convective cooling and studied Second law 

analysis for variable viscosity hydromagnetic boundary layer 

flow with thermal radiation and Newtonian heating. Naseem 

and Khan [19] examined  boundary layer flow past a 

stretching plate with suction, heat and mass transfer and with 

variable conductivity. Cortell [20] also found the flow and 

heat transfer of a fluid through porous medium over a 

stretching surface with internal heat generation. Combined 

effects of magnetic field and partial slip on obliquely striking 

rheological fluid over a stretching surface have been 

investigated by Nadeem et al. [21]. Akbar et al. [22] have 

studied the numerical analysis of magnetic field effects on 

Eyring-Powell fluid flow towards a stretching sheet. Heat 

transfer and entropy generation analysis of non-Newtonoan 
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fluid flow through vertical microchannel with convective 

boundary condition has been investigated by Madhu et al [23]. 

Recently, Entropy generation for the flow and heat transfer of 

Sisko-fluid over an exponentially stretching surface have been 

studied by Abdel-Aziz et al. [24]. Here, we examine the 

effects of temperature dependent fluid viscosity in an 

electrically fluid on the flow, thermal and entropy generation 

features over a linear stretching sheet in the presence of a 

constant transfer magnetic field with blowing at the sheet. We 

derive velocity, concentration and temperature distribution 

and use them to compute the entropy generation and the Bejan 

number in the flow field. We also study and examine the 

effect of variable viscosity, Hartman and Reynolds number on 

velocity, temperature and concentration. 

 

2. FORMULATION OF THE PROBLEM 

We consider an steady two-dimensional boundary layer flow 

with heat and mass transfer of an incompressible viscous and 

electrically conducting fluid over a surface which is 

permeable but stretches linearly with coordinates (x; y) having 

corresponding velocity components as (u; v) see (Fig. 1). The 

sheet stretches with velocity u=cx where 0c   and mass 

transfer velocity at the surface equal to wv . Magnetic field 

0B is applied externally perpendicular to the flow direction. 

The magnetic Reynolds number is sufficiently small to negate 

the induced magnetic field produced by the motion of the 

conducting fluid. Joule heating and Hall current effects are 

also ignored [Jalilpour, Jafarmadar, Ganji, Shotorban and 

Taghavifar (2014)]. Under the above assumption and using 

the Boussinesq approximation, the continuity, momentum, 

energy and concentration boundary layer equations are: 
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Figure 1. Problem schematic and coordinate system. 

 

The boundary conditions are given by    
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where  ρ∞and cpare the density and specific heat at constant 

pressure, Q is the volumetric heat generation or absorption, σ 

is the electric conductivity, 𝐵0 is the magnetic induction , K is 

the thermal conductivity, T is the temperature ,C is 

concentration of the fluid, D is the molecular diffusivity,  

𝑇𝑤 , 𝐶𝑤 are the variable wall temperature and concentration, 𝑙 
is a characteristic length, c is constant and 𝑣𝑤  represents 

suction velocity across the stretching sheet, the viscosity is 

considered to be of the form: 

)]Tδ(T[1
μ

1

μ

1






 

or )Ta(T
μ

1
r ,

  μδa
,

δ1TTr                                                                     (6) 

 where μ  and T are the fluid free stream dynamic viscosity 

and fluid free stream temperature; a and rT  are constants and 

their values depend on the reference state and thermal 

property of the fluid, i.e.  δ . In general,  0a   for fluids 

such as liquids and 0a   for gases. 

The governing Eqs. (1)-(4) can be expressed in a simpler form 

by introducing the following similarity transformation: 

y
ν

c
η



 ,
 

η) xf(cνψ  ,

  








TT

TT
θ

w

,

  










CC

CC
φ

w

                                                                    (7) 

 Substituting Eq. (7) into Eqs. (1)-(4) produces the following 

ordinary differential equations 
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where the prime denote the differentiation with respect to 

similarity variable η . Boundary conditions are: 
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2. ENTROPY GENERATION ANALYSIS   

The local volumetric rate of entropy  generation in  the 

presence  of  magnetic  field is given by:  

(13)          
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The first term on the right side of Eq.(13) is the generation of 

entropy due to heat transfer over a finite temperature 

difference, the second term is the generation of local entropy 

due to viscous dissipation, the third term is the generation of 

local entropy due to the magnetic field effect, and the Lorentz 

force is responsible for the final terms. The Amount of 

Entropy Generation is    

2

G
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where k is the thermal conductivity and L is the characteristic 

length scale. Using the similarity variables defined in Eq.(7), 

we obtain the entropy generation number as 
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where 𝑁𝐻 , 𝑁𝐹 , 𝑁𝐽 𝑎𝑛𝑑 𝑁𝑀  are respectively the dimensionless 

local entropy generation rate due to heat transfer, fluid 

friction, joule heating, and concentration defined as 
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where LRe  is the number of Renold, Br is the number of 

Brinkman, Ω is  the difference in dimensionless temperature, 

and Ha is the number of Hartman. Such parameters are given 

by  
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irreversibility distribution ratios, are given by  
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The local Bejan number, which can be calculated as the 

entropy generation ratio due to heat transfer HN   to the total 

generation of entropy sN  , is also important to define, i.e. 

Ns

N
Be H                                                                                                                                                 

(17) 

3. NUMERICAL METHOD FOR  SOLUTION 

The nonlinear system of differential Eqs. (8), (9) and (10) 

with the boundary conditions (11) and (12) are solved using 

shooting method, by converting into an initial value problem 
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(IVP). In this method we have to choose a finite value of the 

boundary ,η  say  η . We construct the following first 

order differential equations by assuming  
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with the boundary conditions  
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In order to solve (18), (19) and (20) with (21) as IVP the 

values for  (0)
3

z i.e.  (0)f  ,  (0)
5

z i.e.  (0)θ ,  (0)
6

z

i.e.  (0) are required and no such values are given, 

therefore, we chose initial values for 

  (0),
6

z  and (0)
5

z  (0),
3

z   are satisfied with appropriate 

domain length η and improve chosen values iteratively by 

Runge-Kutta and shooting method (see pal et. al. [26].  The 

step-size is taken as η =0.001. The process is repeated until 

the results are correct up to desired accuracy at 
610 level. 

4. FINDINGS AND DISCUSSION   

In the present section we will discuss the behavior of velocity, 

temperature and concentration profiles along with entropy 

generation rate and Bejan number for a linear stretching sheet 

for bundry values of the fluid viscosity parameter 
rθ , the 

magnetic field parameter M, the Ekeart number 𝐸𝑐, the heat 

source or sink parameter 𝛼 , the Schmidt number 𝑆𝑐  and the 

dimensionless wall mass transfer 𝐹𝑤. 

Figures 2-4 are graphical representation of dimensionless 

velocity, temperature and concentration profiles for different 

values of magnetic field parameter M in the absent and 

presence of  temperature dependent viscosity 𝜃𝑟  throughout 

the boundary layer. It is found that as M increases, the fluid 

velocity decreases; this is due to presence of transfer magnetic 

fields which causes the emergency of drag force opposing the 

motion of the field and as a result it retards the flow velocity. 

This is accompanied with slight increase in the fluid 

temperature and concentration within the boundary layer. In 

addition, the velocity in the case of variable viscosity (plotted 

as dotted lines) is higher than that constant viscosity (plotted 

as solid lines) for all values of magnetic field parameter M 

and reverse trend is seen for temperature and concentration 

profiles. The rise in concentration and temperature profiles 

may be attributed to resistance offered by Lorentz force. 

 

Figure 2. The velocity distribution for different values of M 

and 
rθ . 

 

Figure 3. The temperature distribution for different values of 

M and 
rθ . 

 

Figure 4. The concentration  distribution for different values 

of M and 
rθ . 

Figures.(5-10) display the influence of the Eckert number Ec 

and heat generation parameter 𝛼 on the velocity, temperature 

and concentration profiles in the absence and presence of 𝜃𝑟 . 

The velocity and concentration are almost not affected with 
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increase of 𝐸𝑐 𝑎𝑛𝑑 𝛼 in the absence of the variable viscosity  

𝜃𝑟 inside the boundary layer. From figures 5 and 7 one sees 

that the viscous dissipation and heat generation has  negligible 

effect on the velocity and concentration in the case of constant 

viscosity since the viscous dissipation and heat generation are 

associated basically with energy equation. However, in the 

presence of variable viscosity, the momentum and energy 

equations are coupled, therefore, changes in values of viscous 

dissipation and heat generation causes change in the velocity 

profiles which are plotted as dotted lines. In the presence and 

absence of variable viscosity, the effect of viscous dissipation 

and heat generation increase temperature inside the thermal 

boundary layer. Physically, when the frication on plate 

increases due to fluid viscosity, more heat is generated and as 

a result the fluid temperature increases. 

 

Figure 5. The velocity distribution for different values of Ec 

and 
rθ . 

 

Figure 6. The temperature distribution for different values of 

Ec and 
rθ . 

 

Figure 7. The conteration distribution for different values of 

Ec and 
rθ . 

 

Figure 8. The velocity distribution for different values ofα  

and 
rθ . 

 

Figure 9. The temperature distribution for different values of

α  and 
rθ . 
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Figure 10. The concentration distribution for different values 

ofα  and 
rθ . 

Figures 11-13 show the effect of Schmidt number Sc on the 

velocity, temperature and concentration in the absence and 

presence of variable viscosity 𝜃𝑟 . It is seen in  Figures 11 and 

13 that the variation of Schmidt number does not have much 

effect on velocity and temperature profiles. However, as it is 

seen in Figure 12, the effect of increasing the values Sc is to 

decrease concentration distribution inside the flow region. 

Physically, the increase of Sc means decrease of molecular 

diffusivity. Hence, the concentration of species is higher for 

small values of Sc and lower for large values of Sc. Also it is 

observed that the concentration in the case of variable 

viscosity is lower than that of uniform viscosity for all values 

of Schmidit number Sc. 

 

Figure 11. The velocity distribution for different values of Sc 

and 
rθ . 

 

Figure 12. The temperature distribution for different values of 

Sc and 
rθ . 

 

Figure 13. The concentration distribution for different values 

of Sc and 
rθ . 

In Figures 14, 15 and 16, the dimensionless velocity, 

temperature and concentration profiles are plotted for different 

values of suction parameter wF in the absence and presence of 

variable viscosity  parameter rθ throughout the boundary 

layer. For M=1,

 

 0.1α  , Ec=0.1 and Pr=0.72, we observe 

that both profiles of horizontal velocity, temperature and 

concentration decrease with the increase of suction parameter. 

The same observation is made by Kandasamy et al. [27] 

which is " the presence of wall suction decreases the velocity 

boundary layer thicknesses but decreases the thermal and 

solute boundary layer thickness, i.e. thin out the thermal and 

solute boundary layers". In addition, the velocities in the case 

of variable viscosity are higher than that of constant viscosity 

for all values of suction parameter and reverse trend is seen 

for temperature and concentration inside the boundary layer.  
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Figure 14. The velocity distribution for different values of Fw  

and 
rθ  

 

Figure 15. The temperature distribution for different values of 

Fw  and 
rθ . 

 

Figure 16. The concentration distribution for different values 

of Fw  and 
rθ . 

 

 

5. ENTROPY GENERATION RATE 

Figures 17-22 show entropy generation number profiles  

) Ns(η  for different values of magnetic field parameter M, 

viscous dissipation parameter Ec, heat generation parameter 

α ,   suction parameter  wF , Schmidt number Sc, Hartmann 

number Ha  and group parameter   
-1BrΩ    in the presence 

and absence of variable viscosity parameter rθ . As it is 

observed in Figures 17, 18 and 19, the entropy generation 

decreases across the boundary layer with increase of M, Ec 

and α, while the reverse trend is observed outside   the 

boundary layer. However an increase in suction parameter 

wF ,generates the opposite effect to magnetic field parameter 

M as shown in Figure 20. According to Figure 21, the increase 

of Schmidt number Sc could highly diminish the entropy 

generation number profiles throughout the boundary layer.  In 

the presence of temperature-dependent viscosity, the effect of 

Schmidt number is to decrease the entropy generation number 

profiles throughout the boundary layer more than that the case 

of fluid with uniform viscosity for lower and higher values of 

Sc,  i.e. variable viscosity with large values of Schmidt 

number causes a decrease in the entropy generation 

throughout the boundary layer. The effect of Hartmann 

number Ha causes the entropy generation number to slightly 

increase throughout the boundary layer, as it is observed in 

Figure 22. 

 

Figure 17. The Entropy generation for different values of M  

and 
rθ . 

 

Figure 18. The Entropy generation for different values of Ec  

and 
rθ . 
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Figure 19. The Entropy generation for different values of α  

and 
rθ . 

 

 

Figure 20. The Entropy generation for different values of  Fw  

and 
rθ . 

 

Figure 21. The Entropy generation for different values of  Sc  

and 
rθ . 

 

Figure 22.The Entropy generation for different values of  Ha  

and 
rθ . 

6. BEJAN NUMBER  

Figure 23 shows how the Bejan number profiles ) Be(η vary 

with the Hartman number. The Bejan number profiles increase 

due to increase in the Hartman number within the boundary 

layer in the absence as well as in the presence of temperature 

dependent fluid viscosity. In addition, the Bejan number of the 

fluid with constant viscosity is greater than that for the fluid 

with variable viscosity for all values of Hartman number. The 

effect of Brinkman group 
-1BrΩ on Bejan number for three 

different values of  Hartman number, namely, Ha=0, 0.5 and 

1.5, is presented in Figure 24 in the absence and presence of 

variable viscosity parameter. The Bejan number increases due 

to an increase in the group parameter
-1BrΩ  for 0Ha   

within the boundary layer. This increase in Bejan number is 

much at large values of Ha. 

 

Figure 23. The Began number for different values of  Ha  and 

rθ . 
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(a) The Began number for different values of   .Figure 24

and Ha=0, (b) The Began   number for 
rθand   

-1Br

and Ha=0, (c) The Began 
rθand   

-1Brdifferent values of  

and Ha=0,
rθand   

-1Brnumber for    different values of   

                            

7. CONCLUSION   

Entropy analysis for the steady two dimensional laminar flow, 

heat and mass transfer of an incompressible fluid over a non-

isothermal permeable stretching sheet in the presence 

magnetic field, variable viscosity, and heat generation is 

examined. The governing boundary layer equations are 

transferred using suitable similarity transformations three 

nonlinear coupled ordinary differential equations, which are 

then solved by using Rung-Kutta method with shooting 

technique. The effect of variable physical parameters on the 

velocity, temperature, concentration, entropy generation 

number, and  Bejan number are analyzed. The results indicate 

that, increasing the magnetic field parameter tends to decrease 

the velocity profile but increases the temperature and 

concentration profiles. In addition, when the temperature 

dependent fluid viscosity is included, a considerable rise in 

the velocity and considerable reduction in the temperature and 

concentration profiles throughout the boundary layer are 

observed. Also it has been noticed that the increasing of 

Schmidt number Sc corresponds to lower concentration field 

) φ(η for both constant and variable viscosity. The entropy 

generation inside the boundary layer slightly decreases with 

increase of magnetic field, Eckert number and heat generation 

but the opposite behavior is noticed outside the boundary 

layer. Moreover, by increasing the Schmidt number, the 

entropy generation is found to be smaller for the flow of 

variable fluid viscosity than that for the flow of constant fluid 

viscosity. The present study assures that the Schmidt number 

and temperature dependent fluid viscosity parameter may be 

taken as the dominant variables for entropy generation since 

their variations could considerably alter the entropy 

generation inside the boundary layer. 
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