
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 5 (2021), pp. 449-455

© International Research Publication House. http://www.irphouse.com

449

Implementation of Consensus with TCP/IP

Parshal Chitrakar

Department of Electronic and communication Engineering (ECE)

SRM AP University, Mangalagiri Neerukonda Tadikonda Rd, Mangalagiri, Mandal, Andhra Pradesh 522502, India.

Abstract

Distributed systems need to work with multiple processes and

hence, the need for consensus among them is paramount.

Large number of such technical processes is implemented on

TCP/IP communication framework. TCP is used in

conjunction with IP to maintain a connection between the

sender and receiver to ensure packet order and to exchange

data. The interfaces and protocols needed by the users on the

application layer leverage the implementation of consensus to

help all the nodes communicate and evolve to a common state.

In this work, we use Python3.7 socket programming to

demonstrate consensus between two programs running on a

network. Further, these programs implement their own version

of consensus protocols to achieve a single state. We

demonstrate this in action for various times integration steps

which can be both matched i.e. same integration time steps on

both sides and mismatched, i.e. different time integration steps

for both peers. Role of increased round trip delay or RTT has

also been explored by making the programs sleep for some

predetermined time interval. Insights into implementation of

consensus using TCP-IP have been documented.

Keywords: Consensus, TCP/IP, Sockets, Delay, Integration

step size.

I. INTRODUCTION

In any connected network, it is important that there are

processes in place that can ensure everyone agrees on what

information to add and what to discard. These rules or the

state is known as consensus and the protocol is known as

consensus protocol. They verify transactions and help to keep

the network safe. A distributed ledger is spread in the network

to verify the transection of the network. The verification is

done with the help of consensus protocol like distribution

algorithm, Proof-of-Work, Proof-of-stake etc.

Whenever we talk about the TCP/IP we think about the

connection but it is way more than that in the sense it can

support dynamical processes among automated agents like

consensus. Taking advantage of this implementation, we

demonstrate a simple consensus algorithm running between

two nodes connected using TCP-IP. Our implementation has

been programmed to exhibit rich behavior depending on

different applications. Before implementing the complex layer

on the TCP/IP we first simulated consensus equations in Mat

lab for four nodes as shown Fig. 4.Clearly, all four nodes are

shown to be approaching a single state with the evolution of

time. This consensus behavior of given equations acts as a

prototype for implementation of our TCP-IP based peer-

message exchange and convergence of their states.

In this work, we will implement the consensus with two

communicating nodes, where states are being exchanged

between them as they approach each other. There are two

ways of achieving this kind of consensus: synchronized and

unsynchronized approach. In TCP-IP if congestion is missing,

we will witness mostly a synchronized convergence of states

among these two participating nodes.

This paper contributes towards following developments.

1. While there is alot of theoretical studies this is one of

the unique implementations of consensus on TCP-IP

using Python3.7.

2. This work studies the consensus behavior with

different integration step sizes Δt in both matched

and mismatched modes.

3. Further, we explore the effect of delays on the

consensus behavior by implementing sleep command

for a predetermined interval.

4. This software is evolvable in the sense of increasing

the number of nodes and customizing their behavior

by reprogramming consensus equations, integration

step sizes, different return trip times, network

topologies etc.

In the rest of the paper, we describe related work in section II,

implementation workflow in section III, consensus equations

in section IV, TCP-IP experimental setup in section V,

consensus results in section VI and finally we conclude with

insights and future directions in section VII.

II. RELATED WORK

In March 18, 2018 Morsing’s blog posted regarding the two

nodes with getting into consensus. In which it explains

theoretically how TCP is not different from the consensus

used in block chain [7]. Naxos: A named data networking

consensus protocol, 28-30 June 2018, named data networking

lack of the consensus protocol so Naxos adapts the self-

learning mechanism to improve the performance. [8].

In April, 2016 M. Stenberg and S.barth published a paper

named as “Distributed Node Consensus Protocol”[11]. This

mailto:Parshal_santa@srmap.edu.in

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 5 (2021), pp. 449-455

© International Research Publication House. http://www.irphouse.com

450

explains how the distributed node consensus protocol can be

helpful for the generic state synchronization. This works on

the Trickle algorithm and hash trees.

In 2019, Karim Sonbol and Öznur Özkasap published the

paper at IEEE conference,”Review on RDMA-Enabled

Consensus Protocol”. [12] In this paper they explained how

our cloud based computing application creates unnecessary

data on kernel TCP/IP layers. They developed the Remote

Direct Memory Access(RDMA) in order to provide fast

communication and that will overcome the overhead copied

data. They used the primitives of the RDMA to improve the

efficiency of the consensus protocol.

In 2016, On 26th International Conference on Field

Programmable Logic and Applications (FPL), David

Sidler,Zsolt István and Gustavo Alonso publish their paper on

”Low-latency TCP/IP stack for data center applications”.[13]

Which explains about the reliability, assumption and latency

of the TCP/IP also gives an analytical view on TCP/IP

Next we start explaining the components of our work with

TCP/IP.

A. TCP/IP

Due to the use of sequence numbers and acknowledgements,

the Transmission Control Protocol (TCP) gives us at least

some approximation to a reliable link for low congestion and

low noise regime anyway. TCP establishes point-point

connection: that is, they must both agree on the connection

being established. For our purpose, we use TCP-IP to

implement, two-party consensus problem or the agreement.

As the data is passed down the stack in the network, each

layer adds the control information to ensure proper delivery of

the packets. There are multiple protocols for sending the data

from one node to another node. TCP/IP is the common and

user friendly protocol in the present situation. Which consist

of five different layers and each layer will add the specific

block on the data given by the application layer which are

shown in FIg. 2. TCP/IP is implemented using the socket

programming in real time where every packet that passes

through each layer will help to bind, listen, accept, connect,

read, write etc.

Figure 1: TCP/IP data flow

III. WORKING FLOW

Our main aim is to implement the consensus protocol on the

TCP/IP model. Here in our workflow we are going to augment

the transport layer by the consensus layer where we are going

to implement consensus protocol. There are multiple protocols

like distribution, POW, POS etc. which will be working as the

consensus protocol in the consensus layer.

Figure 2: consensus layers

On the application layer, the data is generated on the web

browser then the data is sent to the consensus layer, where the

data is then encrypted and undergoes the consensus protocol

like POW or POS then sent to the network layer where the IP

address of sender and receiver is added. After getting the IP of

source and destination then the unique MAC address is added

on the Data Link layer then the full frame is sent to the wired

or wireless network which is done by the physical layer in the

form of bits.

As we can see that for sending the data via TCP/IP layers we

are going from top to bottom but for the receiver side, the

flow will be from bottom to top. If we compare the TCP/IP

actual model and this model we can find the difference in

transport layer. Here we replace TCP with the Consensus

Protocol. In TCP the main purpose is to make the two way

handshake between two nodes but in consensus

implementation protocol we will try to make each node to be

in the same state so that all the nodes won’t have to do

handshake individually. Here there won’t be involvement of

any third party so the agreements, connections and the

transaction is done within the network members because of

achievement of the Consensus.

IV. EQUATION OF CONSENSUS

We start with a simple model of generalized absolute

nonlinear flow in consensus over an undirected graph G(V,E)

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 5 (2021), pp. 449-455

© International Research Publication House. http://www.irphouse.com

451

with degree matrix D and adjacency matrix A [3]. This model

can be generalized to a dynamic set-up of connectivity easily.

The above equation is described as absolute nonlinear flow in

[9] for ith agent’s state evolution equation without feedback

delays which can be incurred due to propagation, queuing or

processing and can be significant in the case of unavailability

of underlying physical layer or during congestion [10]. In this

work, a significantly delayed version of eq. 1 is proposed

where for ease of presentation and delay symbol book-

keeping, information delay has been assumed to 0 << T over

all links which can be thought of maximum delays. Nbdi is a

representation of a neighborhood of node i i.e. collection of

nodes directly connected to node i.

where Ł(G) := D(G) − A(G) is Laplacian of underlying

connecting graph G, D(G) is degree matrix and A(G) is

adjacency matrix.

V. EXPERIMENT SETUP

In this paper, for implementing the consensus with TCP/IP we

used Python 3.7 as well as matlab. For the four node

simulation as shown in Fig. 4, we use matlab and for TCP/IP

programming and consensus calculation we used Python

Programming language.

For the real time work we use socket programming for

creating the TCP/IP connection so that we have to install

some libraries like socket, time,numpy, os and for the

visualization of data we can install matplotlib which is an

inbuilt Matlab library for python. After installing the required

libraries we created the two nodes (server and client) python

file then we set up the socket programming for both of them.

This will give access to the server and client for two way

communication. Then the consensus equation is deployed in

both server and client so that in every iteration they will send

and receive new updated locations until and unless they get

into single state or Consensus. The updated location is stored

in an array then using the matplotlib we are able to plot the

graphs. All the outcomes shown in above results are generated

using matplotlib library of python.

A. Flow Chart

To achieve the consensus between two nodes with TCP/IP

consists of proper steps for the communication which is

shown in Fig. 3. The work flow can be described by following

steps:

1. Two nodes, server and client are started or initiated. For

us we implemented it with python. So the required

packages and libraries are installed for both server and

client.

2. After initiation of required libraries and packages we

have set up the client and server with the socket. setup

consists of socket, bind, listen, accept, connect, read,

write and close. These are the building blocks for the

setup of our TCP connectivity.

3. When the two nodes are connected or the server and client

are connected then the server will send the initial position

to client and client will also do the same via TCP/IP.

4. After exchanging the initial position now they began to

calculate the consensus equation which is mentioned in

the equation section of this paper. In every iteration they

will send and receive the calculated consensus position.

5. The loop of calculation of consensus and Rx/Tx goes on

until both nodes satisfy a single state which is the

achievement of consensus.

6. After getting the consensus both server and client will

stop sending the information and get back to the rest step

and wait for the initiation.

Next we describe the flowchart for this implementation for

ease of understanding.

Figure 3: Flow Diagram for two node consensus

communication.

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 5 (2021), pp. 449-455

© International Research Publication House. http://www.irphouse.com

452

Fig.4 shows the development environment implemented in

Python 3.7 where all positions are being updated as TCP/IP

packets. It makes the idea of consensus far more realistic as

compared to just Mathematical equations in an abstract

fashion.

Figure 4: Screenshot of Python3.7 based programming

environment to implement the consensus

Equation on TCP/IP. Unlike numerical simulation, here all the

position updates are being transferred as TCP/IP packets. It

should be considered a step towards realism as compared to

abstract mathematical consensus equation

VI. RESULTS

Taking four nodes into consideration in a network, using the

MATLAB simulator with the help of the equation mentioned

above, can achieve the consensus graph as shown in Fig. 5. In

this figure, we can see that the four nodes in the network

finally converge to the same state after some time.

Figure 5: Consensus simulated graph for four nodes

VI.I Consensus Observation

In this section, we present results of TCP/IP implementation

in Python 3.7 code with socket programming.. We present

results for different integration steps in both matched and

mismatched mode as shown in Table-I.

A. Variation on Initial step time(Table 1)

Figure 7: Consensus graph for t1 = 0.25 and t2 = 0.5 from

TCP/IP Simulation.

1. t1 = 0.1, t2 = 0.1

In Fig. 6, we showed two nodes converging toward consensus

using TCP/IP communication with the server integration step

size t1 = 0.1 and client step size t2 = 0.1. we can see the

convergence without any fluctuation because of the same step

time or matched mode.

Figure 6: Consensus simulated graph for t1 = 0.1 and t2 = 0.1

from TCP/IP Simulation.

Client Server

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 5 (2021), pp. 449-455

© International Research Publication House. http://www.irphouse.com

453

2. t1 = 0.25, t2 = 0.5

In this Fig. 7, we showed two nodes converging toward

consensus using TCP/IP communication with the server step

size t1 = 0.25 and client step size t2 = 0.5. We observe that the

graph of the server and client is getting blocky rather than a

smooth graph as shown in Fig. 6.

3. t1 = 0.5, t2 = 0.75

In this Fig. 8, we showed two nodes converging toward

consensus using TCP/IP communication with the server step

size t1 = 0.5 and client step size t2 = 0.75. We can see the

oscillation in the output graph before converging as the

variation on the step time increases. More the step time, the

bigger the peak of the oscillation.

Figure 8: Consensus graph for t1 = 0.5 and t2 = 0.75 from

TCP/IP Simulation.

4. t1 = 0.75, t2 = 0.5

In this Fig. 9, we showed two nodes converging toward

consensus using TCP/IP communication with the server step

size t1 = 0.75 and client step size t2 = 0.5. By interchanging

the step time the graph also seems to be interchangeable.

(Refer to Fig. 7).

Figure 9: Consensus graph for t1 = 0.75 and t2 = 0.5 From

TCP/IP Simulation.

5. t1 = 0.75, t2 = 0.75

In this Fig. 10, we show two nodes converging toward

consensus using TCP/IP communication with the server step

size t1 = 0.75 and client step size t2 = 0.75. As we can see,

increase in step time results in larger oscillation in server and

client positions.

Figure 10: Consensus obtained graph for t1 = 0.75 and t2 =

0.75 from TCP/IP Simulation.

B. Effect of delay in consensus(Table 2)

1. Delay = 0.1

Now keeping the step size constant, we added delays in both

server and client sides. initially the server will send its

location via TCP/IP to the client then the client will also do

the same. Now both will calculate the consensus then sleep for

some time i.e delay is induced, then again send the updated

position which can also shown below Fig. 11 with the delay

 of 0.1.

Client

Server

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 5 (2021), pp. 449-455

© International Research Publication House. http://www.irphouse.com

454

Figure 11: Effect of delay = 0.1

2. Delay = 10

As we can see that the increase in delay, consensus time is

also increasing with respect to the applied delay as shown in

Fig. 12.

Figure 12: Effect of delay = 10

3. Delay = 50

When we increase the delay further up to 50, we can see the

shifted version of the consensus as shown in Fig. 13.

Figure 13: Effect of delay = 50

4. Delay = 100

When we keep the delay of 100 for two nodes then we can see

that the t iteration has shifted by t + 100 according to the

Fig. 14.

Figure 14: Effect of delay = 100

5. Delay = 200

Fig. 15 shows that the more the delay in sending the position

results in more time to reach consensus for two nodes and can

be applicable to more than two nodes.

Figure 15: Effect of delay = 200

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper we proposed a consensus based TCP/IP network

with the addition of the consensus layer in the TCP/IP, which

will help for any machine/Robot to communicate and can

have a mutual understanding. It can also be considered to be

the secure way of having a connection between nodes in the

sense of group tasks and doing things together. One of major

learning from this work is to keep proper sequence of message

exchange and updating the positions of the nodes as per

consensus equations. If one does not get this right, then it may

lead to erroneous results. There are a large number of future

directions in this work as it has just started evolving. Some of

the straight forward problems are simulations with large

numbers of nodes and understanding the scalability. Role of

International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 5 (2021), pp. 449-455

© International Research Publication House. http://www.irphouse.com

455

nodes with complicated consensus dynamics, large delays in

message exchanges[3], shortest time convergence, underlying

network topologies, optimal resource allocations for high-

quality consensus are some of the major unexplored issues

which will provide deeper insights into this problem.

REFERENCES

[1] A. Seuret, D. V. Dimarogonas and K. H. Johansson,

“Consensus under communication delays,” 2008 47th

IEEE Conference on Decision and Control, Cancun,

2008, pp. 4922-4927, doi: 10.1109/CDC.2008.4739278.

[2] Srivastava, V., Moehlis, J. and Bullo, F., “On

Bifurcations in Nonlinear Consensus Networks,” J

Nonlinear Sci 21, 875–895 (2011).

https://doi.org/10.1007/s00332-011-9103-4.

[3] Priya Ranjan,“Instabilities of Consensus”, to appear in

Proceedings of CCB,2020.

[4] https://en.wikipedia.org/wiki/Tridiagonal matrix .

[5] https://encyclopediaofmath.org/index.php?title=Jacobi

matrix.

[6] https://csustan.csustan.edu/tom/Clustering/GraphLaplac

ian-tutorial.pdf

[7] https://morsmachine.dk/tcp-consensus

[8] https://ieeexplore.ieee.org/document/8622901

[9] Srivastava, V., Moehlis, J. and Bullo, F., “On

Bifurcations in Non-linear Consensus Networks,” J

Nonlinear Sci 21, 875895 (2011).

https://doi.org/10.1007/s00332-011-9103-4.

[10] Ranjan, Priya, Richard J. La, and Eyad H. Abed,

“Global stability conditions for rate control with

arbitrary communication delays,” IEEE/ACM

Transactions On Networking 14, no. 1 (2006): 94-107.

[11] M. stenberg, S. Barth,”Distributed Node Consensus

Protocol”,April 2016

[12] Karim Sonbol,Öznur Özkasap,”Review on RDMA-

Enabled Consensus Protocol”,2019

International Symposium on Networks, Computers and

Communications (ISNCC)

[13] David Sidler,Zsolt István and Gustavo Alonso,”Low-

latency TCP/IP stack for data center applications”,2016,

26th International Conference on Field Programmable

Logic and Applications (FPL)

https://ieeexplore.ieee.org/document/8622901
https://doi.org/10.1007/s00332-011-9103-4
https://doi.org/10.1007/s00332-011-9103-4

