
International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 530-536 

© International Research Publication House.  http://www.irphouse.com 

530 

Construction of a client-server scenario for the simulation of interactive 

video streaming services  
 

Wilmar Yesid Campo_Muñoz1, Gabriel Elías Chanchí Golondrino2 and Isabel Cristina Baos Prado3 

1 Ph.D., Facultad de Ingeniería, Programa de Ingeniería Electrónica, Universidad del Quindío, Colombia. 
2 Ph.D., Facultad de Ingeniería, Programa de Ingeniería de Sistemas, Universidad de Cartagena, Colombia. 

3Esp., Facultad de Ingeniería, Programa de Ingeniería Civil, Universidad del Quindío, Colombia. 

1*Corresponding Author (ORCID: 0000-0001-8585-706X). 
2ORCID: 0000-0002-0257-1988,  3ORCID: 0000-0003-4076-3320 

 

 

Abstract  

The services supported by video streaming technology are the 

largest consumers of bandwidth in today's data networks, 

whether being wired or wireless. Among these services there is 

the interactivity feature which must be considered when it 

comes to getting to know the traffic flow behaviour of the video 

on demand, the quality of service, and the quality of the 

experience where pausing, forwarding, and rewinding 

correspond to the interactivity functions in these types of 

services and whose effect is stopping or generating data bursts. 

Thus, in this paper the authors present as a contribution the 

construction of a video streaming client-server scenario that 

allows to model the interactivity of these services. For this task, 

the Opnet Modeler tool is used using the module that represents 

layer seven of the OSI (Open Systems Interconnection) tower, 

where the construction is carried out through a Finite State 

Machine (FSM). Finally, the proposed scenario is validated, 

and the statistics generated by the interactivity processes are 

analysed. Thus, the scenario proposed in this paper can serve 

as a reference for the characterization and customization of 

video streaming services in different application contexts.  

Keywords: FSM, Interactivity, Opnet Modeler, Video 

streaming.  

 

I. INTRODUCTION  

The services supported by video streaming technology are the 

largest consumers of bandwidth in current data networks, 

whether being wired or wireless [1-3]. This way, the 

management of this type of services is essential in such a way 

as to allow the elephant and mice flow [4] [5]. Different 

approaches have been built such as testbed and simulation 

models [6], [7]. These approaches aim to determine the 

behaviour of the elephant flow associated with video streaming 

services as in the case of the video on demand provided by OTT 

(over the top) companies [8]. However, these proposals have 

focused on determining quality of service (QoS) parameters, 

and they even try to estimate the quality of experience (QoE) 

[9-11]. 

On the other hand, a relevant characteristic which is considered 

in modern networks is low latency that, among other 

potentialities, allows interactivity even in video on demand 

services [12], [13]. Therefore, interactivity is a characteristic to 

consider when it comes to knowing the behaviour of the traffic 

flow of video on demand, determining QoS parameters, or 

estimating QoE where pause, forward, and rewind correspond 

to the interactivity functions in these types of services [14] and 

whose effect is stopping or generating data bursts. 

Considering the aforementioned, the contribution of this paper 

is proposing a client-server scenario for the simulation of 

interactive video streaming services. For doing this, the 

characterization of the traffic components of the video 

streaming service is used; that is, the representation by means 

of probability density functions (PDF) of the group of pictures 

(GOP) and the audio presented in [15] and [16]. The PDF of 

the GOP and the audio are programmed in the server using the 

Opnet (Optimized Network Engineering Tool) Modeler [17]. It 

starts with the construction of a module that represents layer 7 

of the OSI tower (Open Systems Interconnection) called 

application, which by means of an FSM the behaviour of the 

server is represented, creating a state for each video that can be 

transmitted, and that is characterized by a PDF. In the same way, 

the client is characterized, but in this case with a greater 

diversity of states in the FSM since it is the client who generates 

pausing, rewinding, or forwarding; that is to say, it is the active 

component which requests interactivity. Thus, the simulation 

scenario presented here can be used in any type of network 

infrastructure, regardless of being a wireless mobile network or 

a wired network in order to carry out different types of studies 

that involve video services and their interactivity functions. 

The rest of the paper is organized as follows: Section II presents 

the materials and methods corresponding to the construction of 

the server and the client. Section III presents the results and 

discussion, first the validation process and then the interactivity 

functions and their effects on the video. Finally, section IV 

presents the conclusions. 

 

II. MATERIALS AND METHODS 

This section describes the logical process of each of the states 

that make up both the client and the server where interactivity 

is achieved. 

 

II.I The server node 

The model in charge of representing the interactive behaviour 

of the video streaming services was developed by means of an 

FSM which was built through the Proto-C programming 

mailto:wycampo@uniquindio.edu.co
mailto:gchanchig@unicartagena.edu.co
mailto:icbaos@uniquindio.edu.co


International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 530-536 

© International Research Publication House.  http://www.irphouse.com 

531 

language, supported by the Opnet Modeler tool. Fig. 1 shows 

the process associated with the server node made up of an FSM 

consisting of 15 states, 13 forced, 2 unforced, and their 

respective transitions. The forced states of green colour are 

characterized because when the process enters them, it executes 

the input Proto-C code, which is built in the upper half of the 

circle and immediately executes the exit code, which is built in 

the lower half of the circle to enter the next corresponding state. 

Unlike these, when the process enters a non-forced state which 

is identified with a red colour, the state input code is executed 

and waits for a previously determined interruption to occur in 

order to execute the exit code and enter the corresponding state, 

see Fig. 1. 

 

Fig. 1. Server model at the process level, application module. 

 

Similarly in Fig. 1, the application module for the server can be 

seen at the process level, which has six different types of states 

whose assigned names are: init, open, LISTEN, RX, TX, and 

TX_vhq. Each of these states is described below. 

 

II.I.I Init state of the server node 

It is the initial state of the process in which the variables 

necessary for the operation of the model are initialized. Init 

initializes the variables responsible for containing the PDFs 

with the parameters that characterize the components that 

determine the behavior of the interactive video streaming 

services. These variables correspond to the time between 

frames of each component of the GOP and the audio. This state 

also contains the variables, pause duration, and forward and 

rewind time. Finally, a countdown-type interruption is 

encountered in this state that causes the process to exit the init 

state after a certain amount of time; in this case, a 200-second 

wait to ensure that all component modules of the node start 

correctly 

 

II.I.II Open state of the server node 

This state is in charge of opening the session where the 

application module can communicate with the module of the 

OSI tower lower layers. In order to communicate the server 

with the client in such a way that the information flows through 

the different layers of the node taken from the OPNET Modeler 

libraries, it is necessary to open a passive connection; which is, 

waiting for the client to request the server the use of a video. 

This session also serves to pass important connection data from 

the application module to the lower layer modules such as the 

transport protocol to be used and the service name. This state 

determines the node identification which is the name that has 

been assigned to the serving node at the network level. 

 

II.I.III LISTEN state of the server 

This state allows you to listen to the channel to determine when 

the client makes a request. The state has no input or output 

source codes. However, it allows the process to move to the 

different states for video transmission and to the receiving 

information state. As it can be seen in Fig. 1, the LISTEN state 

is an unforced state, and it is connected to several states through 

different interruptions. In addition, it has an interruption that 

takes it to itself, called "default", which is used for preventing 

infinite loops. 

In Fig. 1, there are two types of interruptions that cause the 

process to exit the LISTEN state which are TIMEOUT and 

STRM. The former is an automatic or countdown type 

interruption, which means external interruptions such as traffic 

flows are not required but only the summoning of the 

interruption from the same or any other state. This function has 

as a parameter the time in which the interruption will occur. 

The interruption times have been defined in the forced states 

connected to the LISTEN state, including the RX state. Then, 

when the process enters any of these states, an interruption time 

is defined that will make the process return to the same state or 

to a different one depending on the task being carried out. 

On the other hand, the STRM interruption that connects the 

LISTEN state with the RX state has been defined as a stream 

type interruption. To activate this interruption, it is necessary 

that the application module receives a packet from the lower 

module; in other words, from the lower layer of the OSI tower. 

To make it happen, a packet must be sent from the client to the 

server. 

 

II.I.IV RX state of the server node 

The RX state is activated only when the server receives a packet 

from the client. Its function is to provide control for the 

transmission of the different videos to the client depending on 

what he requests. When the server starts, its process reaches the 

LISTEN state and waits until any of the interruptions that take 

it to another state are activated. If the client does not make 

requests, the server process remains in the LISTEN state 

because the interruptions for the transmission of the videos are 

activated in the RX state. When the client transmits a packet 

requesting a video, the RX state analyzes it and determines the 

video that the client is requesting. Then, the RX state schedules 

an interruption that will take the process from the LISTEN state 

to the TX state corresponding to the video that the client has 

requested. Since the RX state is a forced state (see Fig. 1), once 

its input code has been executed, it immediately returns to the 

LISTEN state. The other task that this state performs is 

activating the interactivity functions in the video playback: 

pause, forward, and rewind. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 530-536 

© International Research Publication House.  http://www.irphouse.com 

532 

II.I.V TX state of the server node 

In the process developed for the server, there are 11 states 

called TX, which correspond to 11 videos that have been 

characterized by different PDFs in [15] and [16]. These states 

perform the tasks of transmitting the videos and controlling the 

interactivity functions. For this purpose, the state allows to 

transmit each type of video frame which are the PDF of the 

GOP components and the audio in the exact order with the time 

use between frames. In addition, there are flags that indicate 

whether to pause, forward, or rewind. The mean of each PDF 

was used for each time component between frames because the 

times between frames are not constant but are determined 

precisely by the PDFs. For the control of forwarding and 

rewinding during playback, it must be ensured that their length 

does not exceed the remaining reproduction time or that the 

video has finished. 

For controlling playback pauses, it is first determined whether 

the client has sent this type of request. If so, the pause length is 

determined. After the pause time has elapsed, an interruption is 

programmed that will cause the process to restart the 

transmission. Also, if a pause occurs, the process will not read 

the frame transmission code but will immediately exit the state 

to wait for the pause time to expire. 

 

II.II. The client node 

This node is responsible for making video requests to the server, 

as well as obtaining important statistics to determine the traffic 

behavior in the model. In the client node, the model must also 

be modified in the application layer. 

In Fig. 2, the client node is seen at the process level built by 

means of an FSM. The process shown in Fig. 2 is housed in the 

application module of the client node, and it is responsible for 

carrying out data collection and packet transmission tasks to 

perform video requests and interactivity functions. It is 

observed that the states that make up the process within the 

application module are: init, open, CLIENT, idle, pause, 

forward, RX, rewind, TX_RQ, Stat and END. The description 

for each one of them is next. 

 

 

Fig. 2. Client model at the process level. Application module 

 

II.II.I Init state of the client node 

After the system starts, the init state of the process will only run 

once. This node extracts the attributes of the Client node in 

which the information corresponding to the address of the client 

and the server is found. The address of the Client node is self-

assigned, while the address of the server it connects to is 

configured as server. This attribute has been created manually 

in order to facilitate its configuration for users of the proposed 

scenario who do not have knowledge about it, since it is also 

possible to configure this parameter directly in the code. As it 

was done for the init state on the Server node, the Client node 

has also scheduled 200 waiting seconds to ensure that all 

component modules of the node start correctly. 

 

II.II.II Open state of the client node 

This state is responsible for opening an active connection. This 

is because it is the client who will make the requests for videos 

and interactivity functions to the server. This node has the 

following parameters: node ID, remote address (server address), 

remote port (server port), transport protocol, service name, 

application ID, parameter configuration for RSVP protocol, 

and the type of service (ToS). The other parameters configured 

for the active session are identical to those configured for the 

passive session on the server. 

 

II.II.III Client state of the client node 

This state was created to be used as a starting point for the 

process each time a new session is started, being this defined as 

the interval in which a certain amount of videos are played, 

determined by the Zipf function described in [18]. The task that 

this state performs is controlling to delimit the sessions and 

analyze results such as number of reproductions per video, 

duration of the session, and time between sessions. 

 

II.II.IV Idle state of the client node 

This state is analogous to the LISTEN state of the server node 

and its function is to pause when the process is idle. Fig. 2 

shows that six states are derived directly from it, which are: 

pause, forward, RX, rewind, TX_RQ, and Stat. When the 

process enters this state, it pauses until an interruption occurs 

that takes it to another state. In addition, it has a default 

interruption to prevent the creation of infinite loops. 

 

II.II.V Pause state of the client node 

This state is used to control playback pauses, which means its 

task is to transmit a packet to the server which indicates that the 

pause in the video transmission is being requested. As Fig. 2 

shows, this state is entered through the activation of an 

interruption that is programmed within the TX_RQ state, which 

determines if the current video playback is going to pause; and 

then, it defines the position; in other words, the playback time 

when the pause starts for programming the interruption time. 

 

II.II.VI Forward state of the client node 

This state was developed to provide control to the forward 

option in video playback. Its task is to transmit a request to the 

server so that forwarding in the reproduction takes place. The 

way to reach this state is by activating the TIMEOUT4 

interruption (see Fig. 2). This interruption is activated in the 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 530-536 

© International Research Publication House.  http://www.irphouse.com 

533 

TX_RQ state when there is forwarding during playback. As in 

the pause state, the forward interruption is programmed in a 

time that depends on the user's behavior. 

 

II.II.VII RX state of the client node 

This state is responsible for performing two actions when the 

client receives a packet from the server. The first one consists 

of obtaining statistics about the video that is being played and 

sending messages to the simulator console with important data 

such as the video played and the number of frames of the video. 

In Fig. 2, it is observed that to enter this state, the MTS 

interruption needs to be activated. When a video is played by 

the client, each packet that is sent from the server, and that 

contains information about this video, triggers the interruption 

and causes the client node application process to go from the 

idle to the RX state. The second action consists of taking a 

record of the simulation time when information on the 

requested video begins to be received. This record is used to 

determine the length of the video played. 

 

II.II.VIII Rewind state of the client node 

This state is used to control playback rewinding requested by 

the client. As observed in Fig. 2, the TIMEOUT5 interruption 

must be activated to enter this state. As for the interruptions for 

the pause and forward states, this interruption is programmed 

in the TX_RQ state. 

 

II.II.IX TX_RQ state of the client node 

The TX_RQ state is responsible for performing several 

important tasks to represent the user behaviour, such as 

requests to the server for playback, pause, forward, and rewind. 

In this state, the algorithm is carried out to determine the video 

to be played, whether or not there are interactivity functions, as 

well as to determine the number of videos to be played in a 

session, which is considered to be 30 minutes long [18]. 

 

II.II.X Stat state of the client node 

This state was developed with the purpose of keeping statistics 

about the videos played on each session. It is a forced state, so 

the code is executed within it; and immediately, the process 

goes to the END state. 

 

II.II.XI END state 

The END state was included in order to serve as a pause to the 

process when a session has ended and a new one is about to 

start. As in Fig. 2, this is an unforced state since it requires the 

activation of the interruption. This interruption is activated 

thanks to the programming carried out in the RX state when all 

the videos in a session have finished playing. Furthermore, this 

state has a default interruption to prevent infinite loops. 

 

III. RESULTS AND DISCUSSION 

For the validation process of the proposed scenario, the Hurst 

exponent (H) was used, which allows to determine whether a 

series of data follows a self-similar behavior along a period [19]. 

Thus, the results are compared between the real flow and the 

simulated model. The method used was the Rescaled Range 

Analysis (R/S) [20]. Then, the Hurst exponent for video 6 is 

presented in Fig. 3, as this is the one that presents the most 

significant difference from the 11 characterized videos between 

simulated and real traffic. The Hurst exponent is the straight 

line obtained by graphing log (R/S) vs Log (s). 

 

 

Real traffic, video 6 

 

 

Simulated traffic, video 6 

Fig. 3. Hurst exponent 

 

Table 1 shows the numerical values for the exponent H for both 

the real traffic and the simulated traffic for the eleven 

programmed videos. Obtaining their difference and the average 

value of that difference between the eleven videos when 

analyzing the values, it is found that the difference between the 

real and simulated data for the exponent H is 3.5%. Therefore, 

it can be concluded that the simulated scenario is statistically 

similar to the real traffic by 96.5%. considering the self-

similarity parameter. 

The statistics of the interactivity processes are presented next, 

which are obtained in a basic scenario made up of a point-to-

point connection between a client and a server, in such a way 

that they allow to observe the events that have occurred as a 

result of the interactivity processes. 

 

 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 530-536 

© International Research Publication House.  http://www.irphouse.com 

534 

Table 1. Hurst exponent for programmed videos 

Videos 1 2 3 4 5 6 7 8 9 10 11 

Real 0.46 0.61 0.57 0.54 0.53 0.53 0.48 0.50 0.47 0.51 0.52 

Simulated 0.44 0.56 0.64 0.55 0.53 0.54 0.53 0.55 0.54 0.55 0.54 

 

III.I Pause duration  

Fig. 4 is composed of three statistics, the first one (upper part) 

is the "pause duration" statistics, the second one (center) 

belongs to the "request" statistics, and the third one (lower part) 

corresponds to the "video duration" statistics. This comparison 

is made in order to determine the influence of pauses on video 

playback duration. To do this, the playback of the video in 

which the pause is taking place is determined, and its duration 

is evaluated. Thus, when a pause occurs, the duration of the 

pause will be added to the video duration statistics. Therefore, 

it is possible to corroborate the information given in the “pause 

duration” statistics by comparing the original duration of the 

video with the duration of the paused video. 

 

Fig.4. Statistics comparison: pause and video duration, and 

requests 

Similarly, Fig. 4 shows a red box that frames one of the sessions 

produced during the simulation. It can be seen that this is the 

sixth session. This particular session is taken as an example 

because there is a pause of considerable duration with regard to 

the duration of the videos. 

Fig. 5 shows a close-up of session 6 (area framed within the red 

box in Fig. 4), where it is observed that the Request and Video 

length statistics is made up of the reproduction of five videos 

out of the eleven possible. As an example, the data set framed 

within the black box of Fig. 5 is taken. Since the "requests" 

statistic shows the videos that the client requires for their 

reproduction, and the "pause duration" statistics shows the 

pauses; it can be seen a pause in the playback of video 11. The 

yellow boxes show the highest point values for the bars framed 

within the black box. Observing these values, the pause lasts 

approximately 20 seconds and the total time for playback is 50 

seconds, as can be seen in the yellow box at the bottom of Fig. 

5 (Video duration section), This means that the length of the 

video without pauses is 30 seconds. This shows that the model 

is working correctly in the simulation of pauses.  

Another aspect that can be seen in Fig. 5, is that there is a 

difference of 26 seconds between the register of the “pause 

duration” and “video duration” statistics. The video duration 

statistics is recorded every time a video is finished playing, and 

this is done within the application module of the client node. 

On the other hand, the pause duration statistics is recorded 

within the application module of the server node, and it is done 

every time the client requests a pause. Taking this into account, 

it can be concluded that 26 seconds elapse between the moment 

when the pause occurs and when the video is finished playing. 

If this value is subtracted from the time that the pause lasts, 

which is 20 seconds, it can be deduced that the pause occurs 

when there are 6 seconds left to play; in other words, the pause 

occurs in second 24 of the video since it has a 30 second 

duration. 

 

Fig.5. Statistics zoom: pause and video duration, and requests 

 

III.II Forward length in video playback 

Fig. 6 presents the effect caused when forwarding appears in 

the playback duration of the videos selected by the client. Thus, 

the set of data to be analyzed has been framed in the red box. 

Since it is forwarding during playback, the time that is 

forwarded must be subtracted from the total duration of the 

video that is reproduced; this is because forwarding a video is 

skipping information that is not being transmitted. 

 

Fig.6. Statistics comparison: forward length, requests, and 

video duration 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 530-536 

© International Research Publication House.  http://www.irphouse.com 

535 

Analyzing the red box in Fig. 6 in the “request” section, it can 

be seen that video 2 is being played, which is 42 seconds long. 

On the other hand, it also has been forwarded approximately 

6.28 seconds. Therefore, if the forward time is subtracted from 

the duration of the video, the total time for the playback of this 

video should be approximately 36 seconds. In the yellow box 

of the “video duration” statistics of the videos in Fig. 6, the 

duration for video 2 was approximately 36.1 seconds. So, it is 

concluded that the forward simulation in the model is working 

correctly. 

 

III.III Rewind length  

Fig. 7 takes the "request" and "video duration" statistics to 

observe the effect of rewinding during playback. When there is 

a rewind in the reproduction of a video, there is information 

that is repeated, which means, the server transmits the same 

information twice. Therefore, on this occasion, finding the total 

playback time of a video in which a rewind has occurred, the 

time of the rewind length must be added to the total time of the 

video duration. 

 

Fig.7. Statistics comparison: rewind length, requests, and 

video duration 

The data for the analysis is found in the red box in Fig. 7. The 

yellow boxes show the values for the highest points of the 

framed lines for the “rewind length” and the “video duration”. 

As it can be seen, the request for video 2 is being made, which 

has a duration of 42 seconds. On the other hand, the rewind 

length produced is approximately 18 seconds. If this time is 

added to the total duration of video 2, the time that the client 

must use to play the video is approximately 60 seconds as Fig. 

7 shows. So, it is concluded that the rewind simulation in the 

model is working correctly. 

 

IV. CONCLUSIONS 

This paper has defined a scenario that allows to represent the 

behavior of the traffic between a client and a server. The 

simulated scenario responds to an event-oriented model, which 

considers conditions that must be satisfied for each type of 

event to be activated; and consequently, their respective actions. 

For doing this, the FSMs were used being the programming of 

the scenario the one in charge of controlling actions such as 

forwarding, rewinding, and pausing generated by clients. 

For the conformation of the scenario, one must start from 

existing models in the simulation environment for the 

adaptation or modification of their nodes, processes, and states, 

reprogramming them and developing the interactivity 

functionalities. This is necessary whether generating a real 

representation of the services or requesting the representation 

in the simulated scenario of personalized characteristics, in this 

case, those corresponding to the interactivity processes of the 

real environment such as pause, forward, and rewind. 

Including the process of self-similarity within the validation 

process of the simulated scenario brings an important 

contribution. For this reason, the implementation of the 

statistical method of rescaled range (R/S) was used. Then, it 

was found that the simulated scenario, considering the self-

similarity parameter, is statistically similar to the real traffic in 

more than 96%. 

 

Acknowledgments 

To the university program “Teaching and Research with 

OPNET”. To the Multimedia Distribution Systems group 

DMMS of the University of Oviedo. The authors thank the 

University of Quindío and the University of Cartagena for the 

support provided in the development of this research. 

 

REFERENCES 

[1] K. Bilal and A. Erbad, “Edge computing for interactive 

media and video streaming,” in 2017 2nd International 

Conference on Fog and Mobile Edge Computing, FMEC 

2017, Jun. 2017, pp. 68–73, doi: 

10.1109/FMEC.2017.7946410. 

[2] J. Lozano, A. Castro, B. Fuentes, J. M. González, and Á. 

Rodríguez, “Adaptive QoE measurement on 

videostreaming IP services,” 2011, Accessed: Jun. 04, 

2021. [Online]. Available: 

https://ieeexplore.ieee.org/document/6103992. 

[3] T. M. Hautala, I. Suliman, J. J. Lehtomäki, and T. 

Saarinen, “Performance evaluation of videostreaming 

on a heterogenous multihop mobile network,” in IEEE 

Vehicular Technology Conference, 2004, vol. 59, no. 5, 

pp. 2744–2747, doi: 10.1109/vetecs.2004.1391420. 

[4] H. Yahyaoui, S. Aidi, and M. F. Zhani, “On Using Flow 

Classification to Optimize Traffic Routing in SDN 

Networks,” Jan. 2020, doi: 

10.1109/CCNC46108.2020.9045216. 

[5] H. Thiri Zaw and A. Htein Maw, “Traffic management 

with elephant flow detection in software defined 

networks (SDN),” Int. J. Electr. Comput. Eng., vol. 9, 

no. 4, pp. 3203–3211, 2019, doi: 10.11591/ijece.v9i4. pp 

3203-3211. 

[6] A. Ceco and S. Mrdovic, “Test Bed for Network 

Protocols Optimization,” 2018, doi: 

10.1109/TELFOR.2018.8611846. 

[7] S. González, W. Castellanos, P. Guzmán, P. Arce, and J. 

C. Guerri, “Simulation and experimental testbed for 

adaptive video streaming in ad hoc networks,” Ad Hoc 

Networks, vol. 52, pp. 89–105, Dec. 2016, doi: 

10.1016/j.adhoc.2016.07.007. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 6 (2021), pp. 530-536 

© International Research Publication House.  http://www.irphouse.com 

536 

[8] S. Kiani Mehr, P. Jogalekar, and D. Medhi, “Moving 

QoE for monitoring DASH video streaming: models and 

a study of multiple mobile clients,” J. Internet Serv. 

Appl., vol. 12, no. 1, pp. 1–26, Dec. 2021, doi: 

10.1186/s13174-021-00133-y. 

[9] A. Dias, A. B. Reis, and S. Sargento, “Improving the 

QoE of OTT Multimedia Services in Wireless 

Scenarios,” in Proceedings - IEEE Symposium on 

Computers and Communications, Jun. 2019, vol. 2019-

June, doi: 10.1109/ISCC47284.2019.8969709. 

[10] T. Oliveira and S. Sargento, “QoE-based Load 

Balancing of OTT Video Content in SDN Networks,” in 

Proceedings - IEEE Symposium on Computers and 

Communications, Jun. 2019, vol. 2019-June, doi: 

10.1109/ISCC47284.2019.8969720. 

[11] V. S. Elagin, I. A. Belozertsev, B. S. Goldshtein, A. V. 

Onufrienko, and A. G. Vladyko, “Models of QOE 

ensuring for OTT services,” May 2019, doi: 

10.1109/SOSG.2019.8706748. 

[12] G. Cheung, Z. Liu, Z. Ma, and J. Z. G. Tan, “Multi-

stream switching for interactive virtual reality video 

streaming,” Proceedings - International Conference on 

Image Processing, ICIP, 2018. . 

[13] K. Fukava, K. Mori, K. Imamura, Y. Matsuda, T. 

Matsumura, and S. Mochizuki, “Design and 

Implementation of Ultra-Low-Latency Video Encoder 

Using High-Level Synthesis,” Dec. 2019, doi: 

10.1109/ISPACS48206.2019.8986365. 

[14] L. Rossetto et al., “Interactive Video Retrieval in the 

Age of Deep Learning - Detailed Evaluation of VBS 

2019,” IEEE Trans. Multimed., vol. 23, pp. 243–256, 

2021, doi: 10.1109/TMM.2020.2980944. 

[15] W. Y. Campo Muñoz, H. Fabio Bermudez, and E. 

Astaiza Hoyos, “Characterization of traffic of the video 

streaming service based on lexical analyzers,” Ingeniare, 

vol. 26, no. 3, pp. 448–458, 2018, doi: 10.4067/S0718-

33052018000300448. 

[16] W. Y. Campo-Muñoz, E. Astaiza-Hoyos, and L. F. 

Muñoz-Sanabria, “Modelado de tráfico del servicio de 

video bajo demanda mediante NS-3,” DYNA, vol. 84, 

no. 202, pp. 55–64, Jul. 2017, doi: 

10.15446/dyna.v84n202.61650. 

[17] W. Y. Campo-Muñoz, G. E. Chanchí-Golondrino, and 

M. C. Camacho-Ojeda, “Uso de técnicas de emulación 

en la construcción de un modelo de tráfico para un 

servicio multimedia,” Ingeniería, investigación y 

tecnología, 2017. 

[18] M. T. González-Aparicio, R. García, J. L. Brugos, X. G. 

Pañeda, D. Melendi, and S. Cabrero, “Measuring 

temporal redundancy in sequences of video requests in a 

News-on-Demand service,” Telemat. Informatics, vol. 

31, no. 3, pp. 444–458, Aug. 2014, doi: 

10.1016/j.tele.2013.10.006. 

[19] G. Millán, R. Osorio-Comparán, and G. Lefranc, 

“Preliminaries on the Accurate Estimation of the Hurst 

Exponent Using Time Series,” Mar. 2021. 

[20] J. Beran, Statistics for long-memory processes. CRC 

Press, 2017.  


