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Abstract

This paper deal with Stochastics volatility estimation using
Fourier Transformation to determine price process through
compensated Poission jumb. Here we adopt theoretical basis of
Fourier transformations by examine Bohr’s convolution which
revealed similar relation with the Fourier transformation of the
price determination with a compensated Poisson jump and the
volatility with estimated instantaneous volatility. The similar
relation for a special case when B (t) were included in the jump
was revealed with direct variation to the volatility with all
parameters constant.which is applicable. to both univariate and
multivariate volatility settings. This revealed the effect of the
dynamics of volatility on finances through various kinds of
jumb difussion processes

Keywords: Convolution, Compensated, Estimation,
Stochastic, Transformation, Volatility

INTRODUCTION

Measurement of an uncertainty of returns through volatility
involves an important role in transacting cash flows, assets
selling and purchases at a giving time. This is very important
and necessary in market institutions because of unstable and
stock prices forecast, hedging as well as portfolio management.
Board managers and policy makers depend much on this to
ascertain unstable nature of the market to minimize losses.
Constant changes in its nature is so challenging to forecast and
predictions. Black-Scholes models proposed a constant
volatility with empirical findings shows that researchers need
to intensify more into asset volatility modelling as Black-
Scholes model, price processes does not include Poisson jump
It is now of interest to verify and examine at what level the
dynamics of stock price volatility affected by jumps price
inclusion

Empirical evidence suggests that the volatility of many assets
prices is stochastic which affects pricing and hedging of options
assets thus creates the need for simple and efficient models.
Volatility as a key parameter in financial economics-
mathematics and the recent econometric literature has devoted
much attention to its computation which is crucial in hedging
strategies in the classical Black-Scholes environment or in
more sophisticated stochastic volatility models.

[1] Examined and evaluate time-varying methods on the
development of new tools for volatility measurement, modeling
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and forecasting which been motivated by the empirical
observation in financial asset return and persistent fashion in
asset classes and time periods. [2] Opined that volatility can be
determined using both parametric and non-parametric methods.
The parametric procedures rely on explicit functional form with
the assumptions regarding the expected and instantaneous
volatility which include discrete-time volatility model

[3] Developed and applied Fourier series analysis to compute
time series volatility when the data observed are semi
martingale based on Fourier coefficients computations which
relies on the integration of the time series rather than on its
differentiation. The method is fully model free and non-
parametric which makes the method well suitable in financial
transaction and in the analysis of high frequency time series.
[4] revealed the potential and bias that covariance estimator has
especially when the regular interval size h is small relative to
its frequency. He then propose a new estimator based only on
original data which requires no prior synchronization of
transaction-based data and independent from the choice of h
with imputation of missing values. It is also free from
extraneous biases, consistency estimator as the observe time
intensity which represents the liquidity of the market increases
to infinity.

The finite sample property of the Fourier estimator for
integrated volatility under market microstructure noise with an
observed value of the contaminated process, derive an analytic
expression for the bias and the mean squared error of the
contaminated estimator can be practically used to design
optimal MSE-based estimators, which are very robust and
efficient in the presence of noise as opined by [5].

[6] Evaluate and provides a non-parametric method for
computation of instantaneous multivariate volatility for
continuous semi-martingales based on Fourier series analysis
where the co-volatility was adjusted as a stochastic function of
time by establishing a relationship between Fourier volatility
processes. He then derived a non-parametric estimator from a
discrete unevenly spaced and a synchronously sampled.

The forecasting performance of the Fourier estimator with the
inclusion of microstructure noise and analytic comparison with
simulation studies indicate that the Fourier estimator
significantly outperforms realized estimators, particularly for
high-frequency and when noise component is relevant as
analyze and opined by [7].
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1. FOURIER TRANSFORMSATION AND
FORMATION OF PRICE PROCESS WITH
COMPENSATED POISSON JUMB

Representation of frequency domain and mathematical
operation linking to a function of time is refers to as Fourier
transformation as opined by [8], A time varying data can be
transformed from one domain into a different domain called the
main ideal of Fourier methods and transformed to be a non-

1.1. Formation of Price process with compensated Poisson jump

periodic functions which is absolutely converges and proposed
by [9] in this case, a function can be reconstructed from its
original Fourier stage using inverse Fourier transform.. In
Fourier transformation the volatility is constructed as a function
of it’s iteration and computation of the cross-correlation
between price and volatility where all the observed values are
taking into consideration to avoids inconsistency in data.

We let p(t) be the log-price of assets which is a continuous semi—martingale on a fixed time window, then

dp(t) = a(t, B)dt + o(t, B)dB(t) + dM(t)

)

where M(t) = N(t) — At and N(t) is a Poisson process with intensity A, « is the drift, o

is the volatility, time is t and standard Brownian motion B. B(t) and M(t) are independent. Solving

p(t) =p(0) + J; a(s,B)ds + [, o(s,B)dB(s) + [, dM(s)

)

where o is adapted to a filtration and it’s bounded by |a| + |o] < ¢ for c € R,

Given that p(t) = p(¢t), -, p™(t), satisfying

dp’(t) = 3L, o/ () + &/ (B)dt +dMI(E), j=1,,n

3)

where B = BY,--- B¢ are independent Brownian motions on a probability space, such

that al.j and o/ are random processes which are adapted to a filtration and satisfies the following conditions;

E|fy (@(®)?dt| < o

E[f} @/@)]wi=1,d j=1-n

Theorem 1

(4)
()

Given that function ¢ (v) has Fourier transform: F(¢)(k): = ifozn p()e *dv, ke

and its differential form: F(d¢)(k): = ifz”i e kv dep(v)

0

then F($)(k) = ¢ [ (#(2m) — $(0)) — Fdp()|

Proof:
Given that
F@)0) = [-o@) T — [ ~ " ap(w)
= s [mpWe ™ + [ e dp ()15
= — s lp@e ™ — [ e dg )F"
Then,

2mik

F@)K) = [~ 2= p@e ] "+ Lrdp k)

1

= [p(2m)e~*C™ — ¢(0)] + - Fd (k)

2mik
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but e "™ = cos(2mk) — isin(an) and cos(2mk) = 1, sin(2mk) = 0, then we have
T((p)(k) - 2mik
= ——[p(2m) — $(0)] + - Fdp (k)

[¢(27T)(cos(27'[k) + isin(2mk)) — ¢ (0)] +o Tdd)(k)

that is

F()(K) = 1| = (6(2m) — $(0)) — Fdp (k)]

3. THE IDENTITY RELATION FOR A COMPLEX MARTINGALE CASE
Proposition 1

Given that the identity that relates to the price process and volatility matrix with the compensated poisson jump as

—FEY) (k) + - F(dN) (k) = F(dp").,F (dp’ 6)

Proof.
Let (t) be Price process of the Fourier transformation
Let X(t) be volatility matrix for Fourier transform

Given that a=0; and p be a semi—martingale.
d

dp’(t) = Z o/ (t)af ()dB(t) + al (t)dt + dMI(t), j=1,-,n,

i=1

where o (t, B(t)) does not depend on B(t).

F(dp)) (k) = F(TL, o/ afdBY) (k) + F(aldt)(k) + F(dM’) (k)
Given that dp5(t) = X9, o/ () (£)dB' (), then,

F(dp’)(k) = F(dp}) (k) + F(aldt) (k) + F(dM7)(k)

Fdp)) (k) = k), F(aldt)(k) = ¢po(k) and F(AMI)(k) = ¢y (k)
(b5 + Pa + Pu) g (@5 + Pa + Pu) = (Poup + Pasn + Pusp) (Do + P + Pu)

= ¢opPo + ParpPa + oy + Pary®o + ParpPa

+PaisPm + PusPs + PuspPa + PrsPu
Buta =0

Then by Bohr’s convolution

(d)cr + d)a + ¢M)*B(¢U' + ¢IZ + ¢M) = ¢0’*B¢0’ + ¢M*B¢)M
Thus:

(Pa-pPa) (k) = lim

—oo0 2n+1

Zs——n ¢a(5)¢a(k - S)
($o5bs) (k) = lim z o(5)Po(k — 5)

(Swepbr) (k) = lim =Sy (s)pua (K — )

PR AOIAED)

s=-n

(b + o + Pu)sp (b6 + Pa + du) = lim = 1

+lim =BT ()b (K — )

T(dp])*B:F(dp}) = ((l)a + ¢a + d)M)*B((l)a + (i)a + ¢M) = ¢0'*B¢0' + ¢M*3¢M
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F(dX).pF(dX) = - F((dX, dX]) = . [] e ™ d[X,X](s),

T(dpj)*BT(dpj) = (¢0'*B * ¢o‘) + (¢M*B * ¢M)
= F(dp}).sF(dp)) + F(dM)).;F(dM)

-1 Joq. 1 i ;
- zﬂT([dpo' dpo‘]) + ZHT([dM]' dM]])
1

t —i . . 1 t i . .
Jo e dlps,p51(s) + 5 J; e d[MI, MT](s)

T am?
Where
d[M/,M7](s) = dN/(s) is:
F(dp").sF(dp?) = 5 [y e d[pk,ps1(s) + 5 Jy e e dNI (s)

Let  d[pl,plI(s) = 2U(6) = — f; e **d[pL, p)1(s) = - FET)(k)

— Jy e ANI(s) = ZF(dN7) (K
—F (Y (k) = F(dp’).sF (dp’) — - F(ANT) (k)
Hence the volatility matrix and the compensated Poisson jump is:

—FEY) (k) + - F(ANT)(k) = F(dp").5F (dp’)

Proposition 2
Given that

1

(F(dp").sF(dp)) (@) = -FEY)(@) + %T(de)(Q)

2w

Proof.

We let (t) be independent of Bt

Let (¢),I'rj(t) be complex martingales for any integers r,k,
Let p be the price process, then, i,=1,2.

Then the complex martingale for Fourier transformation yield:
Li(): = 5= [y e *edp'(s)

1

L©):= - fy e mdp/(s)
Fdph)(k) = - f;" e~ dp'(s)
which implies T/ (2m) = F(dp') (k)

Apply Ito formula,
d(TET))(8) =TT (£) + T (D)dTE() + dTE (DT (£)
= L)AL/ (¢) + T/ ()dTi(t)

+(d( fy e®odpi(s)d(- [y e "dpl(s)))
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Leta =0
d(Tir))() = TH(B)AT! (t) + T (H)dTi(6)

t a t d
+|d <21n f e=iks (Z oidB' + de(s)>> d <% fo emirs (Z ol dB + dM’ (s)))

= T{(0)dT (t) + T (O)dTi(e) +< ( e (T o/ dB) +d (L ! ‘”‘Sde(s))>>

(ol et ) a (i o)

2
d d
Zifte—lksz O'lldBl> (;[te—irsz o.ldel>
0 ™o i=0

1=

= T}()dT/ () + T/ (t)dTi(t) + d

Y

+d (= [y e *TL, ojdBY)d (= f, e dMI(s))
d(=fy e*sdmi(s))d (= [ e~ TL, o/ dB!

+d (= [ e ®oaMi(s)) d (- [y e dMI(s))

+

= TL(O)dIY (8) + T (O dTi() + (5 ) (ei+nlyL | 5ig) (£)(dB(5))2)
+(i) (e=ik+mlaMi(t) Y2, oio (H)dBL(D))
(2 (e @ ami (6 3y ofo! OB () + (Z) (e CtdMI (©))?)
But Y%, o/a/ = Y ij and (dM’(t))* = dN/, which implies,
d(Tir))(®) = TE®)dT (6) + T (©dTi() + (i)2 sl ik+nitge
+(5 ) (et 0ntamI () Sy oi (DB (D) + (o= ) (e™i*NtAMI (1) Ty o (£)dB(t))

1 . ;
+ (E) (e—l(k+r)tht])

27 a(rir))© = 27 (ROdri© + o) dri@ + 27 (2) sve-itmrar
+f027r (2 ) ( —z(k+r)th](t)Zl 0 o'l (t)dB (t))
2 (L) (e nam) (6 Bty of 0dBHO) + 177 ()

JT AT = @R em) — (L) (0) = T (2r) — TH0)T (0),

and [ (0)I/ (0) = 0

i i T i j j i T 2 i i
NLEm@2m) = [} THOdr) @) + Fodrie) + ;7 (=) sei®tar +

7 () (e ntami (0 Stk of (0B (©) + 7™ (%) (e 0rtami (1) Sy of (1)dBY (D))

2

21T 1 ( ) ]'
_ —i(k+r)t N
] (5) i)
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Let HU (k,r) = [ (TH(D)AT () + T/ (£)dT) (1))
Thus
%f;ﬂ Yije ikttdr = F (¥ ij)(k + r), which follows that,

ri(2mr/2n) = if(zif)(k +71) 4+ HU(k,1)

+f02n (2 ) ( —ikEEAMI () Y, o} (t)dB (t))
n fOZﬂ: (i)z (e_i(k+r)thj(t) 4, O.li(t)dBl(t))

2 . .

+f02ﬂ (i) (e—l(k+‘r‘)tht])

for n > 1, then for any integer q, where |g| < n
94 (M) = =3 T}, 2m)r/ (2m)
Il (2m) = E“F(Z ij(q+s—s)+HY(q+s,—s)
p- 2 X . .
+ 177 () (emtrsotami(e) Bk, of (H)dB'(©))
+17" (= ) (ei@+s=)tami(t) TL, of(t)dB (1))

+f02” (i) (e-i(q+s—s)thtj)

I, (2l 2n) = —T(Zij(q +s—s)+HY(q+s,—s)
+ I (i)2 (e etami(t) By oi (AB(®)) + " (5 ) (et amI (t) Ty o ()ABH(E) )
(L) (eman))

glm) =——=3ynr_, i, (2mri(2n)

_-2n+1

=Ly, [inf(z”)(q) +HIGq+5,-5)+ [T (L) @ am (0 58y of (B (D)

2n+1

[fz" (e aM)© Ty i) + [ (Z) (e an )]

= = [EFED@E@n + 1) + T, HY(q +5,-9)]

2n+1

2n+1

[zs__n () (e wamn @ £, ol dB ©)]

[fz” (et aMN (O 5y ol ©) 77 (£) (7 any))]

= F(zY . [H”(q +5,-5)+ 7" (= ) (e"atamMi)(t) XL, o (t))]
Ly, [fz” (e am)©) Ty o OdBO) + [T (L) (emwan)))]
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Hence,
9d M- FEI)(Q) + Hy (g +5,-5) + V)
HY(q+s,—s) = m n_, HY(q+s,—s
HY(k,r) = [" TH(OAT () + T} (O dTi(t
Thus

Hl(q+5,-5) = =% 5 [)" Toss(0)dTL(6) + TL(£)dTg4()

(@) = =% | 2”( ) (e~ 9t dMI)(t) Ty oi ()dBL (D))
+2an n_ [fOZTT( ) (e—lqthJ)(t)Zd o 0/ (t)dB (t)) +f ( ) (e—lqth )]

HY(q + s, —s) can also be reduced to Q,,

Q0 m [T AT () [P dTE ()

T 2n+1

from Q,,,
JZT ATl () [ dTiys () = [P [s(e]
= (I/5(2m) = T2 (0)) (Ti4s(t2) — Tlys(0))

We let ['(0) = 0

JIT Tl (ty) 2 dTies(t) = T2 @M (t;

J A2 @mTies(t)) = [ TL@m)dTEs(t) + [ Tius(t)dI (2m)
Since (t;,t,) € tand t € (0,2m), we have

JT A (O] s(®) = [ T (©)dTLes (1) + Tis (AT (6)
Hence by symmetry as n — oo,

Given a Dirichlet kernel (D,,(t)) such that:

_ 1 n ist 1 sin(n+1)t
Dn(t) T onil&s=-n e

~ 2n+1 sin(t/2)’

2 .

Qn = ol S=—n f " drjs(tz)f dr‘c§+s(t1)
2n+12$——n ]S(ZH)F,§+S(t2)

1

— n_ ifzn eiStzdpj(tz) % if;z e_i(q"'s)tldpi(tl)

2n+1<S=" 210

= () Tt [T ettedp/(ty) f;? e @Otdpi(ey)

472 \2n+1
1 1 27T _ _
= (5) T [ ettadpi(ty) f;? eatie St dpi(ty)
1 1 2w oty _ _ _
= F(Z‘rﬁl) s=-n f f PeTll xeTM xe 15t1dp (tl)dpj(tz)

On = 55 () B [ J32 €152 x el (1) dp! (1)

4m2 \2n+1

)IZT I e X B, ety (1) dp) (1)

) (2n+1
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LI etiat x —_yn el dpi(e)dpl (t,)

4-1T2

D,(t, —t;) = ——

2n+1

n is(ty—t
Z__ne (t2=t1)

2n+1
2wt —
Qn 4n2f Jo? €7D, (t, — ty)dp' (t)dp’ (t,
4n2f d ](tz)f e~ (t, — t,)dp'(ty)
Buta =0
1 (2 2 5 .
Qn = W dp’(t;) (cos(qty) — isin(qt,)) Dy (t; — t1) (Z o (t)dB*(t)) + dMl(t1)>
0 k=1

2

2
10ul? = (%nz [ v [ costat = sinGarnpate: — ) (Z oi(t)ABH (1) + de(m))

k=1
1\2 (27 (& RN
ol = (52) | (Z 0L (t)dBH(6) + sz(t2)>
0 \k=1
) 2
[(Cos(qtl) — isin(qt,)) Dy (t; — t1) (Z ok (t)dB* (t;) + dMi(tﬂ)]
k=1
We let
¢ 2 z
{(ty) = f (cos(qt;)Dy(t, — t1))? (Z ok (t))dB*(t,) + dMi(t1)> ,dM;.dB, =0
0 k=1

= J;? (cos(qty) Du(t; — t))? ((Z3oy 0i(t2)) dty + AN (2y))
@2(t,) = [? (sin(qt)Du(ty — £))2(Tey 0k (t)dB ty + dMi(ty))’

= [ (sin(qt)Da(t, — t))? ((Zes 0t (t) dty + dN'(t)))’

10a12 = (=) Jo™ (221 0i(t)) dt, + dNT () [§2(t) + @2 (2,)]

16m*|Qnl* = Xk f;" [62(t2) + @2 (t)]((07 (£))2dt, + AN (1))
Using Ito identity Equation:

16m*[1Qa %] = $34 E [ [62(t) + @2 (t)] (0 (0)2dt, + ANI(¢,))]
Apply Cauchy—Schwarz inequality

(16m*[1QuIP])2 < 4 %3y B[] (07 (62)*dt, + AN/ (¢,))?]

X (B [[77 (J3? Datts = £)c0s(qt) (Shon ok (6)ABH (1) + AMI(2)))) dt,]

8|27 (12 Datea — t)sin(qe) (o of ()8 (e) + aMi(e)) dep)| ELZ (o) tde) <

= E[[7" (0 (t))*dt; + (@N'(£,))?] < oo
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Apply Burkholder—Gundy’s inequality
T . . 4
E [fgz (fotz Dy (t; — ty)cos(qty)(Thzy op(t)dB* () + dML(Q))) dtz]
2 (2 g 4 2 i k i *
< 4E [fo Jo? Da(ty — ty)cos*(qty) ((Zk:l ok (t1)dB"(t,) + dM (tl))) dtz]

= 4B [ [;? Di(t, — t1)cos* () (Zhoy 0l (t)ABX (1) + AME(t,))dty |

—1 < cos(qt,) < 1 and cos*(qt,) takes the interval 0 < cos*(qt;) <1

Note that he maximum of cos is 1,then
. ) 4
E [fom (fotz Dy (t; — t1)C05(qt1)(212<=1 0. (t))dB* (t,) + dMl(tl))) dtz]

<AE[[77 f;2 Dty — ) (Shoy (GE(E))*d(t)) + (@AM (t))?)dt, |

E[ 127 (2 Dtz = t)5in(ge)(Thor 0k (6B (1) + aM(1))) dy
< 48 (2 [ (e, = t)sin*(gt) (She 0k ()dB () + dM'(2,))) dy]

= 4B [[77 J;2 Dty — ) (Z3oy (0f(t))*dty + (dN'(8;))?)dt, |

E [fOZ" (J3? Da(tz — tr)cos(qty)(Tioy oi(t)dB (t;) + dMi(tl)))4dt2]
+E [foz" (fotz Dy, (t, — t1)sin(qt;,)(Xk=y ok (t1)dB* () + dMi(tl)))4 dtZ]
< 4B [ [7? DAt — t)(Ther (0h(t) ey + (AN (t:))?)dt]
H4E [[I7 32 DRt — 6)(B3, (0 (t))*dty + (AN (£))?)dt,

Welet ¢, =u t, —t; = v, ,t, =u+v,5—;‘1= , 5—Z= 5—:2
4E[[5" fy? DE@)(Zho (0h)*du + (AN (w)?)d(w +v)]
+4E [ [3? DE@)(ZEor (k) du + (@AN'(w)?)d(u + v)]
= 4B 7" (C3y (@' +e@)Hdu + (@N'@)?| [ DA (w)dv
+4E [[77 (53, (@' +e)du + @N'@)?]| ;7 Di(w)dv
=8E ;" (T3 (0iw)*)du + (@N'W)?] 7" DE(w)dv
As |D,(W)| < 1, [" DEw)dv < [" DZ(w)dv < [ |D(v)|dv

2T
2n+1

21
f D2(v)dv =
0

Asn — oo, f02n DZ2(w)dv=0. Q2=0=Q, =0.

if Q,=0, then HYJ=
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Evaluating Y,fj (@)

SO

— X ) . (i)2 (etdMI(t) X, o/ (H)dB' (1))

+ 2n+1 [fzn (e_thdM] ®) Zl 0 0; (t)dB (t)) +f ( ) _’qth )]
= (=) (2n+1) (2 (emiatami(e) Tty of (0)AB' () 20+ 1)]

(o) )

= (L) fOZT[ [(e—iqthj(t) Z?:(] O.li(t)dBl(t))

412

2

21 a
f (e—Wde(t) Z al (t)dBl(t)> Cn+1)+ f e” AN/ (2n + 1)
0 1=0 0

+(e—iqthj(t) Z?:o Uli(t)de(t)) + e—iqthlj]

1

2w e_iqthj(t) = i.‘F'(CUV)(Q)

a2 Jo
o d d
Y” (g) = [( “latgpmi(t) ai(t)dBl(t)> + (e“"”de(t) aj(t)dBl(t)>l
+§T(d1v1)(q)

Giventhat e~"¢ as cos(qt) + isin(q

2T d
Y (q) =— ((cos(qt) + isin(qt))de(t)Z af(t)dBl(t))]
=0
+ 15" [((cos(at) + isin(qt))dM’ (1)) BiL, o/ (©)dBL(t))] + - F(AN')(q)
Buti = j,

. 1 2m
ij
W@ =g |
0

+—F(dN')(q

d d
(cos(qt) + sin(qt))dM’ (t)) ( o/ ()dB' (@) + Y o] (t)dBl(t)>l

=0

n(t) = (cos(qt) + isin(qt))dM (£) (Ziko o/ (©)dB(t) + ik, 0/ ()dB'(D))
n(t) = (cos(qt) + isin(qt)) (2 Ty o/ ()dBL(£))dMI (1)

2

a
n?(t) = (cos(qt) + isin(qt))? (42 O’lj(t)dBl(t)de(t)>

=0

By De—moivre’s formula, (cos(x) + isin(x))"™ = cos(nx) + isin(nx)

d
n2(t) = (cos(2qt) + isin(2qt)) (42 ()'ji(t))zdt(dth)>

=0

dt-dN/ = 0= n?(t) = 0 = n(t) = 0.

Y, (@) = - F(dN7)(q)
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g 1 . 1 .
9{ (W) = —FE)(@ +5-F(@dN))(g

Lyn_ _ Ti.mrl (2

2n+1 5=

gq (N) =
= LS Fdp)(—)F(dp)(q +5)

= (F(dp").sF(dp))(q)

(F(dp").sF (@dp"))(9) = 5= F(EY)(q) + 5= F(dN')(q)

FANI)(q) = 5- f, e dN/(s)

Theorem 2
Let p be the price process and let (p) be the volatility of the price process p(t) at time t , g,n are integers.
Then,

Vol(p) = lim ¥jgien (1-'2) G2 N8y FAP) ()T (AP))(q — s + LF(N) (@) — = (N(2) — N(0))exp(igt) (8)

n/J “2n+1<S

Proof

Let F(¢) (k) = = [= (6 (2m) — $(0)) — Fdep (k)|

k 1
FA@)(K) = == F($)() 5= (#(2m) = $(0)
F(AN)(q) = —LF(N)(q) +— (N(2m) — N(0))

(F(dpH).5F (dp"))(@) = = F(EY)(q) + - F(dN')(q)

2m(F (dp").a(F(dp'))(q) = F(2U)(q) + F(dN')(q)

2m(F (dp").a(F(dp))(q) = F(ZU)(q) — 2F(N)(q) + 5= (N(2m) — N(0))
F(2U)(q) = 2n(F(dpY).5(F (dp")(@) + 2F(N)(q) — 5= (N (2m) — N(0))

1

(F(dpY).sF(dp))(q) = lim

n-oo 2n+1

Ye_n F(dp))($)F(dp’)(q —s)
Then

2m

F(ZY)(q) = lim

—o0o 2n+1

Yi—n F(dp))($)F(dp’)(q — )

+3F(N)(q) — 5= (N(2m) = N(0))

2U(8) = lim Fjgren (1-4) GE 20, F(dp)($)F (dp/)(q - )

n 2n+1
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+LF(N)(q) — = (N(2m) — N(0)))exp(iqt)

The volatility function Vol(p) = a2(t), fori = j, 2 (t) = ¥, (6] (1))? = o2

Vol(p) = lim Fjq<n (1 = 2) G2 F (dp) (5)F (dp”) (g — 5)

1
+3FN)(@) = 5= (V@) = N(O)))exp(iqr)

Fdp))(s) = —SF@I)(s) + = (p/ (2m) — p/ (0))

4, APPLICATIONS OF STOCHASTIC VOLATILITY ESTIMATION FOR A SPECIFIC CASE USING FOURIER
TRANSFORMATION
We let:

dp’(t) = XL, o; (t)ak(t) + al(t)dt + B/ (t)dMI(t), jk=1,-

F(dp))(q) = F(TL, o/afdBY)(q) + F(aldt)(q) + F(BdAMI)(q), j=1,-
dpi(t) = XL, o/ aFdBi(D),

F(dp’)(q) = F(dp))(q) + F(a’dt)(q) + F (B dM’)(q)
Given that F(B/dM’)(q) = ¢u1(q), then,
(P5 + P + Pu1) s (@ + Po + du1)

= (o8 + Gasp + Pu1+8) (s + Pa + Pu1) = PopPa + PrepPur

(Gup®u) (@ = lim =5, Gy ()ban (@ — )
T(dpi)*BT(dP]) = (¢osp * Do) + (Pm1<p * Pu,)
= F(dp").sF(dp))F (B dM/).;F (B dM/)
= —F([dpt, dpj]) + - F((B/dM’, pTdMT])
t L 1 t . L .
=), T d[ps, py1(s) + 5 eTe(pidm, pldmMI](s)
([B7dMI, BIdMIT)(s) = B2 (s)dN/(s),
F(dp"),sF(dp’) = — [ e™d[pl, pJ1(s) + — Jy e dNI(s)
—F(3U)(q) +5-F(BYdANI)(q) = F(dp").F (dp’)
(F@dp).s(Fdp))(@) = -F(EY)(q) + if(ﬁzfdzvf)(q)

FE)(@) + F(EHAN)(q) = lim 231 F(dp/)($)F(dp/)(q - )
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20 (t) = lim Tygien (1 -2 (25 28 mathealF(dp?)($)F (dp/)(q — 5) = F(BAN)(q)) exp(igt

vol) = Jim »' (1-19) <2n+1 PREACDIOLCDICEDE T(ﬁZ’dN])(q))exp(lqt)

s=-n

vol @) = Jim > (1-19) <2n+1 PIRACOIOLCOICEDE f(ﬁZdN)(q)>expoqt

lgl<n s=-n

1
FAp)(s) = =2 F@)(S) + 5 (p(2m) = p(0))

5. NUMERICAL EXAMPLE
We let g = 0.1, then,

Volp) = lim Y (1-11) <2n+1 > FEp)EFp)(a - 5) - F . 12d1v)(q)>exp(xqt>

lgl<n s=-n

FAN)(g) = —LF(N)(@) + = (N(©) = N(0))
For N<1 otherwise (0)=0,

FAN)(@) = —2F(N)(@) +5- (N(D) = —5= [ N(s)e™"ds +—(N(£))

if N(t) = 0 then F(dN)(q) = 0 but if N(¢) = 1

_ 1 s\, 1 11 it
FAN)(@) = ~ 5 (= ge ™) +5 =1 5e™
Vol(p) = lim Fjgcn (1= 2) (T8 F(dp)()F (dp)(@ — 5) — = + S e ™% exp(iqt)

F(dp)(s) = —F(p)(s) + — (p(2m) — p(0)).

Which revealed and indicates that meaning that an increase in correlation for a special case (t) added to the jump showed that
volatility, ((p)) will also lead to increase in the price process it is directly proportional to the volatility when all parameters
and vice versa given that all parameters are constant which are constant using both univariate and multivariate volatility
shows that the price process is directly proportional to the settings as was numerically evaluated.
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