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Abstract  

A theoretical model is performed to study the flow and thermal 

behavior of an electrically conducting fluid flow between two 

infinite parallel plates with porous medium. A perpendicular 

periodic magnetic field is applied while the fluid is subjected to 

a constant presssure gradient. A constant heat flux on the upper 

plate is applied while the lower plate is kept at constant 

temperature. The dimensionless governing momentum and 

energy equations are solved numerically using a finite 

difference technique. The equations are solved also analytically 

for a constant magnetic field and zero Grashoff number using 

eigenfunction expansion method and the numerical and 

analytical results are found to be in full agreement.  

The effect of different physical parameters on the transient 

velocity and temperature profiles , such as Grashof’s number, 

magnetic parameter, magnetic frequency is studied. The results 

are presented graphically and discussed. 

Keywords:  Magnetohydrodynamics (MHD), parallel plates, 

periodic magnetic field. 

 

I. INTRODUCTION  

The unsteady MHD flow between parallel plates has wide 

applications such as MHD pumps and power generators, 

cooling systems, petroleum industries accelerators and many 

other applications. 

The effect of magnetic field on flow between two parallel plates 

with porous medium and different conditions had been studied 

by many researchers.  Attia [1] studied the transient flow of 

dusty conducting fluid between parallel porous plates with 

effect of temperature dependent viscosity and constant pressure 

gradient. Chauhan et al [2] studied MHD viscous fluid flow and 

heat transfer in a parallel plate channel when it is partially filled 

with a porous medium with an inclined magnetic field and a 

rotating system. Guchhait et al [3] presented the effects of Hall 

currents on the flow of an electrically conducting fluid between 

two horizontal parallel porous plates channel in a rotating 

system where the transverse magnetic field is uniform.  

Manyonge et al [4] examined the steady flow between two 

infinite parallel porous plates under the effect of uniform 

magnetic field and constant pressure gradient. Raju et al [5] 

studied the steady MHD forced convective flow of a fluid in a 

porous medium over a horizontal channel where the bottom 

wall was insulated and impermeable with effect of viscous 

dissipation and joule heating. Yadav and Sharma [6] 

investigated steady convection flow of an electrically 

conducting fluid along a semi infinite vertical plate in the 

presence of heat generation and a convective surface boundary 

condition. The incompressible two-dimensional magneto 

hydrodynamic flow and heat transfer of a micropolar fluid 

between parallel porous plates was studied by Ojjela and 

Naresh [7]. The MHD transient free convection flow through 

infinite vertical parallel plates in a porous medium with heat 

source and chemical reaction had been investigated by 

Sasikumar and Govindarajan [8]. Kuiry and Surya [9] studied 

the steady MHD flow and thermal behavior of a fluid between 

two infinite horizontal porous plates. The effect of inclined 

magnetic field on the flow through a horizontal channel through 

porous medium is studied by Dwivedi et al [10]. A theoretical 

model is performed by Abdullah [ 11] to study the effect of 

magnetic field  and periodic wall temperature on transient free 

convection flow of a fluid past an accelerated vertical plate. The 

effect of thermal radiation and chemical reaction on unsteady 

MHD Couette flow through a porous medium of a fluid 

between two parallel porous plates was investigated by 

Anyanwu et al [12]. 

Other studies had been presented to study the effect of no 

uniform magnetic field on the behavior of MHD flows. 

Shliomis and Shinichi [13] studied the oscillatory pipe flow in 

a no uniform magnetic field subject to the quasielastic magnetic 

force.  Moreau et al [14] investigated the problem of magneto 

hydrodynamic flow in a rectangular duct with a non-uniform 

magnetic field.  Asghar et al [15] presented an exact solution to 

the transient Couette flow with no uniform magnetic field. 

Effect of a no uniform magnetic field on ferrofluid flow with 

heat transfer in a channel was studied by Goharkhah et al [16].  

Ghaffarpasand [17] studied numerically the MHD mixed 

convection of ferrofluid in a cavity in the presence of 

alternating magnetic field.  

In the present paper a study of the transient convection MHD 

flow between two infinite parallel plates with porous medium 

is presented. The fluid is subjected to a perpendicular periodic 

magnetic field and a constant presssure gradient.  The 

dimensionless equations are solved numerically and verified by 

analytical solutions. 
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II. MATHEMATICAL FORMULATION 

Consider an MHD incompressible electrically conducting 

viscous flow through a porous medium between two infinite 

horizontal parallel plates separated by a distance h. Using the 

rectangular cartesian coordinates, the x* axis is assumed to be 

in the flow direction and y* axis perpendicular to it as shown 

in Fig. 1. 

The fluid is assumed to has a density ρ , a dynamic viscosity μ, 

and an electrical conductivity σ. The flow is subjected to a 

constant pressure gradient and a non-uniform transverse 

magnetic field of the form 𝐵(𝑡∗) = 𝐵0(1 + 𝐴 sin(𝜔∗𝑡∗)) with 

a flux density Bo directed along the y* axis.  

Initially, at time t* ≤ 0, the plates and the fluid are assumed to 

be stationary and have  the same temperature T∞. At time t* > 

0, the upper plate starts moving in its own plane with a constant 

velocity and a constant heat flux, while the lower plate is heated 

with a constant temperature and maintained stationary. 

 

 

Fig. 1. Geometry of the Physical System 

 

By applying the periodic magnetic field with Boussinesq 

approximation, the transient governing equations representing 

the fluid velocity and temperature are: 

 

𝜕𝑢∗

𝜕𝑡∗ = −
1

𝜌

𝜕𝑝

𝜕𝑥∗ + 𝑔𝛽(𝑇 − 𝑇∞) + 𝜈
𝜕2𝑢∗

𝜕𝑦∗2 −
𝜎𝐵0

2

𝜌
[1 +

𝐴 𝑠𝑖𝑛(𝜔∗𝑡∗)]𝑢∗ −
𝜈

𝑘∗ 𝑢∗                                                           (1)

                                               

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡∗ = 𝑘
𝜕2𝑇

𝜕𝑦∗2                                                                     (2)                                 

With corresponding initial and boundary conditions as follows: 

𝑡∗ ≤ 0:               𝑢∗ = 0         𝑇 = 𝑇∞              for all y* 

𝑡∗ > 0:             𝑢∗ = 0         𝑇 =  𝑇𝑤                 𝑎𝑡 𝑦∗ = 0                                                                            

                           𝑢∗ = 𝑢0         
𝜕𝑇

𝜕𝑦∗ = −
𝑞

𝑘
           𝑎𝑡 𝑦∗ = ℎ       (3)                                              

Now to produce a dimensionless form of the governing 

equations, the following dimensionaless quantities are 

employed : 

𝑥 =
𝑥∗

ℎ
, 𝑦 =

𝑦∗

ℎ
,   𝑡 =

𝜈𝑡∗

ℎ2
 ,   𝜔 =

ℎ2𝜔∗

𝜈
, 𝑢 =

𝑢∗

𝑢0

 , 

 𝜃 =
𝑇−𝑇∞

𝑇𝑤−𝑇∞
, 𝑃 =  

𝑝ℎ

𝑢0𝜇
                                                               (4) 

𝑀 =
𝜎ℎ2𝐵0

2

𝜇
, 𝐺𝑟 =

𝑔𝛽ℎ2(𝑇𝑤−𝑇∞)

𝜈𝑢0
,     𝑃𝑟 =

𝜇𝑐𝑝

𝑘
, 𝐾2 =

ℎ2

𝑘∗                     

                                                                                                                                 

Then the dimensionless equations become: 

𝜕𝑢

𝜕𝑡
= −

𝜕𝑃

𝜕𝑥
+ 𝐺𝑟𝜃 +

𝜕2𝑢

𝜕𝑦2 − [𝐾2 + 𝑀(1 + 𝐴 𝑠𝑖𝑛(𝜔𝑡))]𝑢         (5)                                                        

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2                                                                              (6)                                          

 

The corresponding boundary conditions can be written as : 

Initially,  𝑡 ≤ 0:  𝑢 = 0      𝜃 = 0      for all y 

               𝑡 > 0:  𝑢 = 0     𝜃 = 1         𝑎𝑡 𝑦 = 0                                                        

                           𝑢 = 1    
𝜕𝜃

𝜕𝑦
= −1         𝑎𝑡 𝑦 = 1                  (7) 

 

III. NUMERICAL ANALYSIS 

The dimensionless momentum and energy equations 5 and 6 

are solved numerically using the Crank Nicolson technique 

which is a fully implicit finite difference method. The central 

difference approximations are used to produce the finite 

difference equations in implicit form.     

The method with a large amount of time steps is employed. At 

each time the tridiagonal matrix is solved directly using 

Thomas algorithm.   

 

IV. ANALYTICAL SOLUTIOM 

The numerical solution can be verified by comparing it with 

analytical solution. The analytical  eigenfunction expansion 

method is used to solve the momentum and energy equation.  

 

IV.I TEMPERATURE SOLUTION     

     The dimensionless energy equation is: 

𝜕𝜃

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2                                                                               (8)                                                                          

             

The boundary conditions are: 

Initially,𝑡 ≤ 0:       𝜃 = 0      for all y 

             𝑡 > 0:       𝜃 = 1         𝑎𝑡 𝑦 = 0                                                                                    

                             
𝜕𝜃

𝜕𝑦
= −1         𝑎𝑡 𝑦 = 1                               (9) 

The boundary conditions are non homogeneous and they are 

converted to homogeneous ones by introducing: 

𝐻(𝑦, 𝑡) = 𝜃(𝑦, 𝑡) + 𝑦 − 1                    (10)                                                                         
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Then the energy equation becomes: 

𝜕𝐻

𝜕𝑡
=

1

𝑃𝑟

𝜕2𝐻

𝜕𝑦2                                                                             (11)                                                  

With the following corresponding boundary conditions  

Initially,𝑡 ≤ 0:         𝐻 = 𝑦 − 1         for all y 

               𝑡 > 0:         𝐻 = 0                  𝑎𝑡 𝑦 = 0                                                                  

                                
𝜕𝐻

𝜕𝑦
= 0                  𝑎𝑡 𝑦 = 1                       (12) 

 

Let  𝐻(𝑦, 𝑡) = ∅(𝑦)𝛿(𝑡) 

Taking the derivatives and substituting into (11) yields the 

eigenvalue problem as: 

𝑑2∅

𝑑𝑦2 + 𝜆∅ = 0                 ∅(0) =
𝜕𝜙

𝜕𝑦
(1) = 0                           (13)                                                         

    Where λ is the separation constant. 

                                                   

By applying the boundary conditions the solution of the above 

equation will be 

∅𝑛(𝑦) = 𝑠𝑖𝑛(√𝜆𝑦)                                                                 (14)                                                

With eigenvalues 

𝜆𝑛 = (
2𝑛−1

2
𝜋)

2

                                                                      (15)                                                                                                   

For each n, the solution for δ(t) is 𝛿𝑛(𝑡) = 𝑒
−

𝜆𝑛𝑡

𝑝𝑟  

Hence the series solution for H(y,t) is: 

𝐻(𝑦, 𝑡) = ∑ 𝐵𝑛
∞
𝑛=1 𝑠𝑖𝑛(√𝜆𝑦)𝑒

−𝜆

𝑝𝑟
𝑡
                                         (16)                                                                   

Which will satisfy the non-homogeneous initial condition 

    𝐻(𝑦, 0) = (𝑦 − 1)  . 

    Hence 

𝐵𝑛 =
2

𝜆
(sin √𝜆  −√𝜆)  

 

    Where   𝑛 = 1,2, … … , ∞ 

 

Then the final form of solution is 

𝜃(𝑦, 𝑡) = (∑
2

𝜆
(𝑠𝑖𝑛 √𝜆  −√𝜆) 𝑠𝑖𝑛(√𝜆𝑦)

∞

𝑛=1

𝑒
−𝜆
𝑝𝑟

𝑡
) + (1 − 𝑦) 

                                                                                               (17)                                                                   

The coefficient of heat transfer ( Nusselt number ), is given by: 

𝑁𝑢 =
−ℎ(

𝜕𝑇

𝜕𝑦∗)

(𝑇−𝑇∞)
                                                                       (18)                                                                                     

 

 

Using the temperature solution given in (17), The Nusselt 

number at the lower and upper plates can be written as: 

𝑁𝑢0 =
−1

𝜃(0, 𝑡)
(

𝜕𝜃

𝜕𝑦
)

𝑦=0

= − (
𝜕𝜃

𝜕𝑦
)

𝑦=0

 

      = (∑
2

√𝜆
(𝑠𝑖𝑛 √𝜆  −√𝜆) ∞

𝑛=1 𝑒
−𝜆

𝑝𝑟
𝑡
) − 1                           (19)                                                              

 

𝑁𝑢1 =
−1

𝜃(1,𝑡)
(

𝜕𝜃

𝜕𝑦
)

𝑦=1
=

1

𝜃(1,𝑡)
                                                 (20)                                                               

 

IV.II VELOCITY SOLUTION 

The momentum equation is also solved analytically for the case 

of uniform magnetic field (ω=0) and negligible Grashof 

number (Gr=0).  

By introducing   p*=-∂P/∂x   the dimensionless time dependent 

velocity equation can be written as: 

𝜕𝑢

𝜕𝑡
= 𝑝∗ +

𝜕2𝑢

𝜕𝑦2 − [𝐾2 + 𝑀]𝑢                                                   (21)                                                                          

The corresponding boundary conditions are : 

Initially,𝑡 ≤ 0:  𝑢 = 0            for all y 

             𝑡 > 0:  𝑢 = 0            𝑎𝑡 𝑦 = 0                                                                              

                         𝑢 = 1           𝑎𝑡 𝑦 = 1                                    (22) 

To convert the non homogeneous boundary conditions to 

homogeneous ones, we introduce  

𝐹(𝑦, 𝑡) = 𝜃(𝑦, 𝑡) − 𝑦                                                            (23)                                                                                      

Then the energy equation becomes: 

𝜕𝐹

𝜕𝑡
=

𝜕2𝐹

𝜕𝑦2 − [𝐾2 + 𝑀]𝐹 + 𝑝∗ − [𝐾2 + 𝑀]𝑦                           (24)                                                           

With the following boundary conditions  

Initially,  𝑡 ≤ 0:       𝐹 = −𝑦       for all y 

               𝑡 > 0:       𝐹 = 0            𝑎𝑡 𝑦 = 0                                                                       

                                  𝐹 = 0            𝑎𝑡 𝑦 = 1                              (25) 

Taking the homogeneous part of equation 24, the equation 

becomes: 

𝜕𝐹

𝜕𝑡
=

𝜕2𝐹

𝜕𝑦2 − [𝐾2 + 𝑀]𝐹                                  (26)                                                                   

Assuming  𝐹(𝑦, 𝑡) = 𝛼(𝑦)𝑎(𝑡) , taking the derivatives and 

substituting into (26), the eigenvalue problem will be: 

𝑑2𝛼

𝑑𝑦2 + η𝛼 = 0                 𝛼(0) = 𝛼(1) = 0                             (27)                                                         

Where η is the  separation constant. 

The solution of the above equation will be 

𝛼𝑛(𝑦) = sin(√𝜂𝑦)                                                                (28)                                                                   

With eigenvalues 

η𝑛 = (𝑛𝜋)2                                                                            (29)                                                                                               
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And for each n, the solution for a(t) is 

 𝑎𝑛(𝑡) =
2(−1)𝑛

𝑛𝜋
𝑒−(𝐾2+𝑀+η𝑛)𝑡 +

1

(𝐾2+𝑀+η𝑛)
(

2(−1)𝑛

𝑛𝜋
(𝐾2 + 𝑀 −

𝑝∗) +
2𝑝∗

𝑛𝜋
) (1 − 𝑒−(𝐾2+𝑀+η𝑛)𝑡)  

Hence the series solution for F(y,t) is: 

𝐹(𝑦, 𝑡) = ∑ 𝑎𝑛(𝑡)∞
𝑛=1 𝑠𝑖𝑛(√𝜆𝑦)                                                 (30)                                                                     

Substituting into equation 23, the final form of solution will be 

  𝑢(𝑦, 𝑡) = ∑ 𝑎𝑛(𝑡)∞
𝑛=1 𝑠𝑖𝑛(√𝜆𝑦) + 𝑦                                   (31)                                                             

 

V. RESULTS AND DISCUSSION 

The effect of periodic magnetic field with constant pressure 

gradient on a viscous incompressible fluid flow through a 

porous medium between infinite parallel plates is studied.  The 

governing momentum and energy equations are solved 

numerically by using the Crank-Nicolson technique and the 

results are verified by solving the problem analytically in case 

of a constant magnetic field and zero Grashoff number. 

The effects of different parameters on the velocity and 

temperature profiles are shown through graphs. The parameter 

values that used to get the results are: Gr = 5, Pr = 7, M = 5, P* 

= 5, A = 0.5, K=2, t = 10. 

Fig. 2 shows the effect of Grashof number on the dimensionless 

velocity profile. It is seen that the velocity of the fluid increases 

with the increase of Grashoff number. 

The effect of Magnetic field strength is shown in Fig. 3, where 

the  increase in the applied magnetic field strength causes 

retardation the flow.  

 

 

Fig. 2. Velocity profile for different Grashof number 

 

 

 

Fig. 3. Velocity profile for different magnetic parameter 

 

 

Fig. 4 illustrate the effect of permeability parameter on the 

velocity profile. It is noticed that the effect of increasing K is 

to decrease the velocity. 

The effect of pressure gradient is shown  in Fig. 5. It is observed 

that the velocity of the fluid increases due to an increase in the 

pressure gradient. 

 

 

 

Fig. 4. Velocity profile for different permeability parameter 
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Fig. 5. Velocity profile for different pressure gradient 

 

The transient velocity profile hase been shown in Fig. 6 and Fig. 

7 for different locations on the fluid and different magnetic field 

frequencies.  It is seen from figure 6  that the velocity increases 

until it reach the steady state, and that the same periodic 

behavior of the velocity is shown for different locations of the 

flow unless that the amplitude increases as moving toward the 

mid point between the plates. Fig. 7 studies the effect of 

magnetic frequency on the transient velocity. It is seen that the 

velocity has the oscillatory behavior with same amplitude and 

different time period for different frequencies. 

 

Fig. 6. Transient velocity at different points on the y 

coordinate 

 

Fig. 7. Transient velocity for different values of magnetic 

frequency 

It is observed from Fig. 8 that the temperature decreases as the 

prandtl number increases. 

A comparison between numerical solution and analytical 

solution for the transient velocity and temperature is given in 

table 1. It is noticed from the table that the results are in a very 

good agreement with each other. 

Fig. 8. Temperature profile for different Prandtl number 

 

Table 1. Comparison of numerical and analytical results 

 Time t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

u Numerical 0.3934 0.5087 0.5275 0.5306 0.5311 0.5312 0.5312 

Analytical 0.4086 0.5126 0.5284 0.5308 0.5312 0.5312 0.5312 

 Time t 1 2 3 4 5 6 7 8 9 10 

θ Numerical 0.2540 0.3380 0.3869 0.4208 0.4447 0.4614 0.4732 0.4815 0.4873 0.4913 

Analytical 0.2548 0.3384 0.3871 0.4210 0.4447 0.4615 0.4732 0.4815 0.4873 0.4913 
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VI. CONCLUSION  

The effect of periodic magnetic field on a fluid flow through a 
porous medium between two infinite parallel plates with 
constant pressure gradient is considered. The dimensionless 
governing partial differential equations are solved using a fully 
implicit numerical technique and verified by an eigen function 
expansion method. The velocity and temperature profiles are 
shown through graphs with the effect of various physical 
parameters. The conclusions of the study are: 

1. The velocity of the fluid increases as the Grashoff number 
or the pressure gradient inreases. 

2. The velocity of the fluid decreases due to an increase in 
Prandtl number, magnetic field strength or permeability 
parameter. 

3. It is found that the transient velocity profile has a periodic 
behavior when using a periodic magnetic field. 
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