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Abstract 

The months of social isolation that most societies around the 

world have suffered have left many lessons, including the need 

to develop strategies for the remote care of lonely, sick, elderly, 

and children in the education process. One of the most 

promising strategies is structured around service robots. These 

robotic platforms are designed to support the human being, 

which is why aspects such as interaction, morphology, and 

autonomy take on special importance. The Nao robot from 

Aldebaran Robotics is one of the most famous service robots 

and has a specific academic version for research and education. 

It is a platform on which interaction and manipulation strategies 

can be explored in human-to-human environments. Notably, 

one of the keys to human-machine interaction lies in the 

machine's ability to identify a person's emotional state and 

interact accordingly. The robots use different strategies to 

recognize these states, including facial parameters, tone of 

voice or body postures. In this article, we propose a scheme for 

the automatic identification of emotional states from the user's 

body posture in front of the robot. We use as a robotic platform 

the robot Nao V5, and as a strategy for the design of the 

identification model, we utilize a convolutional neural network 

trained for six specific emotional states in real operating 

environments (indoor environments similar to a home). In the 

laboratory tests, we obtained an accuracy above 80%, which 

allows us to validate the success of the strategy. 

 

Keywords: Deep learning, emotion recognition, gesture, 

human-robot interaction, posture, service robotics. 
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1. INTRODUCTION  

The success of a service robot in carrying out its task (caring 

for people, for example) lies largely in the level of integration 

of the machine with the human being. This is one of the reasons 

for which the service robots have a friendly morphology for the 

human being, many times anthropomorphic, with the intention 

that the human being feels comfortable with the robot 

(Martínez, Acero, & Castiblanco, 2015). The integration can be 

programmed in the robot of two forms different, some gestures 

can be defined a priori to the way of code that the robot it is 

capable of to decode when to interpret the signal (Medina-

Catzin, Martin-Gonzalez, Brito-Loeza, & Uc-Cetina, 2017), 

but also is possible to program strategies of identification of 

gestures and postures characteristic of the being human, which 

exhibit under certain conditions (Cho & Jeong, 2017). In 

Human-Robot Collaboration (HRC) theory this is defined as 

structured forms of communication between members 

(between the robot and the user), but in the case of a service 

robot, it is expected that the robot will adapt and interpret the 

current conditions of its user (Callens, Van Der Have, Rossom, 

De Schutter, & Aertbelien, 2020; Mohammadi, Rezayati, van 

de Venn, & Karimpour, 2020). In the first case, it is sought a 

general strategy of control in which it is achieved to control the 

behavior of the robot when it is shown the gestures, in the 

second case it is sought a behavior more complex of the robot 

in which the robot defines its actions with the user according to 

what it can identify autonomously in his movements. 

The robot can be programmed to identify human gestures, 

which are in fact communication mechanisms. For example, 

the robot can identify gestures made with hands and fingers 

(Martínez, Betancourt, & Arbulú, 2020), facial expressions 

(Martinez, Hernández, & Rendón, 2020), head movements 

(Olade, Fleming, & Liang, 2020; Yunardi, Dina, Agustin, & 

Firdaus, 2020), and body postures (Obaid et al., 2016). The 

objective is to interpret and to ponder autonomously and in time 

real such movements through some algorithm fed with some 

sense of this information. However, for effective integration, 

these gestures must be interpreted with a high rate of precision 

and respond in coherence with response times similar to human 

times (real-time operation) (H. Liu & Wang, 2018). 

The processes of identification, tracking, and sensing of the 

event are carried out by the control unit from the raw 

information provided by the sensors. There are different 

strategies and technologies for the detection of these events, 

however, they can all be grouped into two categories, image-

based and non-image-based sensor systems (H. Liu & Wang, 

2018). In the first group is the strategy more similar to the 

biological scheme, i.e., one that tries to replicate the 

information captured by the human eye. In principle, it is of 

supposing that to interact with humans the robots should have 

similar optical capacities, which means a stereoscopic system 

that captures luminous images produced by the reflection of the 

robot user and its environment. Even so, depending on the 

capacity of the robot, exist different strategies for sensing based 

on images. 

The first strategy of simple structure uses a camera and a 

processing algorithm to detect specific markers in the user’s 

body (Fang, Zheng, & Wu, 2017; Moreno & Páez, 2017). This 

strategy, however, is expensive, intrusive, and complex to use 

(Takano, Ishikawa, & Nakamura, 2015). Also, with a single 
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camera, it is impossible to identify depth-related information, 

which is why schemes with two cameras (stereoscopic system) 

were developed (Elhayek et al., 2017). With two cameras it is 

possible to reconstruct a three-dimensional system and identify 

more robustly the user’s gestures. Some stereoscopic systems 

also use markers, but the norm today is to use digital image 

processing to detect specific parameters from which to estimate 

the user’s posture, which is why these schemes are complex in 

terms of processing and calibration. Today there are systems on 

the market based on a single camera (or sensor) capable of 

measuring the depth in the scene (Tan et al., 2020). Depth 

sensors generally have no calibration or lighting problems and 

produce three-dimensional depth information much easier to 

process than images from a stereo system. Sensors such as 

Microsoft Kinect 2 allow implementing gesture recognition 

systems relatively easily and economically (B. Wang, Li, Lang, 

& Wang, 2020). Besides, the fact that it is a commonly used 

entertainment device has facilitated its wide diffusion (Kassim 

et al., 2020). 

Most gesture recognition strategies use images. However, some 

new strategies use MEMS (Micro Electromechanical Systems) 

and other non-image-based schemes. An example of this type 

of sensor is the Myo armband that uses electromyo-gram 

sensors to read the electrical activity of the arm and wirelessly 

transmit this information (Barona et al., 2020; Martínez, 

Jacinto, & Montiel, 2019). Other strategies use gloves equipped 

with accelerometers and gyroscopes (Li et al., 2020; Pan et al., 

2020), and even non-wearable elements such as Google’s 

Project Soli that uses radiofrequency signals (S. Wang, Song, 

Lien, Poupyrev, & Hilliges, 2016), or MIT’s WiTrack and RF-

Capture system that uses radiofrequency signals reflected by 

the human body (Z. Wang, Xiao, Ye, Wang, & Yang, 2017). 

Gesture recognition is performed from the sensed data. This 

recognition can be separated into two stages, in the 

parameterization of characteristics extracted from the raw data, 

and in the categorization of the gesture (Machado, Luísa 

Gomes, Gamboa, Paixão, & Costa, 2015). These stages are 

performed by applying filters, machine learning algorithms, 

and skeleton models (Liang, Chen, Wu, Yan, & Huang, 2020). 

However, the strategy depends on the type of data collected by 

the sensors. In terms of performance, identification strategies 

based on depth data are less computationally costly and with a 

higher level of accuracy than those based on images, whether 

monocular or stereoscopic (Barrero, Robayo, & Jacinto, 2015; 

H. Liu & Wang, 2018). Most skeletal models simplify the 

structure of the human body and use the concept of depth (Do, 

Kim, Yang, & Lee, 2020; X. Liu et al., 2020; Sapiński, 

Kamińska, Pelikant, & Anbarjafari, 2019).   

2. MATERIALS AND METHODS 

A The main means by which human beings’ express emotions 

is the face, which is why most automatic emotion identification 

schemes process images of the user's face. However, in the real 

interaction between human beings it is not always possible to 

have access to the subject's face, he may be looking in another 

direction, or his face may be partially hidden with accessories 

such as glasses or medical face mask. This is the reason why 

secondary support schemes are implemented that seek other 

types of information, such as the user's voice or posture. 

Through the user's body language, it is also possible to establish 

his emotional state, information that can be paralleled with 

other schemes to increase reliability. Body language tends to be 

specific to each individual, and the variability increases, even 

more, when regional, cultural, age, and gender factors are 

considered. For this reason, this identification scheme should 

be used in parallel with others based on other parameters (face, 

voice, etc.), and the algorithm should always be trained within 

the social and cultural group for which the service robot is 

intended to be developed. 

The social group selected in our research corresponds to family 

groups in homes with parents, children, and elderly in middle 

and upper-class homes in an urban Latin American city. Under 

this social delimitation, it is possible to characterize the 

possible users of the robot, and therefore define the group of 

actors that will represent the emotional states that will train our 

classification model. With these characteristics, actors were 

selected in the age ranges from 8 to 15 years old for the group 

of children (both sexes), in the age ranges from 25 to 40 years 

old for the group of adults (both sexes) and over 60 years old 

for the group of elderly people (both sexes). 

The emotional states selected to conform the database were 

defined according to the six basic emotions defined by Ekman 

and Freisen (Michalik & Kucharska, 2020): 

 

1. Anger 

2. Disgust 

3. Fear 

4. Happiness 

5. Sadness 

6. Surprise 

These names and numbers were also used as labels for each 

category. The actors were instructed to represent these 

emotional states naturally. From there we captured a total of 

150 images for each of the categories, in total 900 images 

shaped the final database (see Figure 1). No discrimination by 

race, gender, or age was made. The distance between the actor 

and the camera was also not kept constant. The intention is that 

the identification model detects characteristics common to each 

emotional state independently of these factors. 

Many of the human posture identification schemes consider 

only the upper body, keep the distance from the actor constant, 

and instruct the actors to perform the movements in a certain 

way. In this research, the user's entire body is considered, and 

on some occasions, the actors lie on the floor to represent the 

emotional state. Besides, the actor was given complete freedom 

in terms of location and movements to perform (some were 

even expressed verbally during the performances). These 

characteristics of the images guarantee less bias concerning the 

expected results and provide more information to the 

classification model. 



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 14, Number 8 (2021), pp. 829-834 

© International Research Publication House.  http://www.irphouse.com 

831 

 

 

 

 
 

Fig. 1.  Sample of the images used for the training of the model. 

The six categories used in the classification were: 1 anger, 2 

disgust, 3 fear, 4 happiness, 5 sadness, and 6 surprise 

   

The gesture recognition process can be characterized as a six-

step system: identification of the instant in which the gesture 

occurs, user tracking, sensing the gesture, extracting 

characteristics from the sensing information, categorizing the 

gesture, and defining the response from the identified gesture 

(see Figure 2). In this research, we focus on the fourth and fifth 

stages of this process. 

 

 
 

Fig. 2.  Gesture recognition scheme for service robot 

     

For our processes of parameterization of features and gesture 

categorization, we propose the use of a convolutional neural 

network. The neural model is trained with 80% of our database 

and then validated with the remaining 20%. In the output layer, 

we use a softmax function, or normalized exponential function, 

which performs a categorical distribution by selecting one of 

the outputs as the most likely category to which the input image 

belongs. As convolutional topology, we use the DenseNet 

(Densely Connected Convolutional Network), specifically a 

DenseNet121 network. This convolutional network was 

selected because it provides the highest performance with the 

least number of trainable parameters. The architecture of this 

deep network is based on simplifying the connection 

parameters between layers. Instead of adding the output 

characteristics of a layer with the input ones, it concatenates 

them (add dimension, but not add values), which dramatically 

reduces the number of parameters required by the network 

without decreasing its performance (avoids learning the same 

characteristic multiple times). In DenseNet there are blocks in 

which additional connections are included between the layers 

near the inputs and the layers near the output (Figure 3). 

 

 
 

Fig. 3.  Architecture of DenseNet121 

 

 

3. RESULTS AND DISCUSSION 

For the construction of the model, we use Keras 2.4.3 as a high-

level API for TensorFlow 2.3.0. The database images were 

randomly mixed in the list and resized to a size of 256x256 

pixels. During model fit testing, it was observed that such a 

reduction in size and aspect ratio did not significantly affect the 

model's performance, but it did significantly reduce the 

memory requirements for training. The pre-processing of the 

images was done with OpenCV 4.1.2, and all the code was 

developed in Python 3. 

The images were normalized in the range of 0 to 1, and the 

labels were coded in one-hot format. The number of nodes in 

the input layer was defined according to the final size of the 

images, 256x256x3 = 196,608. The model was adjusted until a 

good behavior with the validation data was obtained, and no 

pre-trained weights were used. A total of six nodes were 

defined in the output layer, the number of output classes in the 

model. As loss function, we used categorical cross-entropy, and 

the optimization was performed with the stochastic gradient 

descent (SGD). During the training, accuracy, and MSE (Mean 

Squared Error) metrics were calculated in each cycle for both 

validation and training data. The depth of the network was 121 

layers, with a total of 7,043,654 parameters, of which 6,960,006 

correspond to trainable parameters. The final model was trained 

during 40 epochs, at the end a 100% accuracy for the training 

data and 76.1% for the validation data was achieved. The 

overall behavior of this training is shown in Figure 4. 
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Fig. 4.  Model behavior with training data and validation data 

 

The error in the training data practically disappears after 30 

epochs, at the same time it is reduced for the validation data, 

although the trend, in this case, is not continuous. The same 

behavior is observed in the precision of the model, after 30 

epochs the precision of the training data is 100%, while the 

validation data is increasing continuously from epoch 20 to 

reach an average value of 82%. The tuned model was evaluated 

in each category with the metrics precision, recall, and f1-score 

(see Figure 5). For the first two categories (Anger and Disgust) 

100% precision was achieved with the validation data, the 

lowest value was presented in the Sadness category which 

reached only a value of 62%. However, this last category 

achieved a value of 100% in the recall, which indicates that the 

gestures classified in this category correspond to the Sadness 

category. The recall in the Anger and Disgust categories was 

the lowest (58% and 56%), which means that despite 

classifying the correct images in this category, it also included 

images that do not correspond to it. The F1-score value 

combines these two metrics, the combined performance 

confirms the previous analysis, 74% and 72 for the Anger and 

Disgust categories, and 76% for the Sadness category. 

 

 
 

Fig. 5.  Behavior of model metrics for unknown data 

(validation data) 

     

The results of the precision, recall, and F1-score metrics can be 

seen graphically in the confusion matrix (see Figure 6). The 

lighter colors are assigned to the higher values, reflecting that 

the diagonal of the matrix has excellent behavior, particularly 

for the fifth category. Again, the number of false 

categorizations looks relatively high for the first two categories, 

even though all the elements in the category are correctly 

categorized. The ROC curve is another graphical representation 

of the model's performance, but in this case, we see the 

sensitivity in each category to the specificity of the classifier 

(Figures 7 and 8). True positives versus false positives again 

are high for all categories (see Figure 7), for the first two 

categories (see Figure 8). 

 

 
 

Fig.6.  Confusion matrix (error matrix) 

 

 

 
 

Fig. 7.  ROC curve 

     

 

 
Fig. 8.  ROC curve (zoom of the upper left corner) 
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4. CONCLUSIONS 

 
This paper presented a strategy based on the DenseNet 

(Densely Connected Convolutional Network) for the 

identification of six specific emotional states based on the body 

posture of the respective users; as a loss function, categorical 

cross-entity was used, and optimization was performed with 

stochastic gradient decline (SGD). The main objective of the 

research was focused on evaluating a functional model of 

classification of high performance and reduced size against the 

training parameters of the neuronal network, this in order to be 

implemented in service robots and various applications in real 

environments that allow improving the human-robot 

interaction. A total of 900 images from the test database were 

used for the various emotional states with a size of 256x256 

pixels. The resulting classification model was trained during 40 

periods, achieving at the end a 100% accuracy for the training 

data and a percentage higher than 80% for the validation data 

(average value), these results demonstrate the effectiveness of 

the proposed model. 

In our research, we have not yet included a study of the possible 

effects on the performance of the model, such as the sex of the 

user, age, height or distance between the robot and the user, or 

other accessory elements such as the use of hats, glasses, or 

medical face mask. These are aspects that deserve further 

analysis and will be addressed as future focuses of our research. 
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