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Abstract  
Accurate online prediction of junction temperature is essential 

for ensuring the reliability of insulated-gate bipolar transistors 

(IGBTs) in power electronic systems. However, reliable 

temperature estimation remains challenging due to the 

nonlinear and current-dependent characteristics of 

temperature-sensitive electrical parameters under practical 

operating conditions. 

 

To address this issue, a hybrid GA–LM optimized BP neural 

network is proposed for IGBT junction temperature prediction. 

In the proposed framework, a genetic algorithm is employed to 
perform global optimization of network parameters, while the 

Levenberg–Marquardt algorithm is subsequently introduced 

for local refinement, thereby improving convergence efficiency 

and prediction stability. An experimental platform based on 

saturation voltage measurement is established to extract 

temperature-sensitive electrical parameters over a wide range 

of operating currents. 

 

Experimental results show that the proposed model achieves 

lower prediction errors and reduced error dispersion across 

both low-current and high-current operating regions compared 

with conventional BP and GA–BP methods. The maximum 
mean absolute percentage error and root mean square error are 

limited to 0.114 and 7.803, respectively. 

 

The proposed approach provides an effective and practical 

solution for real-time junction temperature monitoring, with 

potential applications in thermal management and reliability 

assessment of IGBT-based power electronic converters.  

Keywords: Insulated-Gate Bipolar Transistor (IGBT); 

Temperature-Sensitive Electrical Parameter (TSEP); Junction 

Temperature Prediction Model; Genetic Algorithm-Levenberg-

Marquardt-Back Propagation (GA-LM-BP) Algorithm; 
Saturation Voltage; Real-time Monitoring 

 

I. INTRODUCTION  

Insulated-gate bipolar transistors (IGBTs) are widely employed 

in motor drives, high-voltage direct current transmission, 

renewable energy systems, and other power electronic 

applications [1–2]. Due to their high-power density and 

complex operating conditions, IGBT modules are prone to 

thermal stress, and junction temperature has been recognized as 

a key factor affecting device reliability and lifetime [3–4]. 

Existing studies have shown that common failure mechanisms, 

including bond wire fracture, solder layer fatigue, and 
metallization degradation, are closely related to junction 

temperature characteristics such as average temperature, 

fluctuation amplitude, and peak value [5–7]. Accurate 
estimation of junction temperature is therefore essential for 

fault prediction and health monitoring of power electronic 

systems. 

 

In practical applications, direct measurement of junction 

temperature is difficult because the semiconductor chip is 

encapsulated within the module package. Conventional 

estimation approaches mainly rely on thermal network models, 

loss-based methods, or temperature-sensitive electrical 

parameter (TSEP) techniques. Thermal and loss-based models 

estimate junction temperature through equivalent thermal 
parameters and power dissipation calculation. However, their 

accuracy strongly depends on parameter identification and 

modeling assumptions, which are sensitive to operating 

conditions and aging effects. TSEP-based methods utilize 

electrical characteristics such as saturation voltage or on-state 

resistance to infer junction temperature, providing improved 

measurement feasibility, yet their nonlinear behavior and 

strong dependence on operating current limit prediction 

robustness under dynamic conditions [8–10]. 

 

With the development of data-driven techniques, neural-

network-based methods have been increasingly applied to 
junction temperature prediction. Back-propagation (BP) neural 

networks can capture complex nonlinear relationships between 

electrical parameters and junction temperature without explicit 

physical modeling. Despite their modeling capability, 

conventional BP networks often suffer from slow convergence 

and sensitivity to initial parameter selection. To improve 

prediction performance, optimization strategies such as genetic 

algorithms (GA) have been introduced to enhance global search 

capability. However, most GA-optimized BP models primarily 

focus on weight initialization, while issues related to 

convergence efficiency, prediction stability, and robustness 
across different current regions remain insufficiently addressed, 

particularly near the critical current where temperature-

sensitive electrical characteristics change significantly. 

 

Despite these advances, existing studies rarely consider the 

combined requirements of prediction accuracy, convergence 

efficiency, and robustness across different operating regions. 

Moreover, the engineering applicability of many proposed 

methods is constrained by limited consideration of model 

stability and real-time deployment requirements. 

 

To address these challenges, this study proposes an IGBT 
junction temperature prediction model based on a hybrid GA–
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LM optimized BP neural network. The main contributions of 

this work are summarized as follows: 

 A hybrid optimization framework combining the 

global search capability of the genetic algorithm and 

the fast local convergence of the Levenberg–
Marquardt algorithm is employed to enhance training 

efficiency and prediction accuracy. 

 A practical junction temperature prediction model is 

established using experimentally measured 

temperature-sensitive electrical parameters, ensuring 

consistency with real operating conditions. 

 The prediction performance of the proposed model is 

systematically evaluated under different current 

regions, demonstrating consistent prediction 

performance across different current regions 

compared with conventional BP and GA-optimized 
BP models. 

 The proposed method provides a feasible solution for 

real-time junction temperature estimation, offering 

practical value for reliability assessment and thermal 

management in IGBT-based power electronic systems. 

 

II. MODELLING OF JUNCTION TEMPERATURE 

PREDICTION 

II.I Establishment of the saturation voltage drop 

experimental platform 

This paper takes a 1200V / 75A IGBT module as the research 

object, and builds a set of saturation voltage drop test platform 
for the experimental measurement of the saturation voltage 

drop characteristics of this module. The selected 1200 V / 75 A 

IGBT module represents a typical medium-power device 

widely used in industrial motor drives and power conversion 

systems, making it suitable for investigating junction 

temperature behavior under practical operating conditions. 

 

The test platform mainly consists of six parts: programmable 

DC power supply, power load, IGBT driver board, control 

system, temperature control platform and oscilloscope, and the 

overall structure is shown in Fig. 1(a), The experimental 
principle is shown in Fig. 1(b). In this paper, the TSEP method 

is used to measure the saturation voltage drop without 

destroying the device package and is easy to operate. 

 

 
(a) Saturation voltage drop test platform 

 
(b) Saturation Voltage Drop Test Schematic 

Fig. 1. Schematic diagram of the IGBT experimental platform 

 

The upper and lower tubes of the half-bridge IGBT module are 

connected in series, with the upper tube gate applying a 

negative pressure to ensure reliable shutdown, and the collector 

shorted to prevent false conduction; the lower tube is used as 

the measured object for the extraction of junction temperature-

related parameters. In order to avoid a blind spot in the 

measurement of junction temperature Tj by the collector current 
IC due to the change of the module's characteristics at high 

temperatures, the temperature gradient interval is set to be from 

25°C to 150°C, and the collector current gradient interval is 

from 20 A to 200 A.  
 
The selected temperature range covers typical ambient 

operating conditions as well as elevated junction temperatures 

approaching the upper thermal limits of commercial IGBT 

modules, enabling evaluation of model performance under both 

normal and high-stress thermal states. The current range from 
20 A to 200 A spans light-load to high-load operating 

conditions commonly encountered in power electronic 

converters, allowing the nonlinear influence of collector 

current on temperature-sensitive electrical parameters to be 

sufficiently captured. The experimental conditions, including 

current range, temperature interval, and single-pulse excitation 

method, are designed to be consistent with typical operating 

states of IGBT modules in power electronic converters, thereby 

enhancing the practical relevance of the obtained dataset. 

Together, these ranges ensure that the experimental dataset 

reflects realistic operating scenarios while providing adequate 

excitation of electro-thermal coupling characteristics for 
junction temperature prediction. 

 

During the experiment, the thermostat is first set to a specified 

temperature, and the IGBT module is heated as a whole through 

the temperature control platform. Continuous heating for a long 

time, IGBT reached thermal equilibrium, it can be assumed that 

the chip junction temperature has stabilised at the set value. 

Subsequently, the IGBT driver board is switched on, the signal 

generator is triggered with the DC power supply, and a single 

pulse is used to drive the IGBT to conduct briefly, and the 

saturation voltage drop VCE is measured simultaneously for this 
condition, during which the junction temperature Tj, the 

collector current IC, the saturation voltage drop VCE, and the 

enclosure temperature TC are recorded synchronously. 

Gradually increase the temperature and repeat the above 

measurements to obtain the saturation voltage drop and case 
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temperature data under different junction temperature and 

collector current conditions. 

 

The three-dimensional surface of the relationship between VCE, 

IC and Tj is plotted using the collected data, as shown in Fig. 2. 
From the Fig. 2, it can be seen intuitively that VCE is affected 

by IC and Tj at the same time, which verifies the reasonableness 

of selecting VCE and IC as the input parameters of the junction 

temperature prediction model in this experiment. 

 
Fig. 2. Three-dimensional diagram of the relationship among 

VCE,IC and Tj 

 

II.II BP neural network prediction model 

Based on experimental data, it is difficult to clearly define the 

complex nonlinear relationship between the saturation voltage 

drop VCE, collector current IC, case temperature TC and junction 

temperature Tj of IGBT. Traditional regression methods are 

often difficult to achieve high accuracy in such problems, while 

BP neural network, with its strong fault tolerance, self-learning 

characteristics and nonlinear mapping function, can construct a 
junction temperature prediction model without pre-determining 

the specific mathematical relationship between temperature-

sensitive electrical parameters and the junction temperature to 

achieve an accurate junction temperature estimation. 

 

In this paper, VCE, IC and TC are selected as model inputs and 

junction temperature Tj as output. The learning process of BP 

neural network consists of two stages: forward propagation of 

the signal and back propagation of the error. Through the 

gradient descent method, the weights and thresholds of each 

layer are continuously adjusted along the error back-

propagation path, so that the mean-square error of the network 
is gradually reduced to a minimum. 

 

In the forward propagation process, the input signals VCE, IC, 

and TC are nonlinearly transformed by the implicit layer and 

passed to the output layer to obtain the predicted value of the 

junction temperature, Tjp. If there is a deviation between Tjp and 

the true value, Tj, the error back propagation process is initiated, 

and the error is apportioned layer-by-layer to each neuron, 

accordingly, adjusting the weights of each layer ωak (a = 1, 2, ..., 

a; k = 1 , 2, ..., k) and the threshold bc (c = 1, 2, ..., c), so that 

the network weights and biases are updated in the direction of 
the fastest decreasing error, and the output error is finally 

minimized. 

 

The structure of the BP neural network is shown in Fig. 3, 

where f₁Z (Z = 0, 1, 2, ..., z) denotes the number of neurons in 

the hidden layer. 
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Fig. 3. Structure of the BP neural network algorithm 

 

II.II.I Optimisation of BP model parameters based on genetic 

algorithm 

The junction temperature prediction performance of BP neural 

network mainly depends on the configuration and cooperation 

of its weights and thresholds. Although the network is able to 

automatically extract effective mapping rules by learning the 

experimental dataset of IGBT junction temperature with real 

labels, the standard BP algorithm suffers from slow 

convergence [13]. In general, the predictive ability of the model 

improves as the degree of training deepens [14], but there exists 

a critical point for this improvement; beyond this point, the 

continued enhancement of the training ability will lead to a 
decrease in the predictive performance, i.e., the phenomenon of 

"overfitting" occurs. 

 

To overcome this limitation, this paper adopts Genetic 

Algorithm (GA) to search for the optimal combination of BP 

neural network weights and thresholds in the global range to 

construct the GA-BP junction temperature prediction model. 

This method can significantly improve the regression 

performance of the model, thus enhancing the stability and 

accuracy of junction temperature prediction. The flow of the 

GA-BP neural network algorithm is shown in Fig. 4. 
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Fig. 4. Flow chart of the GA-BP neural network algorithm 
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The initial weights and thresholds of the BP neural network are 

obtained based on the individual, and the system output is 

predicted after training the BP neural network with the training 

data, and the sum of the absolute value of the error between the 

predicted output and the desired output is taken as the 
individual fitness value F, i.e.   

 

𝐹 = 𝑘(∑ |𝑥𝑖 − 𝑦𝑖|
𝑚
𝑖=1 )  (1) 

 

Where: m is the number of junction temperature prediction data; 

xi is the ith junction temperature experimental data; yi is the ith 

junction temperature prediction data. 

 

II.II.II Optimisation of LM-based BP model parameters 

Aiming at the problem that BP neural networks converge 

slowly and easily fall into the local optimum, this paper 

proposes a hybrid optimisation strategy combining the global 

search of the Genetic Algorithm (GA) and the local fine tuning 

of the Levenberg-Marquardt (LM) algorithm to construct a 
GA-LM-BP junction temperature prediction model in order to 

improve the convergence speed and the prediction accuracy at 

the same time. 

 

Firstly, GA optimisation was used to obtain the initial better 

solution of the BP neural network weights and thresholds with 

real number coding, chromosome length of 51, and population 

size set to 102. The chromosome length is determined by the 

total number of weights and biases in the BP neural network 

structure, ensuring complete parameter mapping during genetic 

encoding. The population size is selected to provide sufficient 

solution diversity while maintaining acceptable computational 
complexity for model training. 

 

Individual performance was assessed with a fitness function, 

and individuals with high fitness were preferentially selected 

for evolution, and population diversity was maintained through 

adaptive mutation strategies to avoid precocious maturation. 

 

On this basis, the Levenberg–Marquardt (LM) algorithm is 

introduced for local fine optimization. The LM algorithm is 

employed due to its fast convergence characteristics and 

approximate second-order optimization capability, which are 
particularly suitable for reducing training time and improving 

numerical stability in engineering-oriented neural network 

applications. The network parameters obtained from the 

Genetic Algorithm (GA) optimization are used as the initial 

values of the LM algorithm, enabling efficient local refinement 

following the global search process. During optimization, the 

mean square error (MSE) of the training set is adopted as the 

objective function, while the MSE of the validation set is 

monitored simultaneously to ensure model generalization 

performance. The error convergence threshold is set to 0.01, 

which represents a balance between prediction accuracy 

(within ±1 °C) and computational efficiency. 
 

This hybrid strategy gives full play to the global exploration 

capability of GA and the fast local convergence advantage of 

LM, which significantly improves the model robustness and 

convergence speed. The flow of the GA-LM-BP neural 

network algorithm is shown in Fig. 5. 
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Fig. 5. Flow chart of the GA-LM-BP neural network 

algorithm 

 

III. EXPERIMENTAL RESULTS 

III.I Error metrics 

The prediction errors are quantified using the mean absolute 

percentage error (𝛿𝑀𝐴𝑃) and the root mean square error (𝛿𝑅𝑀𝑆), 

which are calculated as follows: 

 

𝛿𝑀𝐴𝑃 =
1

𝑚
∑ |

𝑥𝑖−𝑦𝑖

𝑦𝑖
|𝑚

𝑖=1   (2) 

𝛿𝑅𝑀𝑆 = √
∑ (𝑥𝑖−𝑦𝑖)

2𝑚
𝑖=1

𝑚
  (3) 

 

These metrics are used to quantitatively evaluate prediction 
performance. 

 

III.II Dataset and operating regions 

A total of 2250 sets of valid data were obtained from the 

saturation voltage drop experimental platform. The dataset was 

divided into training, validation, and test subsets with a ratio of 

75%:15%:15%. The parameters of the GA–LM–BP model 

were set to 102 populations, with 10 winning and 10 temporary 

subpopulations, and 10 iterations. For comparison, the GA–BP 

model adopted a population size of 10, a crossover probability 

of 0.2, and a mutation probability of 0.1. 

 
Fig. 6 presents the relationship between the collector–emitter 

saturation voltage (VCE) and the junction temperature (Tj) under 

different collector current (IC) conditions. 
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Fig. 6. Relationship between junction temperature and 

saturation voltage under different collector currents 

 

A transition point around 25 A is observed in the VCE–Tj 

characteristics. Based on this behavior, the dataset exhibits 

distinct operating regions separated by a critical current. 

 

III.III Prediction performance comparison 

The junction temperature prediction results obtained using the 

BP, GA–BP, and GA–LM–BP models are summarized in 

Tables 1 and 2 under low-current (IC < 25 A) and high-current 

(IC > 25 A) operating conditions, respectively. Differences in 

prediction results among the three approaches are observed 

across the investigated operating regions. 

 

Table.1. Experimental and predicted junction temperatures  

under low-current conditions ( IC<25A) 

 

IC/A VCE/V TC/℃ 
Junction temperature 

experimental /℃ 

Junction temperature prediction /℃ 

BP GA-BP GA-LM-BP 

6.00 0.84 75.2 80.00 83.72 86.91 78.53 

6.00 0.88 35.6 40.00 42.63 51.65 44.54 

8.00 0.90 74.8 80.00 80.82 86.58 74.86 

8.00 0.91 55.3 60.00 67.84 74.25 61.71 

10.00 0.95 54.5 60.00 66.38 78.73 61.47 

10.00 0.97 34.9 40.00 47.09 58.67 40.72 

18.00 1.10 112.6 120.00 110.15 111.51 122.33 

18.00 1.11 62.7 70.00 74.32 89.77 73.35 

24.00 1.22 61.2 70.00 97.24 97.73 71.38 

24.00 1.21 32.4 40.00 103.94 108.24 43.59 

 

Table.2. Experimental and predicted junction temperatures  

under high-current conditions ( IC＞25A) 

 

IC/A VCE/V TC/℃ 
Junction temperature 

experimental /℃ 

Junction temperature prediction /℃ 

BP GA-BP GA-LM-BP 

28.00 1.30 89.1 100.00 134.05 128.15 117.91 

28.00 1.27 49.3 60.00 41.37 47.66 55.18 

32.00 1.33 37.2 50.00 47.01 42.82 48.77 

32.00 1.37 96.8 110.00 109.52 114.59 113.64 

40.00 1.48 52.2 70.00 72.78 72.94 70.45 

40.00 1.51 91.9 110.00 110.41 109.06 116.93 

44.00 1.54 49.7 70.00 70.18 71.37 69.23 

44.00 1.49 10.3 30.00 20.75 22.98 29.29 

48.00 1.54 7.8 30.00 24.85 14.41 27.79 

48.00 1.65 70.7 100.00 97.22 96.23 97.45 

 

Under low-current conditions, variations in absolute prediction 

error are more evident among the tested samples. The 

prediction errors produced by the three models exhibit different 

levels of dispersion, suggesting non-uniform error distributions 
within this operating region. 

 

When the collector current exceeds the critical value, the 

overall prediction errors decrease for all three algorithms. The 

dispersion of prediction results becomes smaller, and the 

prediction values exhibit reduced error dispersion across 

samples. 
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(a)IC ＜25 A 

 
(b)IC ＞25 A 

Fig. 7. Absolute junction temperature prediction errors of 

different algorithms under two current regions 

 

 
(a)IC ＜25 A 

 
(b)IC ＞25 A 

Fig. 8. Relative prediction error distributions of different 

algorithms under varying current conditions 

 

Prediction error distributions differ between the two current 

regions, indicating non-uniform prediction behavior under 
varying operating conditions. 

 

 

 

 

Table.3. Statistical comparison of prediction errors for 

different algorithms 

 

Algorithm 
Working 

Condition 
𝛿𝑅𝑀𝑆 𝛿𝑀𝐴𝑃 

BP 
IC <25A 15.228 0.138 

IC >25A 11.992 0.104 

GA-BP 
IC <25A 16.624 0.148 

IC >25A 10.026 0.093 

GA-LM-BP 
IC <25A 13.791 0.114 

IC >25A 7.803 0.062 

 

In addition, the statistical evaluation results listed in Table 3 
summarize the corresponding RMSE and MAPE values for the 

three models under both operating regions, providing a 

quantitative basis for performance comparison. 

 

IV. DISCUSSION  

IV.I Performance difference among algorithms 

The prediction performance differences observed among the 

BP, GA–BP, and GA–LM–BP models mainly arise from their 

distinct parameter optimization mechanisms. Conventional BP 

networks rely on gradient-based learning, which makes the 

training process sensitive to initial weights and susceptible to 
local optima, particularly when modeling complex electro-

thermal nonlinearities. 

 

Genetic algorithm optimization alleviates this limitation by 

enabling global exploration of the weight–bias search space 

and reducing dependence on initial parameter selection. 

However, because GA employs stochastic evolution, its 

convergence efficiency during later training stages remains 

limited. 

 

By introducing the Levenberg–Marquardt algorithm after GA 

optimization, the proposed GA–LM–BP model integrates 
global search with efficient local refinement. The approximate 

second-order characteristics of the LM algorithm enable faster 

convergence and more accurate parameter adjustment. This 

complementary optimization mechanism explains the lower 

prediction errors summarized in Table 3 and the error 

distributions observed in Fig. 7. 

 

IV.II Analysis under different current regions 

Distinct prediction behaviors are observed under low-current 

and high-current operating conditions, which can be attributed 

to the conduction characteristics of the IGBT module. As 
shown in Fig. 6, a transition point appears near a collector 

current of 25 A, separating two operating regions with different 

temperature-sensitive parameter responses. 

 

Below the critical current, PN-junction conduction dominates 

and the temperature coefficient of the saturation voltage 

exhibits strong nonlinearity. Such behavior increases modeling 

difficulty and leads to larger error dispersion, as reflected in the 

low-current prediction results in Fig. 7. 

 

When the collector current exceeds the critical value, MOS 

channel conduction becomes dominant. The relationship 
between saturation voltage and junction temperature becomes 
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more regular, resulting in reduced nonlinearity and improved 

consistency of electro-thermal coupling. Consequently, 

prediction errors decrease and dispersion is reduced across all 

models, as reflected in Figs. 7 and 8 and the statistical results 

in Table 3. 
 

IV.III Comparison with existing studies 

Several recent studies have investigated junction temperature 

prediction of IGBTs using temperature-sensitive electrical 

parameters and machine learning techniques. For example, 

neural-network-based models optimized by genetic algorithms 

have been reported to improve prediction accuracy compared 

with conventional BP networks [11-12]. Other studies have 

explored hybrid learning strategies or data-driven approaches 

to enhance nonlinear modeling capability under specific 

operating conditions [13]. 

 
Compared with these methods, the proposed GA–LM–BP 

model introduces a two-stage optimization strategy that 

combines global parameter exploration with efficient local 

refinement. While existing GA-based approaches primarily 

focus on improving initial parameter selection, the present 

work further addresses convergence efficiency and prediction 

stability by incorporating the Levenberg–Marquardt algorithm. 

This difference contributes to the reduced prediction error 

variation observed across operating regions, as summarized in 

Table 3. 

 
In addition, many previously reported models evaluate 

prediction accuracy under a single operating condition or 

within a limited current range. In contrast, this study explicitly 

analyzes model performance across low-current and high-

current regions separated by the critical current, providing 

deeper insight into robustness under practical load variation. 

 

IV.IV Engineering and industrial application significance 

From an engineering perspective, the results of this study 

provide several practical implications for the application of 

junction temperature prediction models in power electronic 

systems. 
 

The observed performance difference between low-current and 

high-current regions indicates that prediction accuracy is 

closely related to conduction mechanisms. For practical 

deployment, this suggests that model validation should cover 

multiple operating regions rather than relying on data collected 

at a single current level. 

 

In addition, the reduced error dispersion achieved by the GA–

LM–BP model under varying load conditions is beneficial for 

real-time thermal protection and reliability assessment. Stable 
prediction behavior enables more reliable threshold setting for 

temperature-based protection strategies, reducing the risk of 

false alarms or delayed responses. 

 

Moreover, because the proposed method relies solely on 

temperature-sensitive electrical parameters without requiring 

additional temperature sensors or complex thermal modeling, it 

can be integrated into existing converter control platforms with 

minimal hardware modification. This characteristic makes the 

approach suitable for online junction temperature monitoring in 

industrial motor drives, renewable energy converters, and 

electric vehicle power electronics.  
 
These characteristics collectively indicate that the proposed 

method offers a feasible balance between prediction accuracy, 
computational efficiency, and implementation complexity for 

industrial IGBT temperature monitoring applications. 

 

IV. CONCLUSION 

This study proposed an IGBT junction temperature prediction 

method based on a hybrid GA–LM optimized BP neural 

network and validated its performance using experimentally 

measured temperature-sensitive electrical parameters. The 

results demonstrate that the proposed model achieves lower 

prediction errors and reduced error dispersion across both low-

current and high-current operating regions when compared 
with conventional BP and GA–BP approaches. 

 

The main contribution of this work lies in the integration of 

global genetic optimization and local Levenberg–Marquardt 

refinement, which enhances convergence efficiency, prediction 

stability, and robustness under varying load conditions. In 

addition, the explicit analysis of prediction behavior across 

different current regions provides deeper insight into the 

influence of conduction mechanisms on electro-thermal 

modeling accuracy. 

 

Despite the improved performance, the present study is limited 
by the use of experimental data obtained from a single IGBT 

module under controlled laboratory conditions. The 

generalization capability of the proposed model across different 

device types and long-term operating environments has not yet 

been fully investigated. 

 

Future work will focus on expanding the dataset to include 

multiple IGBT modules and operating scenarios, as well as 

exploring real-time implementation and edge deployment 

strategies for online junction temperature monitoring in 

practical power electronic systems. 
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