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Abstract

Accurate online prediction of junction temperature is essential
for ensuring the reliability of insulated-gate bipolar transistors
(IGBTs) in power electronic systems. However, reliable
temperature estimation remains challenging due to the
nonlinear and  current-dependent  characteristics  of
temperature-sensitive electrical parameters under practical
operating conditions.

To address this issue, a hybrid GA-LM optimized BP neural
network is proposed for IGBT junction temperature prediction.
In the proposed framework, a genetic algorithm is employed to
perform global optimization of network parameters, while the
Levenberg—Marquardt algorithm is subsequently introduced
for local refinement, thereby improving convergence efficiency
and prediction stability. An experimental platform based on
saturation voltage measurement is established to extract
temperature-sensitive electrical parameters over a wide range
of operating currents.

Experimental results show that the proposed model achieves
lower prediction errors and reduced error dispersion across
both low-current and high-current operating regions compared
with conventional BP and GA-BP methods. The maximum
mean absolute percentage error and root mean square error are
limited to 0.114 and 7.803, respectively.

The proposed approach provides an effective and practical
solution for real-time junction temperature monitoring, with
potential applications in thermal management and reliability
assessment of IGBT-based power electronic converters.
Keywords: Insulated-Gate Bipolar Transistor (IGBT);
Temperature-Sensitive Electrical Parameter (TSEP); Junction
Temperature Prediction Model; Genetic Algorithm-Levenberg-
Marquardt-Back  Propagation (GA-LM-BP)  Algorithm;
Saturation Voltage; Real-time Monitoring

1. INTRODUCTION

Insulated-gate bipolar transistors (IGBTS) are widely employed
in motor drives, high-voltage direct current transmission,
renewable energy systems, and other power electronic
applications [1-2]. Due to their high-power density and
complex operating conditions, IGBT modules are prone to
thermal stress, and junction temperature has been recognized as
a key factor affecting device reliability and lifetime [3-4].
Existing studies have shown that common failure mechanisms,
including bond wire fracture, solder layer fatigue, and
metallization degradation, are closely related to junction
temperature characteristics such as average temperature,
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fluctuation amplitude, and peak value [5-7]. Accurate
estimation of junction temperature is therefore essential for
fault prediction and health monitoring of power electronic
systems.

In practical applications, direct measurement of junction
temperature is difficult because the semiconductor chip is
encapsulated within the module package. Conventional
estimation approaches mainly rely on thermal network models,
loss-based methods, or temperature-sensitive electrical
parameter (TSEP) techniques. Thermal and loss-based models
estimate junction temperature through equivalent thermal
parameters and power dissipation calculation. However, their
accuracy strongly depends on parameter identification and
modeling assumptions, which are sensitive to operating
conditions and aging effects. TSEP-based methods utilize
electrical characteristics such as saturation voltage or on-state
resistance to infer junction temperature, providing improved
measurement feasibility, yet their nonlinear behavior and
strong dependence on operating current limit prediction
robustness under dynamic conditions [8-10].

With the development of data-driven techniques, neural-
network-based methods have been increasingly applied to
junction temperature prediction. Back-propagation (BP) neural
networks can capture complex nonlinear relationships between
electrical parameters and junction temperature without explicit
physical modeling. Despite their modeling capability,
conventional BP networks often suffer from slow convergence
and sensitivity to initial parameter selection. To improve
prediction performance, optimization strategies such as genetic
algorithms (GA) have been introduced to enhance global search
capability. However, most GA-optimized BP models primarily
focus on weight initialization, while issues related to
convergence efficiency, prediction stability, and robustness
across different current regions remain insufficiently addressed,
particularly near the critical current where temperature-
sensitive electrical characteristics change significantly.

Despite these advances, existing studies rarely consider the
combined requirements of prediction accuracy, convergence
efficiency, and robustness across different operating regions.
Moreover, the engineering applicability of many proposed
methods is constrained by limited consideration of model
stability and real-time deployment requirements.

To address these challenges, this study proposes an IGBT
junction temperature prediction model based on a hybrid GA-
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LM optimized BP neural network. The main contributions of
this work are summarized as follows:

e A hybrid optimization framework combining the
global search capability of the genetic algorithm and
the fast local convergence of the Levenberg—
Marquardt algorithm is employed to enhance training
efficiency and prediction accuracy.

e A practical junction temperature prediction model is
established  using  experimentally  measured
temperature-sensitive electrical parameters, ensuring
consistency with real operating conditions.

e  The prediction performance of the proposed model is
systematically evaluated under different current
regions, demonstrating  consistent  prediction
performance across different current regions
compared with conventional BP and GA-optimized
BP models.

e The proposed method provides a feasible solution for
real-time junction temperature estimation, offering
practical value for reliability assessment and thermal

management in IGBT-based power electronic systems.

II. MODELLING OF JUNCTION TEMPERATURE
PREDICTION

1.1 Establishment of the
experimental platform

This paper takes a 1200V / 75A IGBT module as the research
object, and builds a set of saturation voltage drop test platform
for the experimental measurement of the saturation voltage
drop characteristics of this module. The selected 1200V /75 A
IGBT module represents a typical medium-power device
widely used in industrial motor drives and power conversion
systems, making it suitable for investigating junction
temperature behavior under practical operating conditions.

saturation voltage drop

The test platform mainly consists of six parts: programmable
DC power supply, power load, IGBT driver board, control
system, temperature control platform and oscilloscope, and the
overall structure is shown in Fig. 1(a), The experimental
principle is shown in Fig. 1(b). In this paper, the TSEP method
is used to measure the saturation voltage drop without
destroying the device package and is easy to operate.

Oscilloscope

(a) Saturation voltage drop test platform
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(b) Saturation Voltage Drop Test Schematic
Fig. 1. Schematic diagram of the IGBT experimental platform
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The upper and lower tubes of the half-bridge IGBT module are
connected in series, with the upper tube gate applying a
negative pressure to ensure reliable shutdown, and the collector
shorted to prevent false conduction; the lower tube is used as
the measured object for the extraction of junction temperature-
related parameters. In order to avoid a blind spot in the
measurement of junction temperature T; by the collector current
Ic due to the change of the module's characteristics at high
temperatures, the temperature gradient interval is set to be from
25°C to 150°C, and the collector current gradient interval is
from 20 A to 200 A.

The selected temperature range covers typical ambient
operating conditions as well as elevated junction temperatures
approaching the upper thermal limits of commercial IGBT
modules, enabling evaluation of model performance under both
normal and high-stress thermal states. The current range from
20 A to 200 A spans light-load to high-load operating
conditions commonly encountered in power electronic
converters, allowing the nonlinear influence of collector
current on temperature-sensitive electrical parameters to be
sufficiently captured. The experimental conditions, including
current range, temperature interval, and single-pulse excitation
method, are designed to be consistent with typical operating
states of IGBT modules in power electronic converters, thereby
enhancing the practical relevance of the obtained dataset.
Together, these ranges ensure that the experimental dataset
reflects realistic operating scenarios while providing adequate
excitation of electro-thermal coupling characteristics for
junction temperature prediction.

During the experiment, the thermostat is first set to a specified
temperature, and the IGBT module is heated as a whole through
the temperature control platform. Continuous heating for a long
time, IGBT reached thermal equilibrium, it can be assumed that
the chip junction temperature has stabilised at the set value.
Subsequently, the IGBT driver board is switched on, the signal
generator is triggered with the DC power supply, and a single
pulse is used to drive the IGBT to conduct briefly, and the
saturation voltage drop Vce is measured simultaneously for this
condition, during which the junction temperature T;, the
collector current Ic, the saturation voltage drop Vce, and the
enclosure temperature Tc are recorded synchronously.
Gradually increase the temperature and repeat the above
measurements to obtain the saturation voltage drop and case
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temperature data under different junction temperature and
collector current conditions.

The three-dimensional surface of the relationship between Vce,
Ic and Tj is plotted using the collected data, as shown in Fig. 2.
From the Fig. 2, it can be seen intuitively that Vce is affected
by Ic and T; at the same time, which verifies the reasonableness
of selecting Vce and Ic as the input parameters of the junction
temperature prediction model in this experiment.

Fig. 2. Three-dimensional diagram of the relationship among
VCE, |c and Tj

11.11 BP neural network prediction model

Based on experimental data, it is difficult to clearly define the
complex nonlinear relationship between the saturation voltage
drop Vcg, collector current ¢, case temperature Tc and junction
temperature T; of IGBT. Traditional regression methods are
often difficult to achieve high accuracy in such problems, while
BP neural network, with its strong fault tolerance, self-learning
characteristics and nonlinear mapping function, can construct a
junction temperature prediction model without pre-determining
the specific mathematical relationship between temperature-
sensitive electrical parameters and the junction temperature to
achieve an accurate junction temperature estimation.

In this paper, Vce, Ic and T¢ are selected as model inputs and
junction temperature Tj as output. The learning process of BP
neural network consists of two stages: forward propagation of
the signal and back propagation of the error. Through the
gradient descent method, the weights and thresholds of each
layer are continuously adjusted along the error back-
propagation path, so that the mean-square error of the network
is gradually reduced to a minimum.

In the forward propagation process, the input signals Vcg, lc,
and Tc are nonlinearly transformed by the implicit layer and
passed to the output layer to obtain the predicted value of the
junction temperature, Tj,. If there is a deviation between Tj, and
the true value, T;, the error back propagation process is initiated,
and the error is apportioned layer-by-layer to each neuron,
accordingly, adjusting the weights of each layer wa (@=1, 2, ...,
a, k=1, 2,..,k)and the threshold b; (c = 1, 2, ..., ¢), so that
the network weights and biases are updated in the direction of
the fastest decreasing error, and the output error is finally
minimized.
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The structure of the BP neural network is shown in Fig. 3,
where fz (Z=0, 1, 2, ..., z) denotes the number of neurons in
the hidden layer.

Saturation voltage drop

Collector current

IGBT Case temperature

Fig. 3. Structure of the BP neural network algorithm

11.11.1 Optimisation of BP model parameters based on genetic
algorithm

The junction temperature prediction performance of BP neural
network mainly depends on the configuration and cooperation
of its weights and thresholds. Although the network is able to
automatically extract effective mapping rules by learning the
experimental dataset of IGBT junction temperature with real
labels, the standard BP algorithm suffers from slow
convergence [13]. In general, the predictive ability of the model
improves as the degree of training deepens [14], but there exists
a critical point for this improvement; beyond this point, the
continued enhancement of the training ability will lead to a
decrease in the predictive performance, i.e., the phenomenon of
"overfitting" occurs.

To overcome this limitation, this paper adopts Genetic
Algorithm (GA) to search for the optimal combination of BP
neural network weights and thresholds in the global range to
construct the GA-BP junction temperature prediction model.
This method can significantly improve the regression
performance of the model, thus enhancing the stability and
accuracy of junction temperature prediction. The flow of the

GA-BP neural network algorithm is shown in Fig. 4.
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Fig. 4. Flow chart of the GA-BP neural network algorithm
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The initial weights and thresholds of the BP neural network are
obtained based on the individual, and the system output is
predicted after training the BP neural network with the training
data, and the sum of the absolute value of the error between the
predicted output and the desired output is taken as the
individual fitness value F, i.e.

F=kQiZilx —yil) @
Where: m is the number of junction temperature prediction data;
Xi is the i junction temperature experimental data; yi is the i
junction temperature prediction data.

111111 Optimisation of LM-based BP model parameters
Aiming at the problem that BP neural networks converge
slowly and easily fall into the local optimum, this paper
proposes a hybrid optimisation strategy combining the global
search of the Genetic Algorithm (GA) and the local fine tuning
of the Levenberg-Marquardt (LM) algorithm to construct a
GA-LM-BP junction temperature prediction model in order to
improve the convergence speed and the prediction accuracy at
the same time.

Firstly, GA optimisation was used to obtain the initial better
solution of the BP neural network weights and thresholds with
real number coding, chromosome length of 51, and population
size set to 102. The chromosome length is determined by the
total number of weights and biases in the BP neural network
structure, ensuring complete parameter mapping during genetic
encoding. The population size is selected to provide sufficient
solution diversity while maintaining acceptable computational
complexity for model training.

Individual performance was assessed with a fitness function,
and individuals with high fitness were preferentially selected
for evolution, and population diversity was maintained through
adaptive mutation strategies to avoid precocious maturation.

On this basis, the Levenberg—Marquardt (LM) algorithm is
introduced for local fine optimization. The LM algorithm is
employed due to its fast convergence characteristics and
approximate second-order optimization capability, which are
particularly suitable for reducing training time and improving
numerical stability in engineering-oriented neural network
applications. The network parameters obtained from the
Genetic Algorithm (GA) optimization are used as the initial
values of the LM algorithm, enabling efficient local refinement
following the global search process. During optimization, the
mean square error (MSE) of the training set is adopted as the
objective function, while the MSE of the validation set is
monitored simultaneously to ensure model generalization
performance. The error convergence threshold is set to 0.01,
which represents a balance between prediction accuracy
(within £1 °C) and computational efficiency.

This hybrid strategy gives full play to the global exploration
capability of GA and the fast local convergence advantage of
LM, which significantly improves the model robustness and
convergence speed. The flow of the GA-LM-BP neural
network algorithm is shown in Fig. 5.
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algorithm

I1l. EXPERIMENTAL RESULTS

1.1 Error metrics

The prediction errors are quantified using the mean absolute
percentage error (6 4p) and the root mean square error (Sgus).
which are calculated as follows:

1 i~Yi

Smar = —Xitq %| 2
m’; (xi—yi)?

Srms = |75 m ®)

These metrics are used to quantitatively evaluate prediction
performance.

111.11 Dataset and operating regions

A total of 2250 sets of valid data were obtained from the
saturation voltage drop experimental platform. The dataset was
divided into training, validation, and test subsets with a ratio of
75%:15%:15%. The parameters of the GA-LM-BP model
were set to 102 populations, with 10 winning and 10 temporary
subpopulations, and 10 iterations. For comparison, the GA-BP
model adopted a population size of 10, a crossover probability
of 0.2, and a mutation probability of 0.1.

Fig. 6 presents the relationship between the collector—emitter
saturation voltage (Vce) and the junction temperature (Tj) under
different collector current (Ic) conditions.
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A transition point around 25 A is observed in the Vce—T;
characteristics. Based on this behavior, the dataset exhibits
distinct operating regions separated by a critical current.

I Prediction performance comparison

The junction temperature prediction results obtained using the
BP, GA-BP, and GA-LM-BP models are summarized in
Tables 1 and 2 under low-current (Ic < 25 A) and high-current
(Ic > 25 A) operating conditions, respectively. Differences in
prediction results among the three approaches are observed

Fig. 6. Relationship between junction temperature and
saturation voltage under different collector currents

Table.1. Experimental and predicted junction temperatures

across the investigated operating regions.

under low-current conditions ( 1c<25A)

Junction temperature Junction temperature prediction /°C
/A | VeelV | Tel*C eXperimenfall /°C BP G,FBJ\-BP ] GA-LM-BP
6.00 0.84 75.2 80.00 83.72 86.91 78.53
6.00 0.88 35.6 40.00 42.63 51.65 44,54
8.00 0.90 74.8 80.00 80.82 86.58 74.86
8.00 0.91 55.3 60.00 67.84 74.25 61.71
10.00 | 0.95 54.5 60.00 66.38 78.73 61.47
10.00 | 0.97 34.9 40.00 47.09 58.67 40.72
18.00 | 1.10 | 1126 120.00 110.15 111.51 122.33
18.00 | 1.11 62.7 70.00 74.32 89.77 73.35
24.00 | 1.22 61.2 70.00 97.24 97.73 71.38
2400 | 1.21 324 40.00 103.94 108.24 43.59

Table.2. Experimental and predicted junction temperatures

under high-current conditions ( 1c>25A)

Junction temperature Junction temperature prediction /°C
Ic/A | VeelV | Tel°C experimenfal /°C BP GK-BP ; GA-LM-BP
28.00 | 1.30 89.1 100.00 134.05 128.15 117.91
28.00 | 1.27 49.3 60.00 41.37 47.66 55.18
32.00 | 1.33 37.2 50.00 47.01 42.82 48.77
32.00 | 1.37 96.8 110.00 109.52 114.59 113.64
40.00 | 1.48 52.2 70.00 72.78 72.94 70.45
40.00 | 151 91.9 110.00 110.41 109.06 116.93
44,00 | 1.54 49.7 70.00 70.18 71.37 69.23
44,00 | 1.49 10.3 30.00 20.75 22.98 29.29
48.00 | 1.54 7.8 30.00 24.85 14.41 27.79
48.00 | 1.65 70.7 100.00 97.22 96.23 97.45

Under low-current conditions, variations in absolute prediction
error are more evident among the tested samples. The
prediction errors produced by the three models exhibit different
levels of dispersion, suggesting non-uniform error distributions
within this operating region.

When the collector current exceeds the critical value, the
overall prediction errors decrease for all three algorithms. The
dispersion of prediction results becomes smaller, and the
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prediction values exhibit reduced error dispersion across
samples.
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Fig. 8. Relative prediction error distributions of different
algorithms under varying current conditions

Prediction error distributions differ between the two current
regions, indicating non-uniform prediction behavior under
varying operating conditions.

Table.3. Statistical comparison of prediction errors for
different algorithms

. Working
Algorithm Condition Srus Smap
- IC <25A 15.228 0.138
IC >25A 11.992 0.104
IC <25A 16.624 0.148
GA-BP IC >25A 10.026 0.093
IC <25A 13.791 0.114
GA-LM-BP = ~55eA 7.803 0.062

In addition, the statistical evaluation results listed in Table 3
summarize the corresponding RMSE and MAPE values for the
three models under both operating regions, providing a
quantitative basis for performance comparison.

IV. DISCUSSION

IVV.1 Performance difference among algorithms

The prediction performance differences observed among the
BP, GA-BP, and GA-LM-BP models mainly arise from their
distinct parameter optimization mechanisms. Conventional BP
networks rely on gradient-based learning, which makes the
training process sensitive to initial weights and susceptible to
local optima, particularly when modeling complex electro-
thermal nonlinearities.

Genetic algorithm optimization alleviates this limitation by
enabling global exploration of the weight-bias search space
and reducing dependence on initial parameter selection.
However, because GA employs stochastic evolution, its
convergence efficiency during later training stages remains
limited.

By introducing the Levenberg—Marquardt algorithm after GA
optimization, the proposed GA-LM-BP model integrates
global search with efficient local refinement. The approximate
second-order characteristics of the LM algorithm enable faster
convergence and more accurate parameter adjustment. This
complementary optimization mechanism explains the lower
prediction errors summarized in Table 3 and the error
distributions observed in Fig. 7.

V.11 Analysis under different current regions

Distinct prediction behaviors are observed under low-current
and high-current operating conditions, which can be attributed
to the conduction characteristics of the IGBT module. As
shown in Fig. 6, a transition point appears near a collector
current of 25 A, separating two operating regions with different
temperature-sensitive parameter responses.

Below the critical current, PN-junction conduction dominates
and the temperature coefficient of the saturation voltage
exhibits strong nonlinearity. Such behavior increases modeling
difficulty and leads to larger error dispersion, as reflected in the
low-current prediction results in Fig. 7.

When the collector current exceeds the critical value, MOS
channel conduction becomes dominant. The relationship
between saturation voltage and junction temperature becomes
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more regular, resulting in reduced nonlinearity and improved
consistency of electro-thermal coupling. Consequently,
prediction errors decrease and dispersion is reduced across all
models, as reflected in Figs. 7 and 8 and the statistical results
in Table 3.

IV.111 Comparison with existing studies

Several recent studies have investigated junction temperature
prediction of IGBTs using temperature-sensitive electrical
parameters and machine learning techniques. For example,
neural-network-based models optimized by genetic algorithms
have been reported to improve prediction accuracy compared
with conventional BP networks [11-12]. Other studies have
explored hybrid learning strategies or data-driven approaches
to enhance nonlinear modeling capability under specific
operating conditions [13].

Compared with these methods, the proposed GA-LM-BP
model introduces a two-stage optimization strategy that
combines global parameter exploration with efficient local
refinement. While existing GA-based approaches primarily
focus on improving initial parameter selection, the present
work further addresses convergence efficiency and prediction
stability by incorporating the Levenberg—Marquardt algorithm.
This difference contributes to the reduced prediction error
variation observed across operating regions, as summarized in
Table 3.

In addition, many previously reported models evaluate
prediction accuracy under a single operating condition or
within a limited current range. In contrast, this study explicitly
analyzes model performance across low-current and high-
current regions separated by the critical current, providing
deeper insight into robustness under practical load variation.

IV.1V Engineering and industrial application significance
From an engineering perspective, the results of this study
provide several practical implications for the application of
junction temperature prediction models in power electronic
systems.

The observed performance difference between low-current and
high-current regions indicates that prediction accuracy is
closely related to conduction mechanisms. For practical
deployment, this suggests that model validation should cover
multiple operating regions rather than relying on data collected
at a single current level.

In addition, the reduced error dispersion achieved by the GA-
LM-BP model under varying load conditions is beneficial for
real-time thermal protection and reliability assessment. Stable
prediction behavior enables more reliable threshold setting for
temperature-based protection strategies, reducing the risk of
false alarms or delayed responses.

Moreover, because the proposed method relies solely on
temperature-sensitive electrical parameters without requiring
additional temperature sensors or complex thermal modeling, it
can be integrated into existing converter control platforms with
minimal hardware modification. This characteristic makes the
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approach suitable for online junction temperature monitoring in
industrial motor drives, renewable energy converters, and
electric vehicle power electronics.

These characteristics collectively indicate that the proposed
method offers a feasible balance between prediction accuracy,
computational efficiency, and implementation complexity for
industrial IGBT temperature monitoring applications.

IV. CONCLUSION

This study proposed an IGBT junction temperature prediction
method based on a hybrid GA-LM optimized BP neural
network and validated its performance using experimentally
measured temperature-sensitive electrical parameters. The
results demonstrate that the proposed model achieves lower
prediction errors and reduced error dispersion across both low-
current and high-current operating regions when compared
with conventional BP and GA-BP approaches.

The main contribution of this work lies in the integration of
global genetic optimization and local Levenberg—Marquardt
refinement, which enhances convergence efficiency, prediction
stability, and robustness under varying load conditions. In
addition, the explicit analysis of prediction behavior across
different current regions provides deeper insight into the
influence of conduction mechanisms on electro-thermal
modeling accuracy.

Despite the improved performance, the present study is limited
by the use of experimental data obtained from a single IGBT
module under controlled laboratory conditions. The
generalization capability of the proposed model across different
device types and long-term operating environments has not yet
been fully investigated.

Future work will focus on expanding the dataset to include
multiple IGBT modules and operating scenarios, as well as
exploring real-time implementation and edge deployment
strategies for online junction temperature monitoring in
practical power electronic systems.
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