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Abstract  

The aim of this paper is to propose optimal strategies for 

dengue reduction and prevention in some community. For this 

purpose, we formulate a seasonal dengue transmission model, 

which is amended with two control variables. These variables 

express feasible control actions to be taken by an external 

decision-maker. First control variable stands for the insecticide 

spraying and thus targets to suppress the vector population. The 

second one expresses the protective measures (such as use of 

repellents, mosquito nets, and insecticide-treated clothes) that 

are destined to reduce the number of contacts (bites) between 

female mosquitoes (principal dengue transmitters) and human 

individuals. We apply the Pontryagin’s maximum principle in 

order to derive the optimal strategies for dengue control and 

then numerical analysis of these strategies is performed in order 

to choose the most sustainable one in terms of cost–benefit.  

Keywords:  Dengue, Aedes aegypti, seasonality, deterministic 

periodic system, maximum principle, optimal control. 

I. INTRODUCTION  

Dengue fever (DENV) is the arthropod-transmitted disease 

with the highest morbi-mortality in the world, also one of the 

most frequent causes of hospitalization and significant 

interruption of income potential in endemic areas (an estimated 

390 million people become infected every year, 500000 people 

suffering from severe dengue require hospitalization and 2.5% 

die), it affects the tropical and subtropical countries of Asia, the 

Pacific Islands, the Caribbean islands, Africa and Central and 

South America [1]. There are macrofactors to explain the 

increase of DENV on a global scale: climatics (global warming) 

and social, such as the increase in world population, the 

tendency to disorderly urbanization, international travel and 

poverty expressed in problems of housing, education, water 

supply, solid waste collection and others, as well as the lack of 

effective national and international programs against this 

disease and its vector; currently, vector control is the 

predominant strategy to prevent the spread of DENV because 

there are no effective, economical or tetravalent vaccine and 

treatment for disease [2]. 

DENV  belongs  to  the  family  Flaviviridae  and  there  are  

four  serotypes  formally  recognized: DEN-1, DEN-2, DEN-3 

and DEN-4 [3], but in  October  2013  a  possible  fifth  sylvatic  

serotype (DENV-5) has been detected during screening of viral 

samples taken from a 37 year old farmer admitted in hospital in 

Sarawak state of Malaysia in the year 2007 [4]; the infection by 

a serotype 1 to 4 confers permanent immunity against this 

serotype and only for a few months against the rest of the 

serotypes; if a person is infected by one of the four serotypes, 

they will never be infected by the same serotype (homologous 

immunity), but lose immunity to the other three serotypes 

(heterologous immunity) in approximately 12 weeks and then 

becomes more susceptible to developing dengue hemorrhagic 

fever [5]. The primary vector of DENV is Aedes aegypti and 

the secondary vector is Aedes albopictus, both can feed at any 

time during the day and acquires the virus through the bite to a 

sick person during his period of viremia, which goes from a day 

before the onset of fever to an average of 5 or 6 days after the 

start of the same, being able to reach up to 9-10 days 

exceptionally [6]. 

Climate variables such as temperature, humidity and rainfall 

significantly influence the mosquito development and several 

studies suggest that entomological parameters are temperature 

sensitive as the dengue fever normally occurs in tropical and 

subtropical regions [7]; the high temperature increases the 

lifespan of mosquitoes and shortens the extrinsic incubation 

period of the dengue virus, increasing the number of infected 

mosquitoes, the rainfall provides places for eggs and for larva 

development [8]. Many of these regions have shown seasonal 

patterns that directly influence the dynamics of dengue 

transmission, leading researchers to develop mathematical 

models with periodic transmission rates [9, 10] and periodic 

demographic rates due to mosquito life cycle [11, 12]. 

In Latin America, local health authorities prefer the use of 

chemicals (first option), directly targeting the reduction of 

mosquito populations, and thus they usually neglect the 

measures aimed at personal protection of human individuals 

from mosquito bites. On the other hand, WHO and PAHO 

experts call upon the implementation of Integrated 

Management Strategy for the Prevention and Control of 

Dengue [79], which is a genuine combination of the 

aforementioned options. Under this approach, the Integrated 

Vector Management (IVM) is defined by WHO as "A rational 

decision-making process for the optimal use of resources for 

vector control". However, optimization of IVM destined 

resources is not on the present-time agenda of Colombian 

decision-makers from public health authorities. 

A natural and important problem associated with epidemic 

models is to estimate whether an infection can invade and 

persist in a population, and then determine a measure of the 

effort required to control it, a threshold value used for this is 

the basic reproduction number (BRN). Diekmann et al., van 

den Driessche and Watmough [13] – [15] presented a general 

approach for the calculus of the BRN for autonomous ordinary 

differential equations models with compartmental structure. In 
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the past twenty years, many authors have extended the 

definition of the BRN to periodic environments, we highlight 

authors like Bacaër and Guernaoui (2006), Wang and Zhao 

(2008), Thiems (2009), Bacaër (2011), Inaba (2012), Bacaër 

and Ait Dads (2012), Wang and Zhao (2017) [16] – [22].  

Bacaër and Guernaoui [16] published a paper proposing a 

method to calculate the BRN for a model of cutaneous 

leishmaniasis using an approach which extends the linear 

operator method first defined by Diekmann et al. on 

autonomous systems, by adapting the next-generation operator 

method of van den Driessche and Watmough to periodic 

systems. They proved this reproductive number held the same 

threshold behaviour for the model but did not lay out an explicit 

formula for calculating it. Wang and Zhao [17] presented a 

theory of the basic reproductive number for a large class of 

periodic compartmental models that parallels Bacaër’s method 

by extending the work of van den Driessche and Watmough. 

II. MODEL FORMULATION 

We consider a model of a dengue serotype that circulates in 

some community due to the ecological interaction of humans 

and mosquitoes of the Aedes aegypti species, based on a system 

of nonlinear ordinary differential equations, whose 

assumptions are: 

1. Preserving some resemblance regarding the 

symptomatology of the disease in the hosts (humans), 

we use the following nomenclature: 

• susceptible population/non-carrier population, subscript S, 

comprising those individuals capable of catching the disease; 

• non-infectious infected population/non-infectious carrier 

population, subscript E, comprising those mosquitoes 

temporarily unable of transmitting the disease; 

• symptomatic population/infectious carrier population, 

subscript I, comprising those individuals capable of 

transmitting the disease; and 

• recovered or immune population, subscript R, including those 

individuals who acquire permanent immunity against infection. 

2. All vector population measures refer to densities of 

female mosquitoes. 

3. Alternative dengue virus hosts are not considered as 

blood sources. 

4. Dengue-induced mortality in humans or vectors is not 

considered.  

5. Carrier vectors probably transmit the virus throughout 

the lifespan. 

6. The total population of hosts is constant (births 

balance deaths). 

7. The environment changes periodically (seasonal 

variations), these variations are modelled by including 

time-periodic parameters. 

Dengue is principally vectored by the bite of the Aedes aegypti 
mosquito, the life cycle of which is influenced by seasonal 

variation in climatic variables: adult vector density is often 

higher during the wet season [25, 26], and ambient temperature 

is known to regulate dengue transmission through its effects on 

adult longevity, blood-feeding activity, and the incubation of 

the virus within the mosquito [27]. This seasonal component 

will be incorporated into the recruitment of adult vectors, daily 

mosquito bite and daily mortality through time-dependent 

periodic functions. On the other hand, it is plausible to assume 

that people experience the same rate of change in births and 

deaths not induced by dengue, given that the death rate from 

dengue is less than 1% under adequate medical care and the 

human population practically does not change on the time scale 

of several generations of mosquitoes [28, 29]. 

Most of the terms in the model can be understood by referring 

to the list below, where the meaning of the parameters is 

described. 

• m(t): natural mortality rate of adult mosquitoes. 

• h: natural mortality rate of humans. 

• 𝑙:  rate of humans who develop dengue symptoms. 

• r: human recovery rate. 

• b: per head contact rate of adult female mosquitoes on humans, 

namely, the average number of bites per mosquito per day. 

•q: probability of transmission of an infectious carrier mosquito 

by bite on a susceptible human. 

• p: probability of transmission from a symptomatic human to 

mosquito. 

• c: transfer rate of mosquitoes from non-infectious carrier to 

infectious carrier. 

• ∆(t): mosquito recruitment rate (by birth and immigration) at 

time t. 

• H(t): average number of people in the community at time t 

The transmission dynamics is interpreted according to seven 

state compartments and the flows between classes, four 

compartments for the human population and three for the vector 

population.  



International Journal of Engineering Research and Technology. ISSN 0974-3154, Volume 15, Number 1 (2022), pp. 78-94 

© International Research Publication House.  http://www.irphouse.com 

80 

III. OPTIMAL CONTROL PROBLEM 

This section is devoted to formulating a control problem to 

mitigate dengue from a community, focusing on two main 

groups of control actions: 

• Reduction of the transmissibility of the disease: This 

control action aims to reduce the number of bites taken by 

mosquitoes and received by human hosts, it includes 

educational campaigns that stimulate people’s awareness of 

removal of breeding sites, the use of repellants, mosquito nets, 

insecticide-treated clothing at home level or in workplaces [81]. 

• Suppression of the mosquito population: This 

control action aims to reduce the density and longevity of 

mosquitoes, it consists of spraying mosquito habitats and 

peripheral surfaces in a neighborhood or commune with 

insecticide or spatial treatment, capable of destroy larval 

infestations in breeding sites and may eliminate adult 

mosquitoes in the process [82]. 

We introduce two piecewise continuous real functions into 

system (2), which are also called “control variables” or simply 

‘controls’. These time-dependent controls apply for 𝑡𝑓  days, 

and are: 𝑢H(𝑡) ∈ [0,1] represents the level of effort to prevent 

contact between mosquitoes and humans (personal protection), 

in other words, the fraction of people who take preventive 

measures; 𝑢M(𝑡) ∈ [0,1]  represents the level of 

adulticide/larvicide administered in vector breeding areas 

(spatial treatment/focal treatment), in other words, the 

proportion of adult/immature mosquitoes that die due to 

insecticide application. Therefore, the mosquito-human contact 

rates are reduced by a factor (1− 𝜛1𝑢H(𝑡) ), the factor 

(1 −  𝜛2𝑢M(𝑡)) reduces the recruitment rate of the non-carrier 

mosquito population, and the natural mortality rate of 

mosquitoes increases additively with 𝜛2𝑢M(𝑡).  

After incorporating the above-mentioned controls, the 

controlled system is: 

𝑑HS

𝑑𝑡
= ℎH − (1 − 𝜛1𝑢H(𝑡))𝑞𝑏(𝑡)MIHS/𝐻 − ℎHS 

𝑑HE

𝑑𝑡
= (1 − 𝜛1𝑢H(𝑡))𝑞𝑏(𝑡)MIHS/𝐻 − (𝑙 + ℎ)HE 

𝑑HI

𝑑𝑡
= 𝑙HE − (ℎ + 𝑟)HIH

˙

R = 𝑟HI − ℎHR 

𝑑MS

𝑑𝑡
= (1 − 𝑢M(𝑡))Δ(𝑡)

− (1 − 𝜛1𝑢H(𝑡))𝑝𝑏(𝑡)HIMS/𝐻 

                            −(𝑚(𝑡) + 𝜛2𝑢M(𝑡))MS 

 

 

 

(1) 

𝑑ME

𝑑𝑡
= (1 − 𝜛1𝑢H(𝑡))𝑝𝑏(𝑡)HIMS/𝐻

− (𝑐 + 𝑚(𝑡) + 𝜛2𝑢M(𝑡))ME 

𝑑MI

𝑑𝑡
= 𝑐ME − (𝑚(𝑡) + 𝜛2𝑢M(𝑡))MI 

subject to the initial conditions at 𝑡 = 𝑡0 ≥ 0 : H
˙

S(𝑡0) >

0, H
˙

E(𝑡0) > 0, H
˙

I(𝑡0) > 0, H
˙

R(𝑡0) > 0, M
˙

S(𝑡0) >

0, M
˙

E(𝑡0) > 0, M
˙

I(𝑡0) > 0; the constant parameters verify that 

ℎ > 0, 𝑙
^

> 0, 𝑟 > 0, 𝑐 > 0,  and (𝜛1, 𝜛2, 𝑝, 𝑞) ∈ [0,1]4 ; the 

rates Δ(𝑡), 𝑏(𝑡)  and 𝑚(𝑡) are continuously differentiable, 

positive, real-valued, 𝜔 − periodic  functions; 

𝑢H(𝑡), 𝑢M(𝑡): [0, 𝑡f] ↦ [0,1]. 

The next set establishes a domain where the system is 

mathematically and epidemiologically reasonable, since it 

guarantees that the population trajectories are always positive, 

continuous and that they do not grow indefinitely over time: 

Π = {𝐱 ∈ R+
7 : Hs + HE + HI + HR = H = constant ∧ 0

≤ MS + ME + MI ≤
Δ𝑢

𝑚𝑙
}. 

Where 𝐱H = [Hs   HE   HI   HR]⊤ and 𝐱H = [MS   ME    MI]
⊤. 

The control analysis is certainly appropriate in the context of 

the persistence of the disease, therefore R0 > 1  is satisfied.  

Since we seek to minimize the number of exposed hosts, 

infected hosts, total number of mosquitoes and the cost of 

applying the controls, we consider the following objective cost 

functional: 

Minimize

𝐮 ∈ Γ
{𝐽(𝑡, 𝐱(𝑡), 𝐮(𝑡))

= ∫ (𝜌1HI(𝑡) + 𝜌2HE(𝑡) + 𝜌3MEI(𝑡)

𝑡f

0

+
𝜅1

2
𝑢H

2 (𝑡) +
𝜅2

2
𝑢M

2 (𝑡))𝑑𝑡}, 

(2) 

subject to the state system (1).  The quantities 𝜌𝑖  and 𝜅𝑗 

(constant weights), 𝑖 ∈ {1, 2, 3}  and 𝑗 ∈ {1, 2} , reflect the 

importance given to the decrease in dengue cases and vector 

density. In order for the sum described in the integrand to make 

sense, it should be considered that the weights are not only 

related to the costs of the mitigation campaign but are also 

defined so that the units of the terms that are used coincide. 

The objective is to find a function 𝐮∗(𝑡) = [𝑢H
∗ (𝑡)    𝑢M

∗ (𝑡)] in 

a set of admissible controls: 

Γ = {𝐮(𝑡) = [𝑢H(𝑡)     𝑢M(𝑡)] | 𝑢H(𝑡), 𝑢M(𝑡): [0, 𝑡f]
↦ [0,1] are piecewise continuous} 
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such that 

𝐽(𝐮∗(𝑡)) ≤ 𝐽(𝐮(𝑡)), ∀𝐮 ∈ Γ ⇔ 𝐽(𝐮∗(𝑡)) = min
𝐮∈Γ

𝐽(𝐮(𝑡)). 

III.1 Application of the Pontryagin Maximum Principle 

To determine the optimal pair [𝑢H
∗ (𝑡)    𝑢M

∗ (𝑡)] we apply the 

Pontryagin's maximum principle as described in [86], for this 

we define what is called the Hamiltonian function: 

ℋ⋆(𝐱,𝐮,𝛾𝛾) = 

 𝜌1HI + 𝜌2HE + 𝜌3MEI +
𝜅1

2
𝑢H

2 +
𝜅2

2
𝑢M

2 + 𝛾1 (ℎH − (1 −

𝜛1𝑢H)
𝑞𝑏(𝑡)MIHS

H
− ℎHS) + 𝛾2 ((1 − 𝜛1𝑢H)

𝑞𝑏(𝑡)MIHS

H
− (𝑙 +

ℎ)HE) + 𝛾3(𝑙HE − (ℎ + 𝑟)HI) + 𝛾4(𝑟HI − ℎHR) + 𝛾5 ((1 −

𝑢M)Δ(𝑡) − (1 − 𝜛1𝑢H)
𝑝𝑏(𝑡)

H
HIMS − (𝑚(𝑡) + 𝜛2𝑢M)MS) +

𝛾6 ((1 − 𝜛1𝑢H)
𝑝𝑏(𝑡)

H
HIMS − (𝑐 + 𝑚(𝑡) + 𝜛2𝑢M)ME) +

𝛾7(𝑐ME − (𝑚(𝑡) + 𝜛2𝑢M)MI) 

The optimality condition is obtained by adding penalty terms: 

𝐽⋆⋆(𝐱,𝐮) = ℋ∗(𝐱,𝐮,𝛾𝛾) + 𝜌1
⋆𝑢H + 𝜌2

⋆(1 − 𝑢H)

+ 𝜌3
⋆𝑢M + 𝜌4

⋆(1 − 𝑢M), 

(3) 

to ensure that 𝑢H  and 𝑢M  are positive fractions, and must 

satisfy: 

𝜌1
⋆𝑢H = 0, 𝜌2

⋆(1 − 𝑢H) = 0, 𝜌3
⋆𝑢M = 0,   

𝜌4
⋆(1 − 𝑢M) = 0, 𝜌𝑗

⋆ ≥ 0 for 𝑗 ∈ {1, 2, 3, 4} 

(4) 

We now derive the necessary conditions that an optimal control 

function and corresponding states must satisfy. In the following 

proposition, we present the adjoint system and the control 

characterization by applying the necessary conditions to the 

Hamiltonian. 

Proposition 1. Given an optimal control 𝒖⋆(𝑡) =
[𝑢𝐻

⋆ (𝑡)   𝑢𝑀
⋆ (𝑡)] ∈ 𝛤 and a corresponding solution 𝒙⋆(𝑡) =

[HS
⋆    HE

⋆     HI
⋆    HR

⋆     MS
⋆    ME

⋆     MI
⋆]⊤ ∈ Π  of the control 

system (1), then there are adjoint functions 𝛾𝑗 , 𝑗 ∈ {1, 2, … , 7}, 
satisfying 

𝑑𝛾1

𝑑𝑡
= 𝛾1ℎ + (𝛾1 − 𝛾2) ((1 − 𝜛1𝑢H(𝑡))𝑞𝑏(𝑡)MI

⋆/𝐻) 

𝑑𝛾
2

𝑑𝑡
= −𝜌2 + 𝛾2ℎ + (𝛾2 − 𝛾3)𝑙  

𝑑𝛾
3

𝑑𝑡
= −𝜌1 + 𝛾3ℎ + (𝛾3 − 𝛾4)𝑟 

+(𝛾5 − 𝛾6) ((1 − 𝜛1𝑢H(𝑡))𝑝𝑏(𝑡)MS
⋆/𝐻) 

𝑑𝛾
4

𝑑𝑡
= 𝛾4ℎ 

𝑑𝛾
5

𝑑𝑡
= 𝛾5(𝑚(𝑡) + 𝜛2𝑢M(𝑡)) 

            +(𝛾5 − 𝛾6) ((1 − 𝜛1𝑢H(𝑡))𝑝𝑏(𝑡)HI
⋆/𝐻) 

𝑑𝛾
6

𝑑𝑡
= −𝜌3 + 𝛾6(𝑚(𝑡) + 𝜛2𝑢M(𝑡)) + 𝑐(𝛾6 − 𝛾7) 

𝑑𝛾
7

𝑑𝑡
= −𝜌3 + 𝛾7(𝑚(𝑡) + 𝜛2𝑢M(𝑡)) 

+(𝛾1 − 𝛾2) ((1 − 𝜛1𝑢H(𝑡))𝑞𝑏(𝑡)HS
⋆/𝐻) 

 

 

 

 

 

 

(5) 

with the transversality conditions (or boundary conditions):   
𝛾𝑗(𝑡f) = 0, 𝑗 ∈ {1, 2, … , 7}. Furthermore, the optimal control is 
given by

𝐮⋆(𝑡) =

[
 
 
 
 
 
min {max{0,

𝜛1(𝛾2−𝛾1)(
𝑞𝑏(𝑡)MI

⋆HS
⋆

H
)+𝜛1(𝛾6−𝛾5)(

𝑝𝑏(𝑡)HI
⋆MS

⋆

H
)

𝜅1
} , 1}

min {max {0,
𝛾5(Δ(𝑡)+𝜛2MS

⋆)+𝛾6(𝜛2ME
⋆ )+𝛾7(𝜛2MI

⋆)

𝜅2
} , 1} ]

 
 
 
 
 

                               (6) 

 

Proof. Let 𝐞𝑖  be the 𝑖 -th canonical vector. The adjoint 

equations and the transversality conditions result from 

 

𝑑𝛾𝛾

𝑑𝑡
= −𝖣𝐱ℋ

⋆(𝐱⋆,𝐮⋆,𝛾𝛾) = ∑(
∂ℋ⋆(𝐱⋆,𝐮⋆,𝛾𝛾)

∂(𝐱⋅⋅ 𝐞𝑖)
)

7

𝑖=1

𝐞𝑖, 𝛾(𝑡f) = 00.
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To get the characterization of the optimal control we solve  𝖣𝐮𝐽
⋆⋆(𝐱⋆, 𝐮⋆) = 00 with (3) on the interior of the control set. Solving the 

equations (7) allows to characterize the optimal vector of the form (6).                  

IV. NUMERICAL RESULTS AND DISCUSSION 

IV.1 Optimality System. The optimal controls and states are 

found by solving the optimality system, which consists of the 

state system (1), the adjoint system (6), initial conditions, 

boundary conditions and the characterization of the optimal 

control. 

IV.2 Data search and algorithm implementation. Given the 

characteristics of the optimization system, it is not possible to find 

analytical solutions, and it is decided to study the solutions numerically. 

We start by defining the constants ρ1 and ρ2 in (2), for this we 

proceeded to a review of the literature about the costs generated by 

dengue in Colombia: 

 Research about the socioeconomic burden of dengue fever 

determined that in Colombia, the average cost of treatment per 

dengue event in 2010 was USD 292 for an outpatient case, USD 

600 per hospitalized case and USD 1975 for each case of 

severe dengue [88]. 

 Research about the economic impact of dengue in Colombia in 

the period 2000-2010, estimated that the average cost of 

patients with dengue was USD 599; outpatient care had an 

average cost of USD 87.9, the cost of inpatient care ranged 

between USD 670.8 and USD 6531.5, and the average cost of 

the patient with severe dengue was USD 2361 [89]. 

 Research about the multinational economic burden of the year 

2014, found that the total cost per episode of dengue varies 

from USD 141 to USD 385 for hospitalized patients and 

from USD 40 to USD 158 in the cases of outpatients, 

Colombia with the economic burden highest and Thailand 

with the lowest [90]. 

These investigations included two main elements: the costs of medical 

treatment and the social cost of temporary disability leave of an 

infected person. Therefore, the total average cost for a dengue 

patient is assumed equal to USD 600 and the average daily cost (in 

U.S. dollars) of an infected person is set as ρ1 = ρ2 = 48 (USD 600 

divided by 1/(𝑟 + 𝑙)  =  12.5  days of sickness). To fix the 

maximum mortality rate due to insecticide spraying, 𝜛2, a review 

of the literature about studies of the effect of insecticides on 

mosquitoes was also carried out and it was found that the range of the 

lethality rate of an insecticide is rather wide, between 15% and 98% [91, 

92]. Therefore, it would be useful to consider two types of insecticide: 

relatively cheap insecticide with low lethality of 20% and twice 

expensive insecticide with high lethality of 80%. In other words, 

there will be two alternative values for 𝜛2 : 𝜛2= 0.20 and 𝜛2= 

0.80. 

  According to [93], the most common repellants can reduce the number 

of mosquito bites by up to 95% when applied with the appropriate 

frequency, also mosquito bed nets and insecticide-treated clothing reduce 

the biting rate [94]. Therefore, two options are considered for 

controlling the biting rate: (1) 𝜛1= 0.30, which means that all measures 

aimed at personal protection are capable of reducing the biting rate by 

30%; (2) 𝜛1 = 0.70, which means that such measures can reduce the 

biting rate by 70%. We suppose that unit cost of the first option is 

twice less than that of the second option; in practical terms, this cost 

should express unit expenditure for educational campaigns that target 

to motivate human population for taking measure of personal 

protection (use of repellents, mosquito bed nets, insecticide-treated 

clothes, removal of mosquito breeding places within and around 

households, among others). According to [95], the high-efficiency 

unit expenditure for educational campaigns that aim to motivate the human 

population to take personal protection measures (use of repellents, 

mosquito nets, insecticide-treated clothing, elimination of mosquito 

breeding sites in and around households, among others) is 

approximately 50 times less than the total medical and social unit 

cost of having an infected individual, that is, κ1 = ρ1/50. 

In the absence of precise information about the unit cost of the high-

lethality insecticide, we assume that it is 10 times less than total 

medical and societal unit cost of having one infected individual, i.e., 
κ2 = ρ1/10. There is also no plausible information regarding the 

average daily cost of having one carrier mosquito expressed by the 

weight coefficient ρ3 and, on the other hand, the number of infected 

people is effectively correlated with the number of carrier mosquitoes [96, 

97, 98]. then ρ3 = 0 is established. The model represented by the 

equations (2) that includes the demographic dynamics in each population 

is suitable for modeling endemic situations characterized by the 

persistence of the disease at low levels. Therefore, the end time was set 

𝑡𝑓 =  365 days (equivalent to one calendar year). 

As final data, numerous theoretical studies have modeled seasonality 

utilizing periodic forcings to describe vital processes and the 

transmission of parasites or viruses [9, 99]. The population of adult 

mosquitoes, fluctuates on a temporary scale at the rate of an average 

large number of eggs hatched per unit of time, survivors of development 

through the intermediate aquatic stages (larvae and pupae), so we 

suppose a birth function in the form [100]: 

[
 
 
 
 𝜅1𝑢H + 𝜛1(𝛾1 − 𝛾2) (

𝑞𝑏(𝑡)MI
⋆HS

⋆

H
) + 𝜛1(𝛾5 − 𝛾6) (

𝑝𝑏(𝑡)HI
⋆MS

⋆

H
) + 𝜌1

⋆ − 𝜌2
⋆

𝜅2𝑢M(𝑡) − 𝛾5(Δ(𝑡) + 𝜛2MS
⋆) − 𝛾6(𝜛2ME

⋆) − 𝛾7(𝜛2MI
⋆) + 𝜌3

⋆ − 𝜌4
⋆ ]

 
 
 
 

= [
0
0
] 

 

(7) 
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Δ(𝑡) = 𝛿 (1 − 휀2sin (
2𝜋𝑡

365
+ 𝜓2)). 

It is assumed that the contact rate undergoes a simple harmonic 

oscillation [101]: 

𝑏(𝑡) = 𝑏 (1 + 휀1cos (
2𝜋𝑡

365
+ 𝜓1)). 

Here, Δ  and 𝑏  rates are periodic functions of time with a 

common period 𝜔 = 365  days, or 1 year. The phase shifts 

𝜓1, 𝜓2 ∈ [−2𝜋, 2𝜋] play no dynamical role, they are included 

to align Δ and 𝑏 when comparing model time series with data 

[74].  The coefficients 𝑏 and 𝛿  represent the base transmission 

rate and the average vector recruitment rate, respectively. The 

parameters 휀1, 휀2 ∈ (0,1) measure the degree of seasonality of 

the rates [75]. The variation of the mosquito mortality rate is 

assumed constant, 𝑚(𝑡) ≡ 𝑚  over ℝ+  (baseline mortality 

mosquito rate), in order to reduce the computational effort, also 

𝜓1 < 0 and 𝜓2 = 0 are assumed so that at the beginning of the 

year the contact rate is always at a local minimum and 

recruitment rate is always at a local maximum. 

To numerically compute the BRN, it was necessary to 

rewrite the integral operator of the following infection in the 

form of (3) in [56], where an algorithm is proposed for the R0 

computation of periodic systems of ordinary differential 

equations. This algorithm was implemented in MATLAB with 

the data in Table 1 from which R0 had a reasonable 

approximation. In Figure 3, we plot R0 when the parameter �̅� 

varies and the other parameters remain fixed. Consistent with 

the biological interpretation of R0, R0 is inversely proportional 

to m, the graph is seen as the branch of an equilateral hyperbola 

in the first quadrant passing through the points R0 =0.9088 if 

�̅� = 1/10, R0 = 1 if �̅� = 1/10.75 and R0 = 1.5409 if �̅� = 1=15. 

Thus, whenever the vector mortality rate is greater than 1/10.75 

mosquitoes per day, dengue persists in the community. 

Numerical solutions to the optimality system (30) have been 

carried out by running a code implemented in MATLAB of the 

forward-backward sweep method developed by Lenhart and 

Workman [102, 104], using the constant parameters tabulated 

in Table 1. 

Table 1: Parameters and initial data described in the model and their ranges of possible values.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV.3 Control strategies for dengue reduction and prevention. 

Utilizing different upper bounds for 𝒖⋆(𝑡) [𝑢𝐻
⋆ (𝑡)   𝑢𝑀

⋆ (𝑡)]  
together with their respective unit costs, we can suggest eight 

control strategies whose descriptions are given in Table 2. 

Under these strategies the numerical solution of the optimal 

control problem is presented.

 Parameter Value(s) Range Source(s) Dimensions Parameter  Value(s) Range Source(s) Dimensions 

  �̅� 1/15 1/20 - 1/4 [61, 62] day-1  H 

1

75.6 × 365
   [71]  day-1 

  r 1 - 7 1/7 - 1/2 [63, 64] day-1  𝑙 1- 5.5  1/11 - 1 [72, 70] day-1 

  b 1 - 3 0.3- 1 [65, 66] day-1  𝛿 35000   Assumed Dimensionless 

  p 0.51 0.5 - 1 [67, 68] Dimensionless (휀1, 휀2) (0.6, 0.2)  0 - 1 Assumed Dimensionless. 

  q 0.42 0.1 - 1 [67? ] Dimensionless (𝜓1, 𝜓2) ( -3, 0)   Assumed Dimensionless 

  c 0.10 0.08 - 0.13 [63, 70, 90] day-1  H 304218   [73] Dimensionless 

 𝜛1 0.20, 0.80 0.15 - 0.98 [91, 92] day-1  𝜌1 = 𝜌2 48  47.9 - 76.5 [88, 89] U.S. Dollar 

 𝜛2 0.30, 0.70 0 - 0.95 [93, 94] Dimensionless 𝜅1 0.02𝜌1   [108] U.S. Dollar 

  𝑡𝑓  365  Assumed day-1 𝜅1 0.1𝜌1   Assumed U.S. Dollar 

 Initial condition # 
H

S0 

H
E0 

                     

H
I0 

H
R0  M

S0 

                M
E0 

M
I0 

   IC3  92263 5   3  211947 419969  0 31 

   IC4  92266 6  4 211942 419970  30 0 
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Table 2: Description of control strategies for model (1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1-(S1 and S2) and 2- A display the optimal state paths 

and controls when strategy 1 (or S1) and strategy 2 (or S2) are 

applied. As expected, the use of highly lethal insecticides 

guaranteed a more pronounced decline in the latent population, 

the symptomatic population, and the carrier populations during 

the first trimester, but thereafter these state trajectories have a 

similar behavior of the type of insecticide applied. Both optimal 

controls guarantee a remarkable reduction in the average 

number of dengue events at the end of the calendar year 

compared to the integral curves of the uncontrolled system 

(Figure 1-Uncontrolled), although their profiles are not that 

different. The high lethality insecticide (S2, dotted line and 

dashed line) requires an application with all its capacity which 

varies from 0.134 to 0.534, apparently periodically, with cycles 

close to 3 days during an estimated initial 35 days due to its 

high cost, but in the period of 35 to 68 days of the process, the 

amount of this type of insecticide will be damped above 0.534, 

and from now on it falls oscillatingly below 0.534; while the 

low lethality insecticide (S1, solid line and dash-dot line) 

requires a percentage of fumigation fluctuating cyclically every 

3 days approximately within the maximum interval [0.134, 

0.534] during 100 initial estimated days (because it is a fordable 

both in the sense economic and ecological), but in the period of 

100 to 141 days of the process, the amount of this type of 

insecticide will be damped above 0.534, and from now on it 

falls oscillatingly below 0.534. Furthermore, the 

implementation of S1 will require more insecticide, while the 

total cost of insecticide spraying will be cheaper for S1 than for 

S2. 

Figures 1-(S1 and S2) and 2-B display the optimal state 

trajectories and controls when strategy 3 (or S3) (solid line and 

dash-dot line) and strategy 4 (or S4) (dotted line and dashed 

line) are applied. The pro les of the controls are similar to each 

other and require that proportions of susceptible people in the 

range of 0.134 to 0.534 and in a pattern that is repeated every 3 

days, take all the protective measures throughout, at least, 138 

days. However, the total cost of implementation of S3 will be 

higher than that of S4, S4 requires sustaining a fluctuating level 

of personal protection in the interval [0.134, 0.534] almost all 

year round, while S3 requires this same mode of full force 

operation one month in advance. When the protective control 

leaves the maximum efficiency range, it begins to oscillate to 

decreasing values that progressively approach zero at t = 365. 

The difference in the latent population, the symptomatic 

population and the carrier populations in terms of average 

numbers of individuals refers, comparing figures 1-(S3 and S4) 

and 1-Uncontrolled, could not justify an increase in costs, 

regardless of whether the time period of higher demand for S3 

exceeds that of S4. 

The figures 3-(S5 and S6) and 4-A  help to visualize the results 

of the application of strategy 5 (or S5) and strategy 6 (or S6). 

Both strategies require that from the beginning the controls are 

exercised with full force for up to 31 days, periodically in their 

maximum efficiency range 0.134-0.534 and at the same 

intensity. When uH(t) and uM(t) leave the range of maximum 

efficiency, they experience ripples that are progressively 

dampened until that the control ceases to apply, although the 

application of the S5 requires raising the values of uH(t) more 

than when applying S6 and conversely the application of S5 

requires reducing the values of uM(t) less than when applying 

S6. Strategies 5 and 6 produce almost the same effect in terms 

of reducing carrier mosquitoes and infected humans. Finally, 

the figures 3-(S7 and S8) and 4- B help to visualize the results 

of the application of strategy 7 (or S7) and strategy 8 (or S8). 

Both strategies require that from the beginning the spatial-focal 

treatment and personal protection be exercised with full-force 

Strategy # Description 𝜛2 𝜅2 𝜛1 𝜅1 

S1 Low-lethality cheap insecticide only 0.2 2.4 0 0 

S2 High-lethality expensive insecticide only 0.8 4.8 0 0 

S3 High-efficiency expensive protective measures only 0 0 0.7 0.96 

S4 Low-efficiency cheap protective measures only 0 0 0.3 0.48 

S5 High-lethality expensive insecticide combined 0.8 4.8 0.7 0.96 

 with high-efficiency expensive protective measures     

S6 High-lethality expensive insecticide combined 0.8 4.8 0.3 0.48 

 with low-efficiency cheap protective measures     

S7 Low-lethality cheap insecticide combined with 0.2 2.4 0.7 0.96 

 high-efficiency expensive protective measures     

S8 Low-lethality cheap insecticide combined with 0.2 2.4 0.3 0.48 

 low-efficiency cheap protective measures     
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for 86 days, in amounts that change ’periodically’ in their 

maximum efficiency range 0.134-0.534 and are almost the 

same for both controls. When uH(t) y uM(t) leave the maximum 

efficiency range, they begin to oscillate to decreasing values 

that are progressively approaching zero, although for the S8 it  

will be necessary to carry out more spraying and greater citizen 

discipline with the protective measures unlike the S7. Optimal 

states do not undergo perceptible changes with strategies 7 and 

8. 

Fig. 1. Optimal state solutions of system (30) under strategies 1 to 4 in Table 2 grouped in pairs, blocks 

                                                  and                            in the same Cartesian plane. The specification strategy (line style−initial condition) for 

the subpopulations is: Uncontrolled(--CI3;--CI4), S5(--CI3; -.CI4), S6(--CI3; ..CI4), S7(--CI3; -.CI4), S8(--

CI3; ..CI4). Consult CI3, CI4 and the other parameters in Table 1.
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 Fig. 2: Numerical solutions of the optimal controls under strategies 1 to 4 in Table 2, with the values of the 

parameters in Table 1. Each subfigure contains four control curves distributed in two strategies by two initial conditions: 

S1 (--CI3; -.CI4), S2 (--CI3; ..CI4) and  S3 (--CI3; -.CI4), S4 (-CI3;..CI4).
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Fig. 3. Optimal state solutions of (30) under strategies 5 to 8 in Table 2 grouped in pairs, blocks    

                                           and                                              in the same Cartesian plane. The specification strategy (line style−initial 

condition) for the subpopulations is: Uncontrolled(--CI3;--CI4), S5(--CI3; -.CI4), S6(--CI3; ..CI4), 

S7(--CI3; -.CI4), S8(--CI3; ..CI4). Consult CI3, CI4 and the other parameters in Table 1.
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Fig. 4. Numerical solutions of the optimal controls under strategies 5 to 8 in Table 2, with the values of the parameters 

Table 1. Each subfigure contains four control curves distributed in two strategies by two initial conditions: S5 (--

CI3; -.CI4), S6 (--CI3; ..CI4) and  S7 (--CI3; -.CI4), S8 (-  CI3;..CI4). 
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CONCLUSION 

A set of strategies were derived, and each strategy was 

obtained under different vector and disease control 

actions (fumigation with insecticides of high and low 

lethality and cost, personal protection against mosquito 

bites with high and low efficiency and costs, and their 

respective combinations). The numerical analysis of the 

model allows forecasting and evaluating the impact of 

each optimal strategy and graphically determining the 

appropriate or outstanding intervention program to face 

the dengue epidemic (short-term actions) and the 

persistence of dengue during inter-epidemic periods 

(long-term actions). 

The educational campaign (use of repellants, mosquito nets 

and adequate clothing) only reduces the number of dengue 

patients not as well as the fumigation campaign alone, and 

of all the strategies stood out the intervention policy that 

consists of combining: (i) fumigation of an expensive 

insecticide with high lethality and (ii) deciding between 

applying low-efficiency or high-efficiency personal 

protection measures (use of repellents, mosquito nets, 

insecticide-treated clothing, among others), that is, 

people can moderate the effectiveness of its protective 

environment from mosquitoes. 

Another aspect of the “best strategy” to highlight was that 

its efficiencies varied periodically in a fixed interval and 

in a shorter maximum term than the other strategies, 

passing as an oscillatory decrease throughout the rest of 

the year. This type of strategy is consistent with the 

guidelines established by WHO and PAHO [88], that is, 

all people residing in dengue endemic areas should not 

fully rely on the use of insecticides on a large scale, it 

is equally It is important to be more aware of the presence 

of the disease and to take adequate measures for personal 

protection against mosquito bites. 
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