Weighted Statistical Approximation by Gamma Type operators *

Jieyu Huang ${ }^{1}$ and Qiulan Qi $^{\dagger 1,2}$
${ }^{1}$ School of Mathematical Sciences, Hebei Normal University, Shijiazhuang, 050024, P. R. China.
${ }^{2}$ Hebei Key Laboratory of Computational Mathematics and Applications, Shijiazhuang, 050024, P. R. China.

Abstract

In this paper, with the help of Korovkin type theorem, we study the weighted statistical approximation properties of a kind of Gamma type operators which preserve $e^{2 \mu x}(\mu>0)$. Further, the rate of statistical convergence is given.

Keywords: Gamma type operators; Korovkin type theorem; weighted statistical approximation.

AMS(2010) subject classification: 41A25, 41A36, 40A30.

1. INTRODUCTION

The famous Gamma operator, which was introduced by Lupas and M \ddot{u} lle $r^{[1]}$, is given by

$$
G_{n}(f ; x)=\frac{1}{n!} \int_{0}^{\infty} e^{-\tau} \tau^{n} f\left(\frac{n x}{\tau}\right) d \tau, \quad x \in(0, \infty)
$$

The Gamma operators were studied extensively ${ }^{[1-5]}$. Draganov and Ivanov ${ }^{[2]}$ gave a brief summary of the results related to the rate of global convergence in terms of weighted K-functionals and contained in [3,4,7]. In order to improve the approximation effect, Deveci, Acar and Alago $z^{[8]}$ introduced a refinement of Gamma operators which preserve constants and $e^{2 \mu}(\mu>0)$ functions. The concept of statistical convergence, which was first introduced by Fast ${ }^{[9]}$ in 1951, is a generalization of the ordinary convergence. Several extensions of statistical approximation processes have appeared in literature [10-15] and references therein.
In this paper, we investigate the statistical approximation properties of the operators $G_{n, \mu}(f ; x)$ which preserve 1 and $e^{2 \mu x}(\mu>0)$.

2. THE PROPERTIES OF THE OPERATORS

Let us consider the following operators for each positive integer n and $\mu>0^{[8]}$:

$$
G_{n, \mu}(f ; x)=\frac{1}{n!} \int_{0}^{\infty} e^{-\tau} \tau^{n} f\left(\frac{x^{2} \tau}{n \alpha}\right) d \tau, \quad(x>0)
$$

where

$$
\alpha=\frac{2 e^{\frac{2 x \mu}{n+1}} \mu x^{2}}{n\left(e^{\frac{2 x}{n+1}}-1\right)} .
$$

[^0]Now, we recall the following results of the operators, the details can be found in [8].
Lemma 2.1. ${ }^{[8, \text { Lemma 1] }}$ For $\mu>0, x \in(0, \infty)$, then

$$
\begin{gathered}
G_{n, \mu}(1 ; x)=1 \\
G_{n, \mu}\left(e^{\mu t} ; x\right)=\left(1+\frac{\mu x^{2}}{n \alpha-\mu x^{2}}\right)^{n+1} ; \\
G_{n, \mu}\left(e^{2 \mu t} ; x\right)=e^{2 \mu x}
\end{gathered}
$$

Lemma 2.2. ${ }^{[8, \text { Lemma 3] }}$ For $\lambda \in(-\infty,+\infty), \mu>0, x \in$ $(0, \infty)$, one has

$$
\lim _{n \rightarrow+\infty} G_{n, \mu}\left(e^{-\lambda t} ; x\right)=e^{-\lambda x}
$$

Remark 1. $\quad C^{*}(0, \infty) \quad=$ $\left\{f \in C(0, \infty): \lim _{x \rightarrow+\infty} f(x)\right.$ exists and is finite $\}$. The space of such functions is endowed with the uniform norm $\|f\|_{\infty}:=\sup _{x \in(0, \infty)}|f(x)|$.
Remark 2. ${ }^{[8, \text { Theorem } 2]}$ Let $\mu>0$, for the sequence of operators $G_{n, \mu}: C^{*}(0, \infty) \rightarrow C^{*}(0, \infty)$, the convergence $G_{n, \mu}(f ; x) \rightarrow f(x)$ as $n \rightarrow \infty$ is uniformly in $(0, \infty)$, for all $f \in C^{*}(0, \infty)$.

3. NOTATIONS OF STATISTICAL CONVERGENCE

The following definitions, notations can be found in [9-12].
Definition 3.1. ${ }^{[10]}$ Suppose that $E \subseteq N=\{1,2,3, \cdots\}$, $E_{n}=\{k \leq n: k \in E\}$. The natural density of E is denoted by

$$
\delta(E)=\lim _{n \rightarrow \infty} \frac{\left|E_{n}\right|}{n}
$$

here $\left|E_{n}\right|$ denotes the cardinality of the enclosed set E_{n}. A sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to L , if, for every $\varepsilon>0, \delta\left(\left\{k \in N:\left|x_{k}-L\right| \geq \varepsilon\right\}\right)=0$. In symbol, we write $S-\lim x=L$ or $S-\lim _{n} x_{n}=L$.
Remark 3. Every convergent sequence is statistically convergent, but its converse is not always valid.
Definition 3.2. ${ }^{[15]}$ A given non-negative infinite summability matrix $A=\left(a_{n, k}\right)$ is said to be regular if $\lim _{n}(A x)_{n}=$ $\lim _{n} \sum_{k=1}^{\infty} a_{n, k} x_{k}=L$ whenever $\lim _{k} x_{k}=L$. Then the sequence $x=\left(x_{k}\right)$ is said to be A-statistically convergent to L, denoted by $S_{A}-\lim _{n} x_{n}=L$ or $S_{A}-\lim x=L$, provided that for each $\varepsilon>0, \lim _{n} \sum_{k:\left|x_{k}-L\right| \geq \varepsilon} a_{n, k}=0$.
Definition 3.3. ${ }^{[15]}$ Let $p=\left(p_{k}\right)$ be a sequence of nonnegative numbers such that $p_{0}>0$ and $P_{n}=\sum_{k=0}^{n} p_{k} \rightarrow \infty$ as $n \rightarrow \infty$. Matrix $A=\left(a_{n, k}\right)$ is non-negative infinite regular summability. Then $x=\left(x_{k}\right)$ is said to be
weighted A-statistically convergent to L, if, for any $\varepsilon>0$, $\lim _{n} \frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} \sum_{m: p_{m}\left|x_{m}-L\right| \geq \varepsilon} a_{k, m}=0$. In this case, we write $S_{A}^{\bar{N}}-\lim _{n} x_{n}=L$ or $S_{A}^{\bar{N}}-\lim x=L$.
Definition 3.4. ${ }^{[15]}$ Let $A=\left(a_{n, k}\right)$ be a non-negative regular summability matrix, $p=\left(p_{k}\right)$ be a sequence of non-negative numbers such that $p_{0}>0$ and $P_{n}=\sum_{k=0}^{n} p_{k} \rightarrow \infty$ as $n \rightarrow \infty$, and (u_{n}) be a positive non-increasing sequence. Then $x=\left(x_{k}\right)$ is weighted A-statistically convergent to L with the rate $o\left(u_{n}\right)$, if for each $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{u_{n} P_{n}} \sum_{k=0}^{n} p_{k} \sum_{m: p_{m}\left|x_{m}-L\right| \geq \varepsilon} a_{k, m}=0
$$

This relation is denoted by $S_{A}^{\bar{N}}-o\left(u_{n}\right)-\lim _{n} x_{n}=L$.

4. SOME STATISTICAL APPROXIMATION THEOREMS

In this section, we estimate the properties of the weighted A-statistical convergence of the operators $G_{n, \mu}(f ; x)$.
Theorem 4.1. Let $A=\left(a_{n, k}\right)$ be a non-negative regular summability matrix. For $n \in N$ and $f \in C^{*}(0, \infty)$, one has

$$
S_{A}^{\bar{N}}-\lim _{n \rightarrow \infty}\left\|G_{n, \mu}(f ; x)-f(x)\right\|_{\infty}=0
$$

if and only if

$$
\begin{gathered}
S_{A}^{\bar{N}}-\lim _{n \rightarrow \infty}\left\|G_{n, \mu}(1 ; x)-1\right\|_{\infty}=0 \\
S_{A}^{\bar{N}}-\lim _{n \rightarrow \infty}\left\|G_{n, \mu}\left(e^{-t} ; x\right)-e^{-x}\right\|_{\infty}=0 \\
S_{A}^{\bar{N}}-\lim _{n \rightarrow \infty}\left\|G_{n, \mu}\left(e^{-2 t} ; x\right)-e^{-2 x}\right\|_{\infty}=0
\end{gathered}
$$

Proof. We only need to prove the sufficient conditions. For $f \in C^{*}(0, \infty)$, there is a constant $C>0$, such that $|f(x)| \leq$ C. Therefore, $|f(t)-f(x)| \leq 2 C, 0<t, x<+\infty$. For any $\varepsilon>0$, there is a $\delta(\varepsilon)>0$ such that $|f(t)-f(x)|<\varepsilon$, $\forall\left|e^{-t}-e^{-x}\right|<\delta$. Consider $D(\delta)$ of the form $D(\delta)=\{(x, t) \in$ $\left.(0, \infty):\left|e^{-t}-e^{-x}\right|<\delta\right\}$, we obtain

$$
\begin{aligned}
|f(t)-f(x)| & \leq|f(t)-f(x)|_{D(\delta)}+|f(t)-f(x)|_{(0, \infty)-D(\delta)} \\
& \leq \varepsilon+2 C \frac{\left(e^{-t}-e^{-x}\right)^{2}}{\delta^{2}} \\
& =\varepsilon+\frac{2 C}{\delta^{2}} \Omega
\end{aligned}
$$

where $\Omega=\left(e^{-t}-e^{-x}\right)^{2}$. For $m \in N$, by a direct computation, we write

$$
\begin{aligned}
& G_{m, \mu}(\Omega ; x)=\left[G_{m, \mu}\left(e^{-2 t} ; x\right)-e^{-2 x}\right] \\
& \quad-2 e^{-x}\left[G_{m, \mu}\left(e^{-t} ; x\right)-e^{-x}\right]+e^{-2 x}\left[G_{m, \mu}(1 ; x)-1\right] .
\end{aligned}
$$

The term $G_{m, \mu}(f ; x)-f(x)$ can be written as

$$
\begin{aligned}
& \left|G_{m, \mu}(f ; x)-f(x)\right| \leq \varepsilon G_{m, \mu}(1 ; x) \\
+ & \frac{2 C}{\delta^{2}} G_{m, \mu}(\Omega ; x)+\left|f(x)\left(G_{m, \mu}(1 ; x)-1\right)\right| \\
\leq & \varepsilon+\frac{2 C}{\delta^{2}}\left\|G_{m, \mu}\left(e^{-2 t} ; x\right)-e^{-2 x}\right\|_{\infty} \\
+ & \frac{4 C}{\delta^{2}}\left\|G_{m, \mu}\left(e^{-t} ; x\right)-e^{-x}\right\|_{\infty} \\
\leq & \frac{4 C}{\delta^{2}}\left(\| G_{m, \mu}\left(e^{-2 t} ; x\right)\right. \\
- & \left.e^{-2 x}\left\|_{\infty}+\right\| G_{m, \mu}\left(e^{-t} ; x\right)-e^{-x} \|_{\infty}\right)
\end{aligned}
$$

For a given $\varepsilon^{\prime}>0$, such that $0<\varepsilon<\varepsilon^{\prime}$. If we define the following sets:

$$
\begin{gathered}
E=\left\{m \in N: p_{m}\left|G_{m, \mu}(f ; x)-f(x)\right| \geq \varepsilon^{\prime}\right\} \\
E_{1}=\left\{m \in N: p_{m}\left|G_{m, \mu}\left(e^{-t} ; x\right)-e^{-x}\right| \geq \frac{\varepsilon^{\prime}-\varepsilon}{8 C} \delta^{2}\right\} \\
E_{2}=\left\{m \in N: p_{m}\left|G_{m, \mu}\left(e^{-2 t} ; x\right)-e^{-2 x}\right| \geq \frac{\varepsilon^{\prime}-\varepsilon}{8 C} \delta^{2}\right\},
\end{gathered}
$$

we see that $E \subset E_{1} \cup E_{2}$,

$$
\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} \sum_{m \in E} a_{k, m} \leq \frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} \sum_{m \in E_{1} \cup E_{2}} a_{k, m}
$$

Taking the limit $n \rightarrow \infty$ and noting the conditions, we obtain

$$
S_{A}^{\bar{N}}-\lim _{n \rightarrow \infty}\left\|G_{n, \mu}(f ; x)-f(x)\right\|_{\infty}=0
$$

Remark 4. Here we use the Korovkin test functions $\left\{1, e^{-x}, e^{-2 x}\right\}$. We can also use the usual test functions $\left\{1, x, x^{2}\right\}$.
Theorem 4.2. Let $A=\left(a_{n, k}\right)$ be a non-negative regular summability matrix. If the following condition yields:

$$
S_{A}^{\bar{N}}-o\left(u_{n}\right)-\lim _{n} \omega\left(f ; h_{n}\right)=0 \quad \text { on } \quad(0, \infty)
$$

where $\omega(f ; \delta)$ is the classical modulus of continuity which is defined $b y{ }^{[3]}$

$$
\omega(f ; \delta)=\sup _{x, t>0,|t-x| \leq \delta}|f(x)-f(t)|
$$

Let $h_{n}=\left\|G_{n, \mu}\left((t-x)^{2} ; x\right)\right\|_{\infty}^{\frac{1}{2}}$, then for $f \in C_{B}(0, \infty):=$ $\{f \in C(0, \infty): f$ are bounded and continuous functions $\}$, we have

$$
S_{A}^{\bar{N}}-o\left(u_{n}\right)-\lim _{n}\left\|G_{n, \mu}(f ; x)-f(x)\right\|_{\infty}=0
$$

Proof. For $f \in C_{B}(0, \infty), m \in N$, one has

$$
\begin{aligned}
& \left|G_{m, \mu}(f ; x)-f(x)\right| \leq \omega(f ; \xi)\left|G_{m, \mu}\left(\frac{|t-x|}{\xi}+1 ; x\right)\right| \\
& \quad \leq \omega(f ; \xi)+\omega(f ; \xi) \frac{1}{\xi}\left|G_{m, \mu}\left((t-x)^{2} ; x\right)\right|^{\frac{1}{2}}
\end{aligned}
$$

Let $\xi:=h_{m}$, taking supermum over $x \in(0, \infty)$ on both sides, we obtain

$$
\begin{aligned}
& \left\|G_{m, \mu}(f ; x)-f(x)\right\|_{\infty} \leq \omega\left(f ; h_{m}\right) \\
& +\omega\left(f ; h_{m}\right) \frac{1}{h_{m}}\left\|G_{m, \mu}\left((t-x)^{2} ; x\right)\right\|_{\infty}^{\frac{1}{2}} \\
& =2 \omega\left(f ; h_{m}\right)
\end{aligned}
$$

Defining the following sets for a given $\varepsilon>0$:

$$
\begin{gathered}
F=\left\{m \in N: p_{m}\left|G_{m, \mu}(f ; x)-f(x)\right| \geq \varepsilon\right\}, \\
F_{1}=\left\{m \in N: p_{m} \omega\left(f ; h_{m}\right) \geq \frac{\varepsilon}{2}\right\},
\end{gathered}
$$

it is easy to see that $F \subset F_{1}$, and

$$
\frac{1}{u_{n} P_{n}} \sum_{k=0}^{n} p_{k} \sum_{m \in F} a_{k, m} \leq \frac{1}{u_{n} P_{n}} \sum_{k=0}^{n} p_{k} \sum_{m \in F_{1}} a_{k, m} .
$$

Hence,

$$
S_{A}^{\bar{N}}-o\left(u_{n}\right)-\lim _{n}\left\|G_{n, \mu}(f ; x)-f(x)\right\|_{\infty}=0
$$

REFERENCES

[1] Lupas A., Müller M., Approximationseigenschaften der Gammaoperatoren, Math. Z., 98(1967), 208-226.
[2] B. R. Draganov, K. G. Ivanov, A characterization of weighted approximations by the Gamma and the Post-Widder operators, in: B. Bojanov, M.Drinov(Eds), Proceedings of the International Conference on "Constructive Theory of Functions, Varna 2005", Academic Publishing House, Sofia, 2006, 80-87.
[3] Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, NewYork, (1987).
[4] V. Totik, The Gamma operators in L^{p} space, Publ. Math. Debrecen 32(1985), 43-55.
[5] B. R. Draganov, K. G. Ivanov, A characterization of weighted approximations by the Post-Widder and the Gamma operators, Journal of Approximation Theory, 146(2007), 3-27.
[6] H. Karsli, On convergence of general Gamma type operators, Anal. Theo. Appl., 27(3)(2011), 288-300.
[7] S. Guo, L. Liu, Q. Qi, G. Zhang, A strong converse inequality for left Gamma quasi-interpolants in L_{p}-spaces, Acta Math. Hungar, 105(1-2)(2004), 17-26.
[8] S. N. Deveci, T. Acar, O. Alagoz, Approximation by Gamma type operators, Math. Meth Appl. Sci. 2020,43,2772-2782. https://doi.org/10.1002/mma.6083.
[9] H. Fast, Sur la convergence statistique, Colloquium Mathematicum, 2(1951), 241-244.
[10] S. A. Mohiuddine, A. Alotaibi, B. Hazarika, Weighted A-Statistical convergence for sequences of positive linear operators, The Sci. World J, 2014(No.437863), 1-8. http://dx.doi.org./10.1155/2014/437863.
[11] U. Kadak, Weighted statistical convergence based on generalized difference operator involving (p, q)-gamma function and its applications to approximation theorems, J Math. Anal. Appl, 448(2017), 1663-1650.
[12] S. A. Mohiuddine, Statistical weighted A-summability with application to Korovkin's type approximation theorem, Journal of Inequalities and Applications, 2016: 101. Doi.10.1186/s13660-016-1040-1.
[13] O. Duman, C. Orhan, Statistical approximation by positive linear operator, Studia Math., 161:2(2004), 187-197.
[14] O. Duman, C. Orhan, Rates of A-statistical convergence of positive linear operators, Appl. Math. Lett., 18(2005), 1339-1344.
[15] F. Özger, On new Bézier bases with Schurer polynomials and corresponding results in approximation theory, Commun. Fac. Sci. Univ.Ank, Sec A1 Math. Stat, 69(1)(2020), 376-393.

[^0]: *This work is partially supported by Science and Technology Project of Hebei Education Department (ZD2019053), Science Foundation of Hebei Normal University (L2020203), NSF of China (11871191).
 ${ }^{\dagger}$ Correspondence author. E-mail: qiqiulan@163.com

