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Abstract
In this paper, with the help of Korovkin type theorem, we study
the weighted statistical approximation properties of a kind of
Gamma type operators which preserve e2µx (µ > 0). Further,
the rate of statistical convergence is given.
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1. INTRODUCTION

The famous Gamma operator, which was introduced by Lupas
and Müller[1], is given by

Gn(f ;x) =
1

n!

∫ ∞

0

e−ττnf(
nx

τ
)dτ, x ∈ (0,∞).

The Gamma operators were
studied extensively[1−5]. Draganov and Ivanov[2] gave a brief
summary of the results related to the rate of global convergence
in terms of weighted K-functionals and contained in [3,4,7]. In
order to improve the approximation effect, Deveci, Acar and
Alagoz[8] introduced a refinement of Gamma operators which
preserve constants and e2µ (µ > 0) functions. The concept of
statistical convergence, which was first introduced by Fast[9]

in 1951, is a generalization of the ordinary convergence.
Several extensions of statistical approximation processes have
appeared in literature [10-15] and references therein.

In this paper, we investigate the statistical approximation
properties of the operators Gn,µ(f ;x) which preserve 1 and
e2µx (µ > 0).

2. THE PROPERTIES OF THE OPERATORS

Let us consider the following operators for each positive
integer n and µ > 0[8]:

Gn,µ(f ;x) =
1

n!

∫ ∞

0

e−ττnf(
x2τ

nα
)dτ, (x > 0)

where

α =
2e

2xµ
n+1µx2

n(e
2µx
n+1 − 1)

.
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Now, we recall the following results of the operators, the
details can be found in [8].
Lemma 2.1.[8, Lemma 1] For µ > 0, x ∈ (0,∞), then

Gn,µ(1;x) = 1;

Gn,µ(e
µt;x) = (1 +

µx2

nα− µx2
)n+1;

Gn,µ(e
2µt;x) = e2µx.

Lemma 2.2.[8, Lemma 3] For λ ∈ (−∞,+∞), µ > 0, x ∈
(0,∞), one has

lim
n→+∞

Gn,µ(e
−λt;x) = e−λx.

Remark 1. C∗(0,∞) :=
{f ∈ C(0,∞) : limx→+∞ f(x) exists and is finite}. The
space of such functions is endowed with the uniform norm
∥ f ∥∞:= supx∈(0,∞) |f(x)|.
Remark 2.[8, Theorem 2] Let µ > 0, for the sequence of
operators Gn,µ : C∗(0,∞) → C∗(0,∞), the convergence
Gn,µ(f ;x) → f(x) as n → ∞ is uniformly in (0,∞), for all
f ∈ C∗(0,∞).

3. NOTATIONS OF STATISTICAL CONVERGENCE

The following definitions, notations can be found in [9-12].
Definition 3.1.[10] Suppose that E ⊆ N = {1, 2, 3, · · · },
En = {k ≤ n : k ∈ E}. The natural density of E is denoted
by

δ(E) = lim
n→∞

|En|
n

,

here |En| denotes the cardinality of the enclosed set En. A
sequence x = (xk) is said to be statistically convergent to L,
if, for every ε > 0, δ({k ∈ N : |xk − L| ≥ ε}) = 0. In
symbol, we write S − limx = L or S − limn xn = L.
Remark 3. Every convergent sequence is statistically
convergent, but its converse is not always valid.
Definition 3.2.[15] A given non-negative infinite summability
matrix A = (an,k) is said to be regular if limn(Ax)n =
limn

∑∞
k=1 an,kxk = L whenever limk xk = L. Then the

sequence x = (xk) is said to be A-statistically convergent to
L, denoted by SA− limn xn = L or SA− limx = L, provided
that for each ε > 0, limn

∑
k:|xk−L|≥ε an,k = 0.

Definition 3.3.[15] Let p = (pk) be a sequence of nonnegative
numbers such that p0 > 0 and Pn = Σn

k=0pk → ∞
as n → ∞. Matrix A = (an,k) is non-negative infinite
regular summability. Then x = (xk) is said to be
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weighted A-statistically convergent to L, if, for any ε > 0,
limn

1
Pn

Σn
k=0pk

∑
m:pm|xm−L|≥ε ak,m = 0. In this case, we

write SN̄
A − limn xn = L or SN̄

A − limx = L.
Definition 3.4.[15] Let A = (an,k) be a non-negative regular
summability matrix, p = (pk) be a sequence of non-negative
numbers such that p0 > 0 and Pn =

∑n
k=0 pk → ∞ as

n → ∞, and (un) be a positive non-increasing sequence. Then
x = (xk) is weighted A-statistically convergent to L with the
rate o(un), if for each ε > 0,

lim
n→∞

1

unPn

n∑
k=0

pk
∑

m:pm|xm−L|≥ε

ak,m = 0.

This relation is denoted by SN̄
A − o(un)− limn xn = L.

4. SOME STATISTICAL APPROXIMATION
THEOREMS

In this section, we estimate the properties of the weighted
A-statistical convergence of the operators Gn,µ(f ;x).
Theorem 4.1. Let A = (an,k) be a non-negative regular
summability matrix. For n ∈ N and f ∈ C∗(0,∞), one has

SN̄
A − lim

n→∞
∥Gn,µ(f ;x)− f(x)∥∞ = 0,

if and only if

SN̄
A − lim

n→∞
∥Gn,µ(1;x)− 1∥∞ = 0,

SN̄
A − lim

n→∞
∥Gn,µ(e

−t;x)− e−x∥∞ = 0,

SN̄
A − lim

n→∞
∥Gn,µ(e

−2t;x)− e−2x∥∞ = 0.

Proof. We only need to prove the sufficient conditions. For
f ∈ C∗(0,∞), there is a constant C > 0, such that |f(x)| ≤
C. Therefore, |f(t) − f(x)| ≤ 2C, 0 < t, x < +∞. For
any ε > 0, there is a δ(ε) > 0 such that |f(t) − f(x)| < ε,
∀|e−t−e−x| < δ. Consider D(δ) of the form D(δ) = {(x, t) ∈
(0,∞) : |e−t − e−x| < δ}, we obtain

|f(t)− f(x)| ≤ |f(t)− f(x)|D(δ) + |f(t)− f(x)|(0,∞)−D(δ)

≤ ε+ 2C
(e−t − e−x)2

δ2

= ε+
2C

δ2
Ω,

where Ω = (e−t − e−x)2. For m ∈ N , by a direct
computation, we write

Gm,µ(Ω;x) = [Gm,µ(e
−2t;x)− e−2x]

−2e−x[Gm,µ(e
−t;x)− e−x] + e−2x[Gm,µ(1;x)− 1].

The term Gm,µ(f ;x)− f(x) can be written as

|Gm,µ(f ;x)− f(x)| ≤ εGm,µ(1;x)

+
2C

δ2
Gm,µ(Ω;x) + |f(x)(Gm,µ(1;x)− 1)|

≤ ε+
2C

δ2
∥ Gm,µ(e

−2t;x)− e−2x ∥∞

+
4C

δ2
∥ Gm,µ(e

−t;x)− e−x ∥∞

≤ 4C

δ2
(∥ Gm,µ(e

−2t;x)

− e−2x ∥∞ + ∥ Gm,µ(e
−t;x)− e−x ∥∞),

For a given ε′ > 0, such that 0 < ε < ε′. If we define the
following sets:

E = {m ∈ N : pm|Gm,µ(f ;x)− f(x)| ≥ ε′};

E1 = {m ∈ N : pm|Gm,µ(e
−t;x)− e−x| ≥ ε′ − ε

8C
δ2};

E2 = {m ∈ N : pm|Gm,µ(e
−2t;x)− e−2x| ≥ ε′ − ε

8C
δ2},

we see that E ⊂ E1 ∪ E2,

1

Pn

n∑
k=0

pk
∑
m∈E

ak,m ≤ 1

Pn

n∑
k=0

pk
∑

m∈E1∪E2

ak,m.

Taking the limit n → ∞ and noting the conditions, we obtain

SN̄
A − lim

n→∞
∥ Gn,µ(f ;x)− f(x) ∥∞= 0.

Remark 4. Here we use the Korovkin test functions
{1, e−x, e−2x}. We can also use the usual test functions
{1, x, x2}.
Theorem 4.2. Let A = (an,k) be a non-negative regular
summability matrix. If the following condition yields:

SN̄
A − o(un)− lim

n
ω(f ;hn) = 0 on (0,∞),

where ω(f ; δ) is the classical modulus of continuity which is
defined by[3]

ω(f ; δ) = sup
x,t>0,|t−x|≤δ

|f(x)− f(t)|.

Let hn =∥ Gn,µ((t − x)2;x) ∥
1
2∞, then for f ∈ CB(0,∞) :=

{f ∈ C(0,∞) : f are bounded and continuous functions}, we
have

SN̄
A − o(un)− lim

n
∥ Gn,µ(f ;x)− f(x) ∥∞= 0.

Proof. For f ∈ CB(0,∞),m ∈ N , one has

|Gm,µ(f ;x)− f(x)| ≤ ω(f ; ξ)|Gm,µ(
|t−x|

ξ + 1;x)|

≤ ω(f ; ξ) + ω(f ; ξ) 1ξ |Gm,µ((t− x)2;x)| 12 .

Let ξ := hm, taking supermum over x ∈ (0,∞) on both sides,
we obtain

∥ Gm,µ(f ;x)− f(x) ∥∞≤ ω(f ;hm)

+ω(f ;hm)
1

hm
∥ Gm,µ((t− x)2;x) ∥

1
2∞

= 2ω(f ;hm).
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Defining the following sets for a given ε > 0 :

F = {m ∈ N : pm|Gm,µ(f ;x)− f(x)| ≥ ε},

F1 = {m ∈ N : pmω(f ;hm) ≥ ε

2
},

it is easy to see that F ⊂ F1, and

1

unPn

n∑
k=0

pk
∑
m∈F

ak,m ≤ 1

unPn

n∑
k=0

pk
∑

m∈F1

ak,m.

Hence,

SN̄
A − o(un)− lim

n
∥ Gn,µ(f ;x)− f(x) ∥∞= 0.
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[15] F. Özger, On new Bézier bases with Schurer polynomials
and corresponding results in approximation theory,
Commun. Fac. Sci. Univ.Ank, Sec A1 Math. Stat,
69(1)(2020), 376-393.

97


