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Abstract: 
 

This paper deals with unsteady MHD flow of a Walters fluid (Model B’) an 
open inclined channel of width “2a’ and depth ‘d’ under gravity, with 
naturally permeable bed, the walls of channel being normal to the surface of 
the bottom, under the influence of a uniform transverse magnetic field. The 
free surface is exposed to atmospheric pressure. A uniform tangential stress is 
applied at the free surface in the direction of flow. The naturally permeable 
bottom of the channel is taken at an angle β with the horizontal. Flow of fluid 
both in porous medium and in free fluid region is studied with the same 
pressure gradient. The exact solution of velocity distribution has been obtained 
by using Laplace transform and finite Fourier sine transform techniques. We 
have evaluated the velocity distribution and the flux of the fluid in different 
cases of time dependent pressure gradient g(t) viz., i) constant, ii) 
exponentially decreasing function of time and iii) cosine function of time. The 
effects of magnetic parameter ‘M’, viscoelastic parameter ‘K0’, permeable 
parameter ‘K’, Reynolds number ‘R’ and time ‘t’ on velocity distribution ‘u’ 
and flux ‘Cf’ in three different cases are investigated. 
 
Key words: Non-Newtonian fluid, Open inclined channel, Porous medium, 
Magnetic field. 
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INTRODUCTION  
The flow of a liquid in an open inclined channel with a free surface has wide 
applications in the designs of drainage, irrigation canals, flood discharge channels and 
coating to paper rolls etc. Vanoni [11] has evaluated velocity distribution in open 
channels. Johnson [6 ] has studied the rectangular roughness in the open channel. 
SatyaPrakash [7] considered analytically a viscous flow down an open inclined 
channel with plane bottom and vertical walls under the action of gravity. The free 
surface was exposed to atmospheric pressure and bottom was taken as impermeable. 
Bakhmeteff [1], Henderson [5] and Chow [3] have discussed many types of open 
channel flows. Gupta etal [4] have studied the flow of a viscous fluid through a 
porous medium down an open inclined channel. VenkataRamana&Bathaiah [12] have 
studied the flow of a hydro magnetic viscous fluid down an open inclined channel 
with naturally permeable bed under the influence of a uniform transverse magnetic 
field. Unsteady laminar flow of an incompressible viscous fluid between porous and 
parallel flat plates have been investigated by Singh [8], taking (i) both plates are at 
rest (ii) Generalized plane coutte flow. 
 Rheology is the science of deformation and flow of matter. The aim of rheology is 
to predict the deformation on flow resulting from the application of a given force 
system to a body or vice versa. The subject of rheology is of technological importance 
as in many branches of industry, the problem arises of designing apparatus to 
transport or process substances, which can't governed by the classical stress, strain 
velocity relations. In the manufacture of rayon, nylon or other textiles fibers, 
viscoelastic effects are encountered when the spinning solutions are transported or 
forced through spinnerets and in the manufacture of lubricating greases and rubber. 
Further viscoelastic fluid occurs in the food industry, e.g. emulsions, pastes and 
condensed milk. 
 Non-Newtonian fluids have wide importance in the present day technology and 
industries. The Walters fluid is one of such fluid. The constitutive equations 
governing motion of Walters fluid (Model B') are 
 ௜ܲ௞ = ௜௞݃݌− + ௜ܲ௞  1.1 
 ௜ܲ௞

ᇱ = ଴݁௜௞ߟ2 − ଴݁௜௞ܭ2  1.2 
 
 The equation of motion and continuity are 
ߩ  ቀడఔ೔

డ௧
+ ௜௝ቁߥ௝ߥ = − ௝ܲ + ௜ܲ௝ 1.3 

௜௝ߥ   ୀ ଴  1.4 
 
wherePik is the stress tensor, is the density, p is the pressure, gik is the metric tensor 

of a fixed coordinate system x', iis the velocity vector, in the contra variant form is 
 ݁௜௞ = డ௘೔ೖ

డ௧
+ ௝݁௜௞ߥ − ௞௝݁௜௝ߥ −  ௜௝݁௜௞ 1.5ߥ

 
 It is converted derivative of the deformation rate tensor eik defined by 
 2݁௜௞ = ௜௞ߥ + ௞௜ߥ  1.6 
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 Here, h0 is the limiting viscosity at small rates of shear which is given by 

଴ߟ  = ∫ ܰ(߬)݀߬ஶ
଴  1.7 

଴ܭ  = ∫ ߬ܰ(߬)݀߬ஶ
଴  1.8 

 
 N(t) being the relaxation spectrum as introduced by Walters [13, 14] . This 
idealized model is a valid approximation of Walters’s fluid (Model B') taking very 
short memory into account so that terms involving 
 ∫ ߬ஶܰ(߬)݀߬, ݊ ≥ 2ஶ

଴  1.9 
 
 Have been neglected. 
 In this paper an attempt has been made to study the unsteady MHD flow of a 
Walters fluid (Model B') down an open inclined channel under gravity of width '2a' 
and depth 'd', with naturally permeable bed, the walls of the channel being normal to 
the surface of the bottom, under the influence of a uniform transverse magnetic filed. 
A uniform tangential stress is applied at the free surface in the direction of flow. The 
naturally permeable bottom of the channel is taken at an angle 'b' with the horizontal. 
We have evaluated the velocity distribution by using Laplace transform and finite 
Fourier Sine transform techniques. We have evaluated the velocity distribution and 
flux of the fluid in different cases of time dependent pressure gradient g (t), viz.,  
(i) The fluid flows in the steady state for t 0 
(ii) Unsteady state occurs at t > 0 and  
(iii) Unsteady motion is influenced by time-dependent pressure gradient. The velocity 
distribution and flux have been obtained in some particular cases i.e., when 

(i) g(t) = C  
(ii) g(t) = C e -bt 
(iii) g(t) = C Cos bt; where C and b are constants.  

 
 The effects of magnetic parameter 'M', viscoelastic parameter K0, porosity 
parameter K, Reynolds number 'R' and time 't' are investigated on the velocity 
distribution and the flux of the fluid. 
 
 
2. FORMULATION & SOLUTION OF THE PROBLEM 
The unsteady MHD flow of a Walters fluid (Model B') down an open inclined channel 
of width '2a' and depth 'd' under gravity, with naturally permeable bed, the walls of 
channel being normal to the surface of the bottom, under the influence of a uniform 
transverse magnetic field. A uniform tangential stress 'S' is applied at the free surface. 
The free surface is exposed to atmospheric pressure. The naturally permeable bottom 
of the channel is taken at an angle 'b' (o<bp/2) with the horizontal. The x-axis is taken 
along central line in the direction of the flow at the free surface, y-axis along the 
depth of the channel and the z-axis along the width of the channel. A uniform 
magnetic field of intensity 'Ho' is introduced in the y-direction. Therefore, the velocity 
and magnetic fields are given by and . The fluid being slightly conducting, the 
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magnetic Reynolds number much less than unity, so that the induced magnetic field 
can be neglected in comparison with the applied magnetic field [Sparrow &Cess(10)]. 
Fluid flow in porous medium is governed by Darcy's law and fluid in free flow region 
is governed by Naveir-stoke's equations. 
 In the absence of any input electrical field the equations of continuity and motion 
of the unsteady MHD Walters fluid ( Model B') flowing down an open inclined 
channel of t>0 are 
 డ௨

డ௫
= 0  2.1 

ߩ  డ௨
డ௧

= − డ௣
డ௫

+ ݃ߩ sinߚ + ߤ ቀడ
మ௨

డ௬మ
+ డమ௨

డ௭మ
ቁ − ௢ܭ ቀ

డయ௨
డ௧డ௬మ

+ డయ௨
డ௧డ௭మ

ቁ − ௢ଶܪ௘ଶߤߪ  2.2 ݑ

 − డ௣
డ௬

+ ݃ߩ  cosߚ = 0 2.3 

 − డ௣
డ௭

= 0  2.4 
 
 The Darcy's equation for the flow in the porous medium is 
 ܳ = ௄

ఓ
ቀ− డ௣

డ௬
+ ݃ߩ  sin  ቁ 2.5ߚ

 
 Where  
 .is the density of the fluidߩ 
 g is the acceleration due to gravity 
 p is the pressure 
 is the coefficient of viscosityߤ 
 ଴is the non-Newtonian parameterܭ 
 K is the permeability of the medium  
 Q is the velocity in the porous medium 
 ௘is the magnetic permeabilityߤ 
 is the electrical conductivity of the fluidߪ 
 ଴is the magnetic fieldܪ 
 
 The boundary conditions are 
ݐ  ≤ ݑ,0 =  ଴ݑ
ݐ  > 0, ݖ = ±ܽ, ݑ = 0 
ݕ  = ߤ,0 డ௨

డ௬
= ܵ 

ݕ  = ݑ,݀ =  ஻ݑ
 ቀడ௨

డ௧
ቁ
௬ୀௗ

= ௦భ
√௄

஻ݑ) − ܳ) 2.6 

 
 Where  
 ଴is the initial velocityݑ 
 ஻is the slip velocityݑ 
 ଵis the dimensionless constant depending on the porous materialݏ 
 S is the uniform tangential stress 
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 We introducing the following non-dimensional quantities. 
∗ݑ  = ௨

௎
∗஻ݑ  = ௨ಳ

௎
 ܳ∗ = ொ

௎
 

 ܳ஻∗ = ொಳ
௎

∗଴ܭ  = ௄బ
ఘௗమ

∗ܭ  = ௄
ௗమ

 

∗ݐ  = ௧ఔ
ௗమ

∗ݕ  = ௬
ௗ
∗݌  = ௣

ఘ௎మ
 

∗ݖ  = ௭
ௗ
 ܵ∗ = ௌ

ఘ௎మ
 

 
 In the view of the above non-dimensional quantities equations 2.2&2.5reduces to ( 
dropping ‘ * ‘ ) 
 డ௨

డ௧
= −ܴ డ௣

డ௧
+ ோ

ி
sinߚ + డమ௨

డ௬మ
+ డమ௨

డ௭మ
଴ܭ− ቀ

డయ௨
డ௧డ௬మ

+ డయ௨
డ௧డ௭మ

ቁ −  2.8 ݑܯ

 ܳ = ܴܭ− ቀడ௣
డ௧
− ୱ୧୬ ఉ

ி
ቁ 2.9 

 
 Where  
 ܴ = ௎ௗ

ఔ
(Reynolds number) 

ܨ  = ௎మ

௚ௗ
 (Froude number) 

ܯ  = ఙఓ೐మ ுబమௗమ

ఓ
(Magnetic parameter) 

 
 The non-dimensional boundary conditions are 
ݐ  ≤ ݑ,0 =  ଴ݑ
ݐ  > 0, ݖ = ܮ± ቀ= ௔

ௗ
ቁ , ݑ = 0 

ݕ  = 0, డ௨
డ௬

= ܴܵ 
ݕ  = ݑ,1 =  ஻ݑ
 ቀడ௨

డ௧
ቁ
௬ୀଵ

= ௦భ
√௄
ቀ௄ோ
ி

sin ߚ − ܴܭ డ௣
డ௫
−  ஻ቁ 2.10ݑ

 
 Assuming  
 −ܴ డ௣

డ௫
+ ோ

ி
sin ߚ = ݐݐܽ(ݐ)݃ > 0 

 = ݐݐܽܲ ≤ 0 2.11 
 
 Substituting ݖ = ଶ௅క

గ
−  in equation 2.8, we getܮ

 డ௨
డ௧

= (ݐ)݃ + డమ௨
డ௬మ

+ గమ

ସ௅మ 
డమ௨
డకమ

− ଴ܭ ቀ
డయ௨
డ௧డ௬మ

+ గమ

ସ௅మ 
డయ௨
డ௧డకమ

ቁ  2.12 ݑܯ−
 
 The boundary conditions 2.10 reduces to 
ݐ  ≤ ݑ,0 =  ଴ݑ
ݐ  > 0, ߦ = ݑ݀݊ܽߨ,0 = 0 
ݕ  = 0, డ௨

డ௬
= ܴܵ 

ݕ  = ݑ,1 =  ஻ݑ
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 ቀడ௨
డ௧
ቁ
௬ୀଵ

= ௦భ
√௄

−(ݐ)݃ܭ]  ஻] 2.13ݑ

 
 Since ݑ଴ is the initial velocity i.e., ≤ 0, by taking g(t)=P in equation 2.12, ݑ଴ is 
given by 
଴ݑ  = ஻ݑ

௖௛ఈ௬
௖௛ఈ

+  ଶ
గ
∑ ଵିୡ୭ୱ௡గ

௡
∞
௡ୀଵ ቂ ௉

ఈమ
ቀ1− ௖௛ఈ௬

௖௛ఈ
ቁ − ௌோ

ఈ
௦௛ఈ(ଵି௬)

௖௛ఈ
ቃ sin  2.14 ߦ݊

 
 Where  
 sh = sinh 
 ch = cosh 
 th = tanh 
 
஻ݑ  =  ଶ

గ
∑ ଵିୡ୭ୱ௡గ

௡
∞
௡ୀଵ

୅
୆

sin  2.15 ߦ݊
ܤ  = ௦భ

√௄
+  ߙℎݐߙ 

ݍ  = ௡గ
ଶ௅

 2 
ଶߙ  = ଶݍ +  ܯ
 
 Now to solve equation 2.12, we take Laplace transform to equation 2.12 w.r.t. 't' 
defined as 
,ݕ)തݑ  ,ߦ (ݏ = ∫ ,ݕ)ݑ ,ߦ ∞(ݐ

଴ ݁ି௦௧݀ݐ, ݏ > 0 2.16 
 
 We get 
 డమ௨ഥ

డ௬మ
+ గమ

ସ௅మ
డమ௨ഥ
డకమ

− ெା௦
ଵି௄బ௦

തݑ = ଵ
ଵି௄బ௦

௉௄బெ
ఈమ

௖௛ఈ௬
௖௛ఈ

+  ௉௄బ௤
మ

ఈమ
− −(ݏ)̅݃  ଴ݑ

 + ௌோெ௄బ
ఈమ

௦௛ ఈ(ଵି௬)
௖௛ ఈ

− ଶߙ ଴ܭ஻ݑ ௖௛ ఈ௬
௖௛ ఈ

 2.16 
(ݏ)̅݃  = ∫ ∞(ݐ)݃

଴ ݁ି௦௧ ݀2.17 ݐ 
 
 The transformed boundary conditions are 
ݕ  = 0, డ௨ഥ

డ௬
= ௌோ

௦
 

ݕ  = തݑ,1 =  ത஻ݑ
 ቀడ௨ഥ

డ௧
ቁ
௬ୀଵ

= ௦భ
√௄
ቂ௄௉
௦
−  ത஻ቃ 2.18ݑ

 
 On taking the finite Fourier sine transform of equation 2.17 w.r.t. defined as 
,ܰ,ݕ)∗തݑ  (ݏ = ∫ ,ݕ)തݑ ,ߦ ∞(ݐ

଴ sinܰߦ  2.19 ߦ݀ 
 
 We get 
∗തݑ  = ∑ ଵିୡ୭ୱேగ

ே
∞
ேୀଵ

஺
஻
ቄଵ
௦

+ ଵା௄బ ఈమ

(ଵି௄బ ௦)(ఈమିுమ)
ቅ 

 −∑ ଵିୡ୭ୱேగ
ே

∞
ேୀଵ ቄ− ௉

௦ఈమ
+ ௉

ఈమுమ
ଵି௄బ ௤మ

ଵି௄బ ௦
+ ௚ത(௦)

ுమ(ଵି௄బ ௦)
ቅ ௖௛ ு௬
௖௛ ௬

 



Unsteady Mhd Flow of a Non-Newtonian Fluid Down 63 
 

 

+ ෍
1 − cosܰߨ

ܰ

∞

ேୀଵ

ቊ−
1
ݏ ቆ

ܲ
ଶߙ

ܿℎ ݕߙ
ܿℎ ߙ +

ܴܵ
ߙ
1)ߙ ℎݏ − (ݕ

ܿℎ ߙ ቇ +
ܲ

ଶܪଶߙ
1 ଶݍ ଴ܭ−

1 − ݏ ଴ܭ

+
(ݏ)̅݃

−ଶ(1ܪ  ቋ(ݏ ଴ܭ

 − ∑ ଵିୡ୭ୱ ேగ
ே

∞
ேୀଵ

஺
஻

ଵା௄బ ఈమ

(ଵି௄బ ௦)(ఈమିுమ)
௖௛ ఈ௬
௖௛ ఈ

 2.20 
 
 The transformed boundary conditions are 
ݕ  = 0, డ௨ഥ

∗

డ௬
= ∑ ௌோ

௦
ଵିୡ୭ୱ ேగ

ே
∞
ேୀଵ  

ݕ  = ∗തݑ,1 = ∗ത஻ݑ  
 ቀడ௨ഥ

∗

డ௧
ቁ
௬ୀଵ

= ∑ ௦భ
√௄

ஶ
ேୀଵ ቂ௄௉

௦
ଵିୡ୭ୱேగ

ே
− ∗ത஻ݑ ቃ 2.21 

 
 On inverting finite Fourier sine transform as given by Sneddon [9] 
,ݕ)തݑ  ,ߦ (ݏ = ଶ

஠
∑ uത∗(y, N, s)ஶ
୒ୀଵ sinܰ2.22 ߦ 

 
 In equation 2.20 we get 
തݑ  = ௨ಳ

௦
௖௛ ு௬
௖௛ ு

− ௨ಳ
௦
ቀଵା௄బ ఈమ

ଵାெ௄బ
ቁ ቀ௖௛ ு௬

௖௛ ு
− ௖௛ ఈ௬

௖௛ ఈ
ቁ 

+ ଶ
గ
∑ ଵିୡ୭ୱேగ

ே
ஶ
ேୀଵ ቄ ௉

௦ఈమ
ቀ௖௛ ு௬
௖௛ ு

− ௖௛ ఈ௬
௖௛ ఈ

ቁ + ቀ ௉
ఈమுమ

ଵି௄బ ௤మ

ଵି௄బ ௦
+ ௚ത(௦)

ுమ(ଵି௄బ ௦)
ቁ ቀ1− ௖௛ ு௬

௖௛ ு
ቁ −

ௌோ
௦ఈ

௦௛ ఈ(ଵି௬)
௖௛ ఈ

ቅ sinܰ2.23 ߦ 
 
 On inverting the Laplace transform as defined by Snedden [9] 
,ݕ)ݑ  ,ߦ (ݐ = ଵ

ଶగ௜ ∫ ,ݕ)തݑ ,ߦ ఊା௜ஶ(ݏ
ఊି௜ஶ ݁௦௧ ݀2.24 ݐ 

 
 In equation 2.23 we obtain 
ݑ  = ஻ݑ

௖௛ ఈ௬
௖௛ ఈ

−∑ (ିଵ)ೝ(ଶ௥ାଵ)గ ௨ಳௗ೟ ୡ୭ୱ௔ೝ௬௘షಲೝ೟

௔ೝమାఈమ
ஶ
௥ୀ଴  

 + ଶ
గ
∑ ଵିୡ୭ୱேగ

ே
ஶ
ேୀଵ ൜∑ ସ(ିଵ)ೝ ௉ ୡ୭ୱ௔ೝ௬௘షಲೝ೟

(ଶ௥ାଵ)గ൫௔ೝమାఈమ൯
ஶ
௥ୀ଴  

 + ∫ ℎ(ݑ)ଵ
଴  ݃(1− ݑ݀(ݑ − ௌோ

௦ఈ
௦௛ ఈ(ଵି௬)

௖௛ ఈ
ቅ sinܰ2.25 ߦ 

 
 Where 
 ܽ௥ = ݎ2) + 1) గ

ଶ
 

௥ܣ  = ௔ೝమାఈమ

ଵି௄బ൫௔ೝమା௤మ൯
 

 ℎ(ݑ) = ∑ ସ(ିଵ)ೝ ୡ୭ୱ ௔ೝ௬௘షಲೝ೟

(ଶ௥ାଵ)గൣଵି௄బ൫௔ೝమା௤మ൯൧
ஶ
௥ୀ଴  

 ݀௧ = ൫ଵା௄బ ఈమ൯ି൫௔ೝమାఈమ൯
ଵି௄బ൫௔ೝమା௤మ൯
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 If we take the limit ܭ଴ → ܭ,0 → ܯ ݀݊ܽ 0 → 0in equation 2.25 then we get the 
velocity distribution in the case of viscous non-magnetic and impermeable bed. In this 
case the velocity distribution is 
ݑ  = ଼௅మ

గయ
ቀ–ܴ డ௣

డ௫
+ ோ

ி
sinߚቁ∑ ଵିୡ୭ୱேగ

ேయ
ஶ
ேୀଵ ቀ1 − ௖௛ ௤௬

௖௛ ௤
ቁ  2.26 ߦܰ ݊݅ܵ

 
 Which is in agreement with SatyaPrakash [7]. 
 Now we evaluated the velocity distribution and flux in three different cases viz.,  
 
Case 1 
When g(t) = C, using in equation 2.25, we get 
ݑ  = ஻ݑ

௖௛ ఈ௬
௖௛ ఈ

+ ∑ (ିଵ)ೝ(ଶ௥ାଵ)గ ௨ಳௗ೟ ୡ୭ୱ௔ೝ௬௘షಲೝ೟

௔ೝమାఈమ
ஶ
௥ୀ଴  

 + ଶ
గ
∑ ଵିୡ୭ୱேగ

ே
ஶ
ேୀଵ ൜∑ ସ(ିଵ)ೝ(௉ି஼) ୡ୭ୱ௔ೝ௬௘షಲೝ೟

(ଶ௥ାଵ)గ൫௔ೝమାఈమ൯
ஶ
௥ୀ଴  

 + ஼
ఈమ
ቀ1 − ௖௛ ఈ௬

௖௛ ఈ
ቁ − ௌோ

௦ఈ
௦௛ ఈ(ଵି௬)

௖௛ ఈ
ቅ sinܰ2.27 ߦ 

௙ܥ  = ∫ ∫ ଵݖ݀ ݕ݀ ݑ
௬ୀ଴

௅
௭ୀି௅  

஻ݑ= 
௧௛ ఈ
ఈ

+  ∑ ଶ ௨ಳௗ೟௘షಲೝ೟

௔ೝమାఈమ
ஶ
௥ୀ଴  

 + ସ௅
గమ
∑ ቀଵିୡ୭ୱ ேగ

ே
ቁ
ଶ

ஶ
ேୀଵ ൜∑ ଼ (௉ି஼)௘షಲೝ೟

(ଶ௥ାଵ)మగమ൫௔ೝమାఈమ൯
ஶ
௥ୀ଴  

 + ஼
ఈమ
ቀ1 − ௧௛ ఈ௬

௧௛ ఈ
ቁ − ௌோ

ఈమ
ቀ௖௛ ఈିଵ

௖௛ ఈ
ቁቅ 2.28 

 
Case 2 
When g(t) = C e-bt, b>0, using in equation 2.25 we get 
ݑ  = ஻ݑ

௖௛ ఈ௬
௖௛ ఈ

+ ∑ (ିଵ)ೝ(ଶ௥ାଵ)గ ௨ಳௗ೟௘షಲೝ೟ ୡ୭ୱ௔ೝ௬
௔ೝమାఈమ

ஶ
௥ୀ଴  

 + ଶ
గ
∑ ଵିୡ୭ୱேగ

ே
ஶ
ேୀଵ ൜∑ ସ(ିଵ)ೝ ௉ ௘షಲೝ೟ ୡ୭ୱ௔ೝ௬

(ଶ௥ାଵ)గ൫௔ೝమାఈమ൯
ஶ
௥ୀ଴ − ௌோ

ఈ
௦௛ ఈ(ଵି௬)

௖௛ ఈ
+

∑ ସ(ିଵ)ೝ ஼ ୡ୭ୱ ௔ೝ௬
(ଶ௥ାଵ)గൣଵି௄బ൫௔ೝమା௤మ൯൧

௘ష್೟ି௘షಲೝ೟

஺ೝି௕
ஶ
௥ୀ଴ ቅ sinܰ2.29 ߦ 

௙ܥ  = ஻ݑ
௧௛ ఈ
ఈ

+ ∑ ଶ ௨ಳௗ೟௘షಲೝ೟

௔ೝమାఈమ
ஶ
௥ୀ଴  

 + ସ௅
గమ
∑ ቀଵିୡ୭ୱ ேగ

ே
ቁ
ଶ

ஶ
ேୀଵ ൜∑ ଼ ௉ ௘షಲೝ೟

(ଶ௥ାଵ)మగమ൫௔ೝమାఈమ൯
ஶ
௥ୀ଴  

 +∑ ଼஼
(ଶ௥ାଵ)మగమൣଵି௄బ൫௔ೝమା௤మ൯൧

௘ష್೟ି௘షಲೝ೟

஺ೝି௕
ஶ
௥ୀ଴ − ௌோ

ఈమ
ቀ௖௛ ఈିଵ

௖௛ ఈ
ቁൠ 2.30 

 
Case 3 
When g(t) = C Cos bt, using in equation 2.25 we get 

ݑ = ஻ݑ
ܿℎ ݕߙ
ܿℎ ߙ + ෍

(−1)௥(2ݎ + ஻݀௧ݑ ߨ(1 ݁ି஺ೝ௧ cos ܽ௥ݕ
ܽ௥ଶ + ଶߙ

ஶ

௥ୀ଴
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+
2
෍ߨ

1 − cosܰߨ
ܰ

ஶ

ேୀଵ

൝෍
4(−1)௥  ܲ ݁ି஺ೝ௧cos ܽ௥ݕ

ݎ2) + ௥ଶܽ) ߨ(1 + (ଶߙ

ஶ

௥ୀ଴

−
ܴܵ
ߙ
1)ߙ ℎݏ − (ݕ

ܿℎ ߙ  

+∑ ସ(ିଵ)ೝ ஼ ୡ୭ୱ௔ೝ௬
(ଶ௥ାଵ)గ ൣଵି௄బ൫௔ೝమା௤మ൯൧

஺ೝ ୡ୭ୱ ௕௧ା௕ ୱ୧୬ ௕௧ି஺ೝ  ௘షಲೝ೟

஺ೝమି௕మ
ஶ
௥ୀ଴ ൠ sinܰ2.31 ߦ 

௙ܥ = ஻ݑ
ߙ ℎݐ
ߙ +  ෍

஻݀௧݁ି஺ೝ௧ݑ 2

ܽ௥ଶ + ଶߙ

ஶ

௥ୀ଴

 

+
ܮ4
ଶߨ ෍൬

1 − cosܰߨ
ܰ ൰

ଶஶ

ேୀଵ

൝෍
8 ܲ ݁ି஺ೝ௧

ݎ2) + 1)ଶߨଶ(ܽ௥ଶ + (ଶߙ

ஶ

௥ୀ଴

 −
ܴܵ
ଶߙ ൬

ܿℎ ߙ − 1
ܿℎ ߙ ൰ 

+∑ ଼஼
(ଶ௥ାଵ)మగమൣଵି௄బ൫௔ೝమା௤మ൯൧

ஶ
௥ୀ଴

஺ೝ ୡ୭ୱ ௕௧ା௕ ୱ୧୬ ௕௧ି஺ೝ  ௘షಲೝ೟

஺ೝమି௕మ
ൠ 2.32 

 
 
3. CONCLUSIONS 
We discuss velocity distribution and flux in three distinct time dependent pressure 
gradients viz.,  
(i) g(t) = C 
(ii) g(t) = C e-bt 
(iii) g(t) = C Cos bt 
 
 Figures 1 to 3, 4 to 6 and 7 to 9 are drawn to investigate the effects of velocity 
distribution 'u' against 'y' for different values of viscoelastic parameter K0 magnetic 
parameter 'M' and time 't' respectively in three different cases (i), (ii) & (iii). We 
noticed that in all the three cases the velocity distribution increases with increase in M 
or t, where as it decreases with increase in K0. Further we observed that the velocity 
distribution decrease upto y = 0.8 and then increase with increase in 'y' in figures 1 to 
3. Also we noticed that the velocity distribution 'u' decrease with increase in 'y' in 
figures 4 to 9. Figures 10 to 12 are prepared to bring out the effects of Reynolds 
numbers R, viscoelastic parameter K0 on the flux Cf of the fluid. We observed that Cf 
decreases with increase in R or K0 respectively in all the three cases. 
 In figures 13 to 15, Cf is drawn against’t’ for different values of K0 in cases (i), 
(ii) & (iii). We noticed that Cf decreases with increase in K0, where as it increases 
with increase in 't' in all three cases. 
 From figure 16, one can conclude that Cf increases with increase in K or M in 
case (i). From figures 17 & 18 we conclude that Cf decreases with increase in 'M', 
where as it increases with increase in K respectively in cases (ii) & (iii).From tables 1 
to 3, we see that the velocity distribution is plotted against 'y' fordifferent values of 'K' 
respectively in three different cases. We noticed that 'u' increase in 'K' where as 
decreases with increase in 'y' respectively in three different cases. From table 4 we 
conclude that the slip velocity uB decreases with increase in M, where as it increases 
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with increase in 'K'. 
 

Case 1 

 
 

Fig .1 : u against y for different K0 
Case 2 

 

 
 
 

Fig.2 : u against y for different K0 
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Case 3 

 
 

Fig.3: u against for different K0 
Case 4 

 
 
 

Fig.4 : u against y for different M 
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Case 5 

 
 
 

Fig.5: u against y for different M 

Case 6 

 
 
 

Fig.6 : u against y for different M 
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Case 7 

 
 
 

Fig.7:u against y for different t 
Case 8 

 
 
 

Fig. 8 : u against y for different t 
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Case 9 

 
 

Fig.9 : u against y for different t 
Case 10 

 
 
 

Fig.10: Cf against R for Different K0 
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Case 11 

 
 

Fig.11: Cfagainst R for different K0 

Case 12 

 
 
 

Fig.12 : Cf against R for different K0 
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Case 13 

 
 

 
Fig;13 : Cf against t for different K0 

Case 14 

 
 
 
 

Fig.14 : Cf against t for different K0 
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Case 15 

 
 
 

Fig.15 : Cf against t for different K0 

Case 16 

 
 
 

Fig.16 : Cf against K for different M 
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Case 17 

 
 
 

Fig.17 : Cf against K for different M 

Case 18 

 
 
 

Fig.18 : Cf against K for different M 
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Table.1 Case 1 u against y for different K 
 

y K=0.05 K = 0.10 K = 0.15 K = 0.20 K = 0.25 
0.0 1.45647 1.45717 1.45756 1.45783 1.45804 
0.2 1.39990 1.40060 1.40100 1.40127 1.40147 
0.4 1.21344 1.21453 1.21453 1.21480 1.21501 
0.6 0.91064 0.91173 0.91173 0.91201 0.91221 
0.8 0.50257 0.50366 0.50366 0.50393 0.50414 
1.0 0.42520 0.53390 0.53390 0.56084 0.58115 

 
 

Table.2 Case 2 u against y for different K 
 

y K=0.05 K = 0.10 K = 0.15 K = 0.20 K = 0.25 
0.0 2.04097 2.04167 2.04206 2.04234 2.04254 
0.2 1.96327 1.96397 1.96437 0.96464 1.96484 
0.4 1.71223 1.71293 1.71333 1.71360 1.71381 
0.6 1.29792 1.29862 1.29902 1.29929 1.29950 
0.8 0.72571 0.72641 0.72680 0.72707 0.72728 
1.0 0.42468 0.49414 0.53339 0.56033 0.58063 

 
 

Table.3 Case 3 u against y for different K 
 

y K=0.05 K = 0.10 K = 0.15 K = 0.20 K = 0.25 
0.0 2.00489 2.00559 2.00599 2.00626 2.00647 
0.2 1.92892 1.92962 1.93001 1.93029 1.93049 
0.4 1.68290 1.68360 1.68400 1.68427 1.68447 
0.6 1.27648 1.27718 1.27757 0.27784 1.27805 
0.8 0.71434 0.71504 0.71570 0.71570 0.71591 
1.0 0.42471 0.49417 0.56035 0.56035 0.58066 

 
 

Table.4 uB against K for different M 
 

y M = 5 M = 10 M = 15 M = 20 M = 25 
0.05 0.42192 0.42183 0.42174 0.42165 0.42156 
0.10 0.49066 0.49054 0.49041 1.49029 0.49017 
0.15 0.52951 0.52936 0.52922 0.52907 0.52893 
0.20 0.55616 0.55600 0.55585 0.55569 0.55553 
0.25 0.57626 0.57609 0.57575 0.57575 0.57558 
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