
International Journal of Genetic Engineering and Biotechnology.
ISSN 0974-3073 Volume 1, Number 1 (2010), pp. 23--33
© International Research Publication House
http://www.irphouse.com

‘Blast those Genes’: A Gridified Framework for
Bioinformatics Blast using the A3pviGrid

Avinash Shankaranarayanan and Christine Amaldas

School of Chemical and Biotechnology, SASTRA UNIVERSITY,
Tirumalaisamudram, Thanjavur - 613 401. Tamil Nadu, India.

E-mail: avigrid@gmail.com
Business Information Systems, Royal Melbourne Institute of Technology (RMIT),

Hanoi, Vietnam E-mail: christine.amaldas@rmit.edu.vn

Abstract

BLAST is one of the most widely used bio informatics tools; largely used in
finding matching gene sequences from genome databases from an input query
string (sequence). Dynamic programming and heuristic search mechanisms in
BLAST can rapidly identify similar sequences (similarity matching); the
performance starts to deteriorate when there is an exponential increase in the
size of the data set (input query) which remains to this day an important
research problem. As the size of genome databases and input query size
increases there is decrease in compute performance. We propose
improvements to the BLAST application performance using distributed mini
grid architecture called A3pviGrid that significantly improves the applications
performance by applying agent coalition algorithms using the power server
model of computing. Unlike many Grid based middleware architectures such
as the Globus toolkit, the A3pviGrid tries to provide enhanced performance and
lower implementation costs through the deployment of commonly used web
scripting languages using a power server model architecture. Comparative
analysis of our previous implementations shows that there is a significant
improvement in the performance of BLAST searches using the A3pviGrid
platform. A Fasta formatted sequence database (human DNA sequence from
clone RP11-10K8 on chromosome 1) was used to evaluate the BLAST
searches which indicates improvements in the search over a simple 10 node
mini-Grid system. The future direction of this research would focus on
evaluating the scalability of this system.

Keywords: Agents, Blast, Coalition, Mini Grid, Quality of Service and
Scalability.

24 Avinash Shankaranarayanan and Christine Amaldas

Introduction
Biologists often require sequence comparison and alignment applications such as
BLAST [12], ClustalW [8] and repeat finding algorithms [9], which are effectively
utilized for processing large sets of gene sequences for similarity matching. These
tools were previously extensively investigated [4] and observed. Most of the existing
bioinformatics tools were either too low level (complicated); too expensive for most
laboratories to afford; and inflexible to customization on heterogeneous networks and
computational environments without significant technical expertise. The exponential
rise in the size of datasets increases the problems related to the scalability of existing
bioinformatics programs and tools. One approach to solving this problem is to break
the problems into a number of sub-problems which could be done easily either in the
algorithmic level (re-programming for parallel processing such as MPI) or through
dataset parallelism where the data is broken down depending on the number of
available processors. Bioinformatics applications along with well defined outputs
heavily rely on various methods of pattern recognition and statistical methods of
information processing (based on sequences). The paper is subdivided into the
following sections: Section II will give an overview of current Blast Literature with
insights into high performance distributed systems; Section III will highlight and
discuss the limitations of current systems and the need for new mechanisms; in
Section IV we talk about the A3pviGrid [4] architecture and show how the Blast
application can be run as a Grid service; finally in Section V we discuss about the
results obtained from running Blast in parallel using our mini-grid test bed and
conclude the paper with future discussions and enhancements to our research.

Basic Local Alignment Search Tools
Basic Local Alignment Search Tools (BLAST) are a set of programs used for
searching sequence databases with that of the input query sequence for similarity
matching. BLAST is a heuristic search method which makes assumptions about the
data based on experience. This implies that it is not guaranteed to find the best
alignment in all possible circumstances. It sacrifices some accuracy for a greater
increase in speed. The BLAST algorithm is an improvement over the Smith-
Waterman algorithm [15], which is slow but guaranteed to get the best possible
alignments given certain input parameters. BLAST uses a special database format to
speed up the search operations. Several pre-packaged databases exists, and the most
notable is the “nr” database which is the non-redundant database consisting of all
sequences in GenBank. As the size of the dataset increases the time taken for meeting
the alignment conditions increases exponentially. Hence there is a need to parallelize
the processing steps of the algorithm as follows:

Hardware Acceleration
Hardware accelerators parallelize a single query sequence to a single database entry.
As symmetric multiprocessors (SMPs) and symmetric multi threaded systems (SMTs)
cannot support the level of parallelism required, custom hardware must be used. Singh
et al. introduced the first hardware accelerator for BLAST [13]. More recently, Time

‘Blast those Genes’: A Gridified Framework 25

Logic1 has commercialized a field-programmable gate array (FPGA) based
accelerator called the DeCypher BLAST hardware accelerator [2]. FPGAs are
reprogrammable hardware devices that support the custom computing needs that are
characteristic of data intensive problems. FPGAs can be reprogrammed to utilize
powerful sequence alignment algorithms such as the Smith Waterman algorithm [6].

Query Segmentation
Query segmentation provides the most elaborate method of parallelization of BLAST
by splitting up a query string so that each node in a cluster or Grid searches a fraction
of the sequence database. Multiple BLAST searches can be executed in parallel on
different query sets. However, such an approach typically requires the entire database
to be replicated on to each of the nodes local storage system [12]. If the database does
not fit the memory requirements of the node under utilization, the node suffers from
disk I/O access times leading to increase in access time of the database.

Database Segmentation
“BLAST searches tend to become too slow due to increase in size of databases that
run out of core memory” [5].Database segmentation is an orthogonal approach to
query segmentation. Query segmentation utilizes individual query segments to match
against an entire database on each individual node whereas database segmentation
keeps the queries intact and distributes individual database segments to each of the
nodes for query processing. The biggest challenge using this approach would be to
ensure that the statistical scoring is properly produced as this depends on the size of
the database subset. Database segmentation has been implemented in a closed-source
commercial product by TurboWorx, Inc. called TurboBLAST.

High Performance Distributed Computing
Distributed technologies can be classified into a number of technological streams such
as, High Performance Cluster / Grid [10, 11], Multi-Agents [14] and Peer-to-Peer
(P2P) [3] systems. BLAST users can take advantage of low-cost, efficient Linux
cluster architectures such as Beowulf. Unfortunately, the efficiency declines when
scaled to hundreds of nodes because of serial result-merging and output domination.
To tackle such scalability challenges the message passing interface (MPI) was
introduced. mpiBLAST is a parallel implementation of BLAST using the MPI
interface. It functions with database-segmenting technique [16] where the number of
compute nodes increases from 1 to 4 and mpiBLAST achieves a speed-up of nearly
10. It achieves super linear speed-up by segmenting a BLAST database where each of
the nodes in the computational cluster search through a unique segment of the
database. Database segmentation permits each node to search a smaller portion of the
database, eliminating disk I/O and vastly improving BLAST performance. Database
segmentation does not create heavy communication demands with respect to a cluster.
 Darling [5] evaluated the performance of BLAST using a 300-KB input query file
against a 5.1-GB uncompressed ‘nt’ database which took 1346 minutes (or 22.4

1http://www.timelogic.com

26 Avinash Shankaranarayanan and Christine Amaldas

hours) to compute on a single compute node. The same query was run within 8
minutes on 128 nodes on the Green Destiny supercomputing cluster. Green Destiny is
a supercomputing infrastructure having negligible turnaround time. When comparing
smaller sequences with large genomes the efficiency of mpiBLAST decreases as the
number of nodes increases. If we take the speed-up and divide it by the number of
nodes available, the efficiency of mpiBLAST across four nodes is 2.31 (9.23/4) and
drops all the way down to 1.33 (170.41/128) when run across 128 nodes. The reason
for this drop is due to the trade off that exists when segmenting the database into
many small fragments. There is significant overhead in searching extra fragments.
The ideal database segment will typically be the largest fragment that can fit into the
memory and not cause any swapping of the disk. Making fragments smaller than the
available memory simply adds overhead [5]. A more detailed performance analysis
and evaluation can be found in the green destiny paper [5].
 Arun Krishnan in his paper [1], talks about applying BLAST to the Globus Grid
platform using Perl scripts called GridBLAST on a mini-grid test bed. When looking
at the computational aspects of BLAST, typically a full scale BLAST job across
whole genomes is highly computationally intensive due to the size of the databases
queried upon. It was observed that embarrassingly parallel applications such as
BLAST improve execution times when the data set is broken down and processed
individually on individual processors. Currently, GridBLAST seems to be the only
standalone version of BLAST that can be run on a Globus enabled Grid platform. It is
a high throughput task farming application that distributes independent tasks or
queries to remote static nodes available on the Grid. The BLAST problem is
embarrassingly parallel in nature and belongs to the SPMD class of parallel
applications where sequence comparison takes place using parallel datasets.
GridBLAST utilizes the Globus toolkit [10] for managing remote files and remote
execution of programs. It contains two Perl scripts; one running on a local node
(Initiator) and the other on each of the remote nodes (Static). The Initiator utilizes a
Static schedule mechanism to query each of the nodes using two methods namely
Proportional Scheduling and Minmax Scheduling. The main drawback of Proportional
Scheduling is that it does not account for the dynamic changes in latency, bandwidth
and load-balancing while distributing the workload to various nodes. Minmax
Scheduling optimizes the variability of resources using parameters of historical data
and statistical averaging methodology based on the maximum predicted time spent on
each node using a fixed window size.

Limitations of Current Mechanisms

• Optimal resource allocation strategies need to be incorporated for job
processing due to the highly dynamic nature of resource requirements of a job
namely load, CPU and latency.

• When looking at scalability issues over a Grid as compared to a cluster,
remote computational nodes do not share a file system and pose problems
related to fault-tolerance, state-information updates; latencies and overloading
of remote nodes.

‘Blast those Genes’: A Gridified Framework 27

• Fault tolerance is a major issue that needs to be addressed in GridBLAST.
The resubmission of jobs with respect to timeout or failure detection is based
on the intelligence of the scheduling mechanisms.

• Static sets of nodes are assumed as the algorithms do not provide mechanisms
for adding dynamic sets of nodes and resources.

• All remote nodes are assumed to be running the local grid daemon (E.g.
Globus) which is platform dependent most of the time.

• Latency and bandwidth issues are not considered during scheduling and
remote execution of tasks.

• Restricted to the size of the dataset (database) being distributed across remote
nodes limits size of node set.

• Coarse grained load-balancing achieved through database segmentation
involves heavy overhead due to database fragmentation.

• Centralized failure of head node or initiator nodes.
• No automated mechanisms for discovering optimal nodes and their respective

resources.
• Currently, there is no standalone implementation of BLAST over a dynamic

Grid environment.

Running Blast on the A3pviGrid Experimental Framework
The term, “Grid” first came into use over half-a-decade ago as a synonym for
metacomputing. It has evolved over the years to refer to an infrastructure that
combines heterogeneous resources over a network to provide for an efficient problem-
solving environment.

Figure 1: A3pviGrid an Experimental Grid Framework [4]

28 Avinash Shankaranarayanan and Christine Amaldas

 The ability to invoke a program or workflow say, a java applet or servlet using a
web server can be effectively utilized towards distributed processing of data. This is
termed as the “power server model” of computing whereby a web server and servlets
are used for consuming services (similar to the web services architecture). The
advantage is the simplicity of the model where the client connects to a bunch of web
servers to enable the consumption of remote services using web pages. The default
method of connecting remote programs with users transparently is through the use of
the Common Gateway Interface (CGI) over the HTTP protocol. This method of
computing differs from conventional computing where clients work with a centralized
server model of computing. The main goal of power servers is to share CPU power to
other users. Every system has a Web server running a servlet as the method of
program execution. A client connects to the server and the servlet executes a client by
dividing a single computational task into multiple subtasks queued by the scheduler of
the system. The application program then invokes a servlet on the server and transfers
a small part of the task to the servlet. The servlet then computes the task and sends the
results back to the client upon completion. The advantage of the model is that any
user can download and install a web server to make his/her machine into a power
server. The primary problem of the model is maintenance. When we need to update
the software side of the web server we need to manually update each of the web
servers. This can be automated using a web server upload page to update when
necessary. The maintenance can also be minimized if all the nodes are gathered under
one domain and update as required. This way only one copy of the web server and
servlet is needed and each of the clients can invoke it on booting thus streamlining the
maintenance job. A3pviGrid [4] works on the principle of the power server model of
computing. Each of the clients runs the A3pviGrid server which is a simplistic http
web server running services in the form of CGI/Perl Scripts. The client side coding
model enables the developer to develop services using the common gateway interface
(CGI) and can use any of the languages that support CGI scripting. For the sake of
simplicity and rapid development of services we have used Perl as the language of
choice due to its availability and portability for most platforms. Discussed below are
the different components that enable the functioning of the A3pviGrid system.

Components of A3pviGrid System
Peer-to-peer Service Discovery
Any peer (node) needs to transmit some form of state information updates or
discovery messages to a known set of nodes. The basic requirements of discovering a
remote peer is by identifying the peer by its unique id namely the IP address or
domain name and its services offered. The A3pviGrid uses a decentralized directory
structure to enable peers to register and de-register peers and their respective services.
A good example of this would be Web services definition language (WSDL) which
uses UDDI for publishing web services. The A3pviGrid system relies on a similar
service namely the Agent based Peer Manager [APM] where each peer hosts a set of
service agents running a specific service. Each peer is also given a unique id with
respect to the APM registration service which identifies the peer. The unique id
ensures that the peer remains unique to that of the APM even if its configuration and

‘Blast those Genes’: A Gridified Framework 29

services changes (i.e. changes to IP address and location specific information
changes).

The Agent based Peer Manager Service [APM]
The primary aim of the APM is to store location and service information in the form
of categorized listing. Similar to P2P file sharing applications such as Bit torrent,
which uses the .torrent style structure for seeding files, the APM stores location and
services information in the form of servicename_location.APM file.
Example File: GridBlast_abc.apm
APM location: Singapore
Service Name: Grid Blast
Service Description: Takes numeric values as input and executes Blast services in
parallel.
Remote results are concatenated back to originator

Peers URL Port (opt)
192.168.1.90 http://192.168.1.90/blastg.pl 80
192.168.1.91 http://192.168.1.91/blastg.pl 80
192.168.1.92 http://192.168.1.92/blastg.pl 8080
192.168.1.93 http://192.168.1.93/blastg.pl 8888
192.168.1.94 http://192.168.1.94/blastg.pl 80
192.168.1.95 http://192.168.1.95/blastg.pl 80
192.168.1.96 http://192.168.1.96/blastg.pl 80
192.168.1.97 http://192.168.1.97/blastg.pl 8888
192.168.1.98 http://192.168.1.98/blastg.pl 9000
192.168.1.99 http://192.168.1.99/blastg.pl 9999

 -END

The Initialization Phase

• All peers are capable of being a head node by running the A3pviGrid Server.
• All the peers download a list of peers based on the requirements of the user

from the APM.
• Initially an ideal set of peers are initially computed for job processing.
• An optimal coalition is then formulated from the ideal list using the coalition

formula and the most appropriate coalition list is finalized.
• Services defined by the user are checked with APM for registration / de-

registration.
• Job submission and scheduler are initialized for receiving remote jobs.

Computing Ideal Set of Peers
The most ideal coalitions can be formed with a given set of peers if and only if the
latency of the peers is minimal. By applying a latency test, the ideal set of nodes along
with their quality of service parameters are processed initially by the client. This is

30 Avinash Shankaranarayanan and Christine Amaldas

not a necessity that the client needs to compute the set of nodes. A user can obtain the
set as a file which is read by the script as the ideal set. The most important step is to
compute the optimized coalition list which determines the closest nodes needed for
job processing.

Service Registration and Job Scheduler
The basic operation of any scheduler is to create an ideal job queue for job processing.
The job scheduler takes care of job id creation, time of creation etc. It is the duty of
job scheduler to log the statuses of the jobs such as job history, success or failure of
jobs, compute trust based on job history, de/register services, etc.

Registering a Service
A service is registered by calling the register programs which takes the IP address,
hostname, location information, service name and service location/path. It is assumed
that each node is represented by one or more agents and a common coalition
formation construct is used based on a set of rules. The rules could be different for
each agent based on its environment and self-interests. The commonality of service
factor plays a vital in the collaboration and formation of coalition in agents.

De-Register a Service
When an agent tends to leave a coalition due to unavailability, resource problems etc,
a set of leaving rules are defined based on the subscription rules of the coalition
group. Rules like group losses, individual losses, re-negotiation and higher payoff for
the stay of the agent, will have to be taken into account for the agent leaving the
group.

Running Blast Grid service
A random set of 10 machines where used for job processing. A workflow was built as
follows:

• All the nodes ran A3pviGrid web servers
• The Blast_gu.apm file was downloaded by all the peers as part of the

initialization phase.
• Each of the nodes computed the ideal set of nodes using a basic ping test

based on the Blast grid service list.
• As all the nodes where capable of receiving jobs, one of them were randomly

chosen for job execution (Originator).
• A Fasta formatted Sequence database (human DNA sequence from clone

RP11-10K8 on chromosome 1) was used to evaluate the Blast searches.
• The input query file is obtained, and the next step is to prepare a set of jobs for

job processing using the optimal coalition list.
• Based on QoS Characteristics namely Latency, Load and CPU time, the

Originator of the job computes the most optimal coalition.
• Once the coalition list is computed the data files are migrated using the POST

method to all the members of the coalition.
• Each of the coalition members start to search using the input query files and

‘Blast those Genes’: A Gridified Framework 31

output the results.
• The output of the Search Phase is appended to a file using POST back to

originator where the results are formatted using the Blast format perl script
and stored as a file or displayed in the browser of the originator.

Results and Conclusion
Ten user agents were selected in random to run the experiments in parallel. To cater to
a heterogeneous environment and make it truly a peer-to-peer model of computing, all
nodes where connect by DSL or Cisco routers using wireless hotspots and Cable
modem lines. We assume N data distributed over tasks d = log P, with N an integer
multiple of .The computation costs comprise of the initial sort and the comparisons
performed during the communication phase. The former involves a total of
comparisons P = 2d, while the latter requires at most (Nd (d + 1) / 2) comparisons.

Tables 2 and 3: Turn around times recorded for the experiments performed.

 Processor 0 Processor 1 Processor 2 Processor 3
Seq Blastcode 43.0763 65.8885 48.526 83.8911
Grid Blastcode 58.633 58.6393 58.6436 58.6373
 Processor 5 Processor 6 Processor 7 Processor 8
Seq Blastcode 46.8615 41.2549 49.1826 41.5324
Grid Blastcode 58.6441 58.6389 58.6326 58.6406

 Processor 0 Processor 1 Processor 2 Processor 3
Seq Blastcode 52.575 53.1896 86.0856 118.026
Grid Blastcode 72.4102 72.4286 72.5143 72.4188
 Processor 4 Processor 5 Processor 6 Processor 7
Seq Blastcode 51.9337 52.769 51.5515 51.2998
Grid Blastcode 72.4297 72.4361 72.4246 72.4203

 Because the algorithm is perfectly balanced, we assume that idle time is
negligible. Our results were obtained by running Gridblast code on Linux Clusters
(Fedora Core 3) with 1.8 GHz CPU’s and 1GB RAM. While a similar heterogeneous
set of peers (6 nodes running Linux Fedora core 3 and 4 running Windows) having
different configurations were used for running the algorithm as a Grid service using
the A3pviGrid framework. In this project, human DNA sequence (GenBankID:
AL611946) has been used as the database. The size of this sequence is 44,921base
pairs (bp). The time of execution was taken as the average value of the two
experiments with the same settings and parameters in place as observed in the tables 2
and 3.

32 Avinash Shankaranarayanan and Christine Amaldas

References

[1] A. Krishnan, "GridBLAST: a Globus-based high-throughput implementation of
BLAST in a Grid computing framework”, Concurrency and Computational
Practice: Practice and Concurrency Computation Practice and Experience,
2005, 17:1607 1623.

[2] A. Shpuntof, and C. Hoover, Personal Communication, August, 2002.
[3] A. Shankar, F. Dehne, A. P. Shankar, and G. Subramanian, "Applying

Coalition Concepts to Service Oriented Multi-Agent Load Balancing Systems -
A3pviLoad", PDPTA 2005, Monte Carlo Resort, Las Vegas, Nevada, U.S.A.,
June 2005, pp. 27-30.

[4] A. Shankaranarayanan, F. Dehne, and A. Lewis, "Applying Agent/Grid
Coalition Concepts to Service Oriented Multi-Agent Systems - A3pviGrid",
IEEE Computer Society, CIMCA-IAWTIC'06, Volume 2, 28 - 30 November,
Vienna - Austria, 2006, pp. 315-320.

[5] A. Darling, L. Carey, and W. Feng, "The Design, Implementation, and
Evaluation of mpiBLAST", ClusterWorld Conference & Expo, 2003.

[6] Burt, "Written Statement of Dr. Stanley Burt for the Senate Committee on
Commerce, Science, and transportation", Subcommittee on Technology,
Innovation, and Competitiveness, 2006.

[7] C. Gibas, and P. Jambeck, "Developing Bioinformatics Computer Skills",
O'Reilly & Associates, Inc., U.S.A, 2001.

[8] D. G. Higgins, J. D Thompson, and T. J Gibson, "Using CLUSTAL for
multiple sequence alignments.", Methods Enzymol, 1996, 266, pp. 383-402.

[9] G. Benson and L. Dong, "Reconstructing the Duplication History of a Tandem
Repeat", Seventh International Conference on Intelligent Systems for
Molecular Biology (ISMB-99), 1999, pp. 44-53.

[10] I. Foster, C. Kesselman, "Globus: A metacomputing infrastructure toolkit", The
International Journal of Supercomputer Applications and High Performance
Computing 1997, 11(2):115-128.

[11] I. Foster, C. Kesselman, S. Tuecke. "The Anatomy of the Grid: Enabling
Scalable Virtual Organizations". International Journal of Supercomputer
Applications, 2001

[12] R. Braun, K. Pedretti, T. Casavant, T. Scheetz, C. Birkett,and C. Roberts,
"Parallelization of Local BLAST Service on Workstation Clusters", Future
Generation Computer Systems, 2001, 17(6):745-754.

[13] R. K. Singh, W. D. Dettloff, V. L. Chi, D. L. Hoffman, S. G. Tell, C. T. White,
S. F. Altschul, B. W. Erickson, BioSCAN: A dynamically reconfigurable
systolic array for bio-sequence analysis. http://citeseer.ist.psu.edu/163511.html

[14] S. Franklin, and A. Graesser, "Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents", Institute for Intelligent Systems, University of
Memphis, Proceedings of the Third International Workshop on Agent Theories,
Architectures, and Languages, Springer-Verlag, 1996

[15] T. F. Smith, and M. S. Waterman, "Identification of common molecular
subsequences" Journal of Molecular Biology, 1981, 147: 195 - 197.

‘Blast those Genes’: A Gridified Framework 33

[16] W. Feng, "Green Destiny + mpiBLAST = Bioinfomagic", 10th International
Conference on Parallel Computing, 2002.

Biography

Avinash Shankaranarayanan has been actively involved in
publishing several research papers and periodicals in
International Conferences and Journals of high standards such
as the IEEE and ACM. He has presented and presided as
Program Committee Member and Program / Conference Chair
over a number of International Conferences and has been
invited to give guest lectures in Singapore, India, Australia,
USA, Japan, Mauritius Europe, the United Kingdom and many

parts of South Asia. His research areas include High performance Grid Computing,
Bioinformatics, Material Flow Management, and Renewable Energy Systems.

Christine Amaldas has been an active researcher and academic
at the Ritsumeikan Asia Pacific University since 2003. She has
been the author of several Conferences and Journals spanning
the Asia Pacific region. She has presented and presided over a
number of conferences and has given guest lectures in
Singapore, India, Japan, USA, Mauritius and Australia. She
specializes in Asia Pacific Studies, IT Governance, Security
and Fraudulence, Ethics and Ethical Governance in ICT,

Holistic Medicine and Energy Healing and Governance (Corporate, Public, IT and
Dynamic). She is currently an academic at the Royal Melbourne Institute of
Technology and is the Director for the Journal.

34 Avinash Shankaranarayanan and Christine Amaldas

