
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 1, Number 1 (2011), pp. 55-78
© International Research Publications House
http://www. ripublication.com

Approximation Capabilities of Hierarchical Neural-
Fuzzy Systems for Function Approximation on

Discrete Spaces

1Xiao-Jun Zeng, 2John Yannis Goulermas, 3John A. Keane
and 4Panos Liatsis

1School of Informatics, University of Manchester, Manchester, M60 1QD, U.K.

E-mail: x.zeng@manchester.ac.uk
2Department of Electrical Engineering and Electronics, Brownlow Hill,

University of Liverpool, Liverpool L69 3GJ, U.K.
E-mail: j.y.goulermas@liverpool.ac.uk

3School of Informatics, University of Manchester, Manchester, M60 1QD, U.K.
E-mail: john.keane@manchester.ac.uk

4Information and Biomedical Engineering Centre,
School of Engineering and Mathematical Sciences,

City University, London EC1V 0HB, U.K.
E-mail: p.liatsis@city.ac.uk

Abstract

This paper investigates function approximation on discrete input spaces by
both neural networks and neural-fuzzy systems. Rather than use existing
neural networks for function approximation on continuous input spaces, this
paper proposes, based on a hierarchical systematic perspective, four simplified
approximation schemes: simplified neural networks, extended simplified
neural networks, simple hierarchical neural-fuzzy systems and hierarchical
neural-fuzzy systems. Each scheme is proven to be a universal approximator
(i.e., each can approximate any function on discrete input spaces to any degree
of accuracy). The results provide both several new and simpler approximation
schemes for function approximation on discrete spaces and show that there
exist simpler and more effective methods for function approximation on
discrete spaces compared with continuous spaces.

Manuscript received 31 August, 2005. This work is supported by U.K. EPSRC under
Grant grant EP/C513355/1.

56 Xiao-Jun Zeng et al

Index Terms: Neural Networks, Fuzzy Systems, Neural-Fuzzy Systems,
Hierarchical systems.

Introduction
Aproximation or representation capabilities of neural networks and fuzzy systems
have attracted considerable research in the last 15 years. In neural networks, following
from the proof of their universal approximation property (Cybenko [5], Hecht-
Nielsen[11], and Carroll and Dickinson [3], Hornik, Stinchcombe, and White[12]), it
has been proved that various neural networks are universal approximators and that the
various results on approximation accuracy are also available (see, for example, [1],
[13]-[15], [17], [18], [20], [21], and [23]). In fuzzy systems, the work on their
approximation capabilities (Buckley [2], Kosko[16] and Wang [24]) has shown that
fuzzy systems are also universal approximators. Since then, a number of results
related to approximation capabilities and accuracy have been published (see, for
example, [4], [10], [19], [28], and [29]-[31]); more recently these results have been
extended to hierarchical and hybrid systems (see, for example, [8], [22], [25], [26],
[33] and [34]. In addition to research on neural networks’ and fuzzy systems’
approximation capability, the approximation capabilities of wavelets and support
vector machines (SVM) have been investigated (see, for example, [6] and [9]).
However, almost all these available results focus on function approximation on
continuous input spaces with few results available for function approximation on
discrete spaces. This may be because function approximation on discrete input spaces
can be viewed as a special case of function approximation on continuous spaces as
any function on discrete spaces can be expanded to be a continuous function [27] that
interpolates the given discrete function, and then the existing results in function
approximation on continuous spaces imply that neural networks and fuzzy systems
are universal approximators for functions defined on discrete spaces. Although such a
view is both valid and correct, it ignores the difference between function
approximation on continuous and discrete spaces, especially the potential to develop
simpler approximation schemes based on neural networks and fuzzy systems for
function approximation on discrete input spaces.
 In this paper, motivated by this potential, the approximation capabilities of neural
networks and neural-fuzzy systems for function approximation on discrete spaces are
investigated by focusing on the distinguishing features of discrete input spaces.
Several new simplified approximation schemes designed specially for function
approximation on discrete spaces are proposed:

• Simplified Neural Networks (SNNs)
• Extended Simplified Neural Networks (ESNNs)
• Simple Hierarchical Neural-Fuzzy Systems (SHNFSs)
• Hierarchical Neural-Fuzzy Ssystems (HNFSs)

 The universal approximation property (i.e., the capability to approximate any
function on discrete input spaces to any degree of accuracy) of these approximation
schemes are then proved. In other words, for function approximation on discrete input

Approximation Capabilities of Hierarchical 57

spaces, the proposed approximation schemes are simpler and more effective whilst
remaining as general as those approximation schemes in the literature for neural
networks and fuzzy systems.
 The paper is structured as follows: Section II proposes the four simplified
approximation schemes for function approximation on discrete input spaces and
analyzes their utility; Section III analyzes the approximation capabilities of the
proposed approximation schemes and presents their universal approximation
properties; finally conclusions are presented in Section IV, and the proofs of all
theorems presented are given in the Appendix.

Simplified Neural Networks and Hierarchical Neural-Fuzzy Systems
Throughout the rest of the paper, it is assumed that the system or function to be
modelled or approximated is a multi-input single-output (MISO) function defined on
a discrete space. That is, suppose that the function is given as follows:

),...,,()(21 nxxxGXGy == (1)

where RVy ⊂∈ is the output variable and ∈=),...,,(21 nxxxX

n
n RUUUU ⊂×××= ...21 is the input variable vector in which ii Ux ∈ and

 },...,2,1,|{ ,, ikikii NkRuuU =∈= (2)

 In other words, input variable ix takes discrete values.
 In the following, simplified (feedforward) neural networks and hierarchical
neural-fuzzy systems are proposed to approximate functions on discrete spaces, i.e.,
those functions given in (1) and (2).

Simplified Neural Networks (SNNs)
The standard and most commonly used (feedforward) neural networks (NN) can be
represented as:

 ∑
=

++==
N

i
iii cbXacXNNy

1
0)()(τσ (3)

where),...,,(21 nxxxX = are input variables, UX ∈ n

n RUUU ⊂×××= ...21 which
are input space, Ry ∈ is the output variable, τ is the vector transpose, (.)σ is the
activation function and the parameters Rc ∈0 , Rci ∈ , n

i Ra ∈ , and Rbi ∈ (
),...,2,1 Ni = .

 Given the standard NN given in (3), the total number of parameters [i.e., Rci ∈ ,
n

i Ra ∈ , Rbi ∈ (),...,2,1 Ni = and Rc ∈0] is 1)2(++ Nn . For nonlinear complex
function approximation, a large N is needed and often N will grow exponentially with

58 Xiao-Jun Zeng et al

the dimension of n [1]. As a result, a large number of parameters are needed in order
to achieve good approximation accuracy.
 To overcome this difficulty, a simplified neural network (SNN) is proposed for
function approximation on discrete spaces as follows:

 ∑
=

+++==
N

i
iii cXcXSNNy

1
0])([)(ββαασ τ (4)

where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β (),...,2,1 Ni = and nR∈α , R∈β .
 Let

 βα τ +== XXLz)((5)

and

 ∑
=

++==
N

i
iii czczNNy

1
01)()(βασ (6)

 Then the proposed SFNN given in (4) can be rewritten as follows:
)]([)(1 XLNNXSNNy == (7)

 In other words, the proposed SNN can be presented as a composition of a linear
function)(XL given in (5) and a one-dimensional standard NN)(1 zNN given in (6).
 For the SNN given in (4), the total number of parameters is 23 ++ nN . Therefore,
in many cases fewer parameters are needed for SNNs in comparison to the number
needed for standard NNs. Another advantage of SNNs is that they are more effective
in overcoming the model over-fitting which often happens in NN modeling. This is
because: in the standard NNs, adding a new neuron [i.e., add an item)(iii bXac +τσ in
(3)] means adding 2+n parameters. As a result, in NN modeling it often happens that
adding one more neuron causes model overfitting whereas not adding such a new
neuron may result in underfitting, especially in the case where n is large but only
limited training data is available. However, in SNNs, adding a new neuron means
adding an item)(iii zc βασ + which only adds three parameters. As a result, SNNs
allow the addition of finer-grained parameters to overcome model overfiting and
underfitting, especially in the high dimension (i.e., large n) case. Another potential
advantage is that simpler learning algorithms can be developed. For example, in some
cases multi-dimensional NN learning problems can be transformed to a one-
dimensional NN learning problem and thus the corresponding learning algorithms can
be much simpler (see Section III for more detailed discussion on this).

 To approximate a function)(XG given in (1) on discrete space ∏
=

=
n

i
iUU

1

given

in (2), the basic idea in using the SNNs is that, firstly a linear function)(xL is
constructed to transform n dimensional variables),...,,(21 nxxxX = into a one-

Approximation Capabilities of Hierarchical 59

dimensional variable z and then a one-dimensional standard NN)(1 zNN is
constructed to form the final SNN)]([)(1 XLNNXSNN = to approximate the given
function)(XG . A major focus of this paper is to prove that SNNs have the same
universal approximation property (i.e., they are able to approximate any function to
any degree of accuracy) as standard NNs, that is, to prove the feasibility and general
applicability of SNNs as a new and simpler NNs for function approximation on
discrete spaces.
 There are two possible views on the SNN given in (4). Firstly, it can be viewed as
a special case of the standard three layered feedforward NN given in (3) in which the
parameters take the particular form of ααiia = and iiiib ββα +=),...,2,1(Ni = .
Secondly, it can be viewed as a hierarchical hybrid NN system in which the lower
level sub-system is a linear function given in (5) and the higher level sub-system is a
one-dimensional NN given in (6) which takes the output variable of the lower sub-
system as its input variable. The combination of the two sub-systems forms the
hierarchical hybrid system given in (7) which is the proposed SNN. Although both
views produce the same SNNs given in (4) in this instance, the second view is more
general and flexible. The extended SNNs and the hierarchical neural-fuzzy systems
proposed later in the paper result from this view. It should be noted that hierarchical
neural-fuzzy systems can only be obtained from the second hierarchical hybrid
systems view as they are no longer a special case of standard NNs.
 An extended SNN (ESNN) differs from a SNN in that, rather than using one linear
function to transform n dimensional variables),...,,(21 nxxxX = into a one-
dimensional variable z , it uses)(nm < sub-linear functions as the lower level sub-
systems to transform n dimensional variables),...,,(21 nxxxX = into m dimensional
variables),...,,(21 mzzzZ = and then use a m dimensional standard NN (which takes
the output variables of the lower sub-systems as its input variables) as the higher level
sub-system. The detailed mathematical formula of an ESNN is as follows:
 Let jG),...,2,1(mj = be a disjoint grouping of the input variables },...,,{ 21 nxxx as
follows:

 mjxxxG j
jn

jj iiij ,...,2,1,...,,)()(
2

)(
1

=
⎭⎬
⎫

⎩⎨
⎧= (8)

where
 ='jj GG I ∅ mjjjj ,...,2,1',,' =≠ (9)

 },...,,{.... 2121 nm xxxGGG =UUU (10)

and nn
m

j
j =∑

=1

. Let),...,,()()(
2

)(
1

j
jn

jj iiij xxxX = denote the input variables of group jG

),...,2,1(mj = , and then the lower level sub-systems are linear functions given by

60 Xiao-Jun Zeng et al

 jjjjjj XXLz ϕφτ +==)(mj ,...,2,1= (11)

where jn
j R∈φ , Rj ∈ϕ and j

k

j

j

n
i

n

kGj RUUX ⊂×=∈
=1

. Further the higher level sub-

system is a m dimensional standard NN which takes the output variables of the lower
level sub-systems as its input variables and is given by

∑

=

++=

==
N

i
iii

mmm

cZc

zzNNZNNy

1
0

1

)(

),...,()(

βασ τ (12)

with Rc ∈0 , Rci ∈ , m

imiii R∈= ταααα],...,,[21 , Ri ∈β (),...,2,1 Ni = . Finally the
ESNN is the following hierarchical system formed by combining the above sub-
systems as

∑ ∑

∑ ∑

= =

= =

+⎥
⎦

⎤
⎢
⎣

⎡
++=

+⎥
⎦

⎤
⎢
⎣

⎡
+=

==

N

i
ij

m

j
jjiji

N

i
i

m

j
jjiji

mmm

cXc

cXLc

XLXLNNXESNNy

1
0

1

1
0

1

11

)(

)(

)](),...,([)(

βϕφασ

βασ

τ

 (13)

where the parameters Rc ∈0 , Rci ∈ , Ri ∈β , m

imiii R∈= ταααα],...,,[21 ,

Ni ,...,2,1= , and jn
j R∈φ , Rj ∈ϕ , mj ,...,2,1= . As nn

m

j
j =∑

=1

, then the total number

of parameters of the ESNN is 1)2()2(1
1

++++=++++ ∑
=

mnNmmnNm
m

j
j . As

nm < , therefore, the ESNN can use fewer parameters in function approximation.
 On the one hand, the ESNN given above can be viewed as a special case of the

standard NN in which],...,[11 mimiia φαφα= and i

m

j
jijib βϕα += ∑

=1

 (ni ,...,2,1=). On

the other hand, the SNN given in (4) can be viewed as the special case of the ESNN
when m=1, and the standard NN given in (3) can be viewed as the special case of the
ESNN when nm = and 0,1 == jj ϕφ (nj ,...,2,1=). In other words, ESNNs are very
flexible with regard to model complexity, lying somewhere between SNNs and
standard NNs respectively.
 From an application viewpoint, the main reason to introduce ESNNs is their
flexibility as the number of input variable groups and the input variables in each
group can be chosen based on the need and desire of each application. For example, in
applications of high dimensional complicated system modeling, it is often desired to
classify the large number of input variables into different groups and then identify the
impact of each input variable group on the system output. ESNNs can achieve this by

Approximation Capabilities of Hierarchical 61

using each lower level sub-system to transform each group of input variable into its
single output variable into the higher level sub-system and the impact of each group to
the system output can be seen by the corresponding input-output relationship at the
higher level sub-system. In addition, the representation accuracy of float numbers
may make SNNs difficult to use in some high dimensional cases and then ESNNs are
needed (see Section III for more detailed discussion about this point).

Hierarchical Neural-Fuzzy Systems (HNFSs)
Taking the hierarchical hybrid view of SNNs mentioned in the last subsection by
replacing the linear function)(XL by a fuzzy system)(XF , a Simple Hierarchical
Neural-Fuzzy system (SHNFS) can be obtained as follows:
 The lower level sub-system is a fuzzy system)(XF whose rule base is given as:
 lR : IF lAisx ,11 and … and lnn Aisx , ,

 THEN lCisz
 Ll ,...,2,1= (14)

and its mathematical formula is represented by

 l

L

l
l yXBXFz ∑

=

==
1

)()((15)

where ly is the centroid of the output fuzzy set lC ,

∑

=

= L

l
l

l
l

XA

XAXB

1
)(

)()(

are fuzzy basis functions [32] (also called normalized membership functions [7]) and

∏
=

=
n

i
ilil xAXA

1
,)()(are the membership functions),...,2,1(Ll = .

 The higher level sub-system is a one-dimensional standard NN given in (6) and
then the final SHNFS is given by

∑ ∑

∑

= =

=

+
⎭
⎬
⎫

⎩
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡
=

++=

==

N

i
i

L

l
llii

N

i
iii

cyXBc

cXFc

XFNNXSHNFSy

1
0

1

1
0

1

)(

])([

)]([)(

βασ

βασ (16)

where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β (),...,2,1 Ni = .

62 Xiao-Jun Zeng et al

 Compared with SNNs introduced above, SHNFSs have several features which
could be useful in applications. Firstly, as the lower level sub-system is a nonlinear
fuzzy system, such SHNFSs have better representation power whilst still being
relatively simple and transparent due to the rule representation and interpretability of
fuzzy systems. This improved representation power in the lower level allows the
higher level NN sub-system to be simpler which can lead to fewer parameters and less
training data being needed in the higher level NN sub-system modeling. Secondly, it
enables the combination of human (knowledge and experience) and machine
intelligence (learning from data) in system modeling. That is, the fuzzy systems
method can utilize human intelligence to form the lower level fuzzy sub-system and
then the learning algorithms of neural networks can be applied to identify the higher
level NN model from the available numerical training data. This is very useful in
applications where there is only limited training data but relevant human knowledge is
available.
 As with the ESNN discussion, in applications of high dimensional complicated
system modeling, it is often desired to classify the large number of input variables
into different groups and then identify the impact of each input variable group on the
system output. In addition, in the high dimensional situation, utilizing human
knowledge by one single fuzzy system is often infeasible as it will result in a few
thousands or more rules to collect human knowledge. For example, for the simplest
fuzzy systems in which each input variable has only two possible fuzzy values, the
total number of rules is n2 when there are n input variables. As a result, for high
dimensional function approximation or system modeling, a more feasible and flexible
hierarchical structure is needed. The following general Hierarchical Neural-Fuzzy
Systems (HNFS) is proposed to meet these requirements.
 Firstly, divide the input variables },...,,{ 21 nxxx into m disjoint groups jG

),...,2,1(mj = as given in (8)–(10) and let),...,,()()(
2

)(
1

j
jn

jj iiij xxxX = denote the input

variables of group jG),...,2,1(mj = . Then the lower level sub-systems of a HNFS are
fuzzy systems),...,2,1()(mjXF jj = whose rule base is given as:

 j
lR : IF)(

,1
)(

1

j
i l

j Aisx and … and)(
,)(
j

i ljnj
jn

Aisx ,

 THEN)(j
l

Cisz

 jLl ,...,2,1= (17)

and its mathematical formula is represented by

)(

1

)()()(j
l

L

l
j

j
jjj yXBXFz

j

l∑
=

== (18)

where)(j

l
y is the centroid of the output fuzzy set)(j

l
C ,

Approximation Capabilities of Hierarchical 63

∑

=

= L

l
j

j

j
j

j
j

XA

XA
XB

l

l

l

1

)(

)(
)(

)(

)(
)(

are fuzzy basis functions, and ∏
=

=
n

k
i

j
j

j
l j

klk
xAXA

1

)()()()()(
,

 are the membership functions

),...,2,1(jLl = .
 The higher level sub-system is a m dimensional standard NN given in (12) and
then the final HNFS is given by:

∑ ∑ ∑

∑

= = =

=

+
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎥
⎦

⎤
⎢
⎣

⎡
=

++=

==

N

i
i

m

j

L

l

jj
iji

N

i
iii

m

cyXBc

cXFc

XFNNXHNFSy

j

ll
1

0
1 1

)()(

1
0

)(

])([

)]([)(

βασ

βασ τ (19)

where τ)](),...,([)(1 XFXFXF m= , Rc ∈0 , Rci ∈ , Ri ∈β ,

m
imiii R∈= ταααα],...,,[21 , Ni ,...,2,1= .

Approximation capabilities of SNNs and HNFSs
In this section, the approximation capability of SNNs is analyzed first. As has been
explained, SNNs require fewer parameters for function approximation than standard
NNs. However, an important question is whether such SNNs are general enough to
approximate any function on discrete spaces, that is, whether SNNs preserve the
universal approximation capabilities of standard NNs. The approximation capability
analysis presented in this section provides a positive answer to this question.
 In order to analyze the approximation capabilities of SNNs, a theorem is
introduced first.

Theorem 1: Let nUUUU ×××= ...21 be a discrete space in which

},...,2,1,|{ ,, ikikii NkRuuU =∈=),...,2,1(ni = .Then there exists a real value linear
function),...,,()(21 nxxxLXLy == defined on U such that RUL →: is a one-to-one
mapping [i.e., if 'XX ≠ , then)'()(XLXL ≠].
 Proof of this theorem first appeared in [35]. As this theorem is fundamentally
important to the later analysis here, it is also included in the Appendix.
 The above theorem shows that, for a discrete space)2(≥⊂ nRU n as given in (2),
there exist some simple functions such as linear functions which form one-to-one
mappings from U to R . This is a property which holds only on discrete spaces but not
on continuous spaces. This is because no one-to-one mapping from a multi-

64 Xiao-Jun Zeng et al

dimensional continuous space],[
1 ii

n

i
U βα

=
×=)2(≥n to R can be continuous [35]. As

no continuous function can be found to form a one-to-one mapping from a multi-
dimensional continuous space to R , it is impossible to find a simple function which is
a one-to-one mapping from a multi-dimensional continuous space U to R . In other
words, multi-dimensional information on discrete spaces can be coded into one
dimension by using simple functions such as linear functions without loss of
information but this cannot be achieved on continuous space. This is the main reason
why function approximation on discrete spaces can be achieved by simpler
approximation schemes than for continuous spaces, and it forms the basis for the
results in this paper.
 Based on Theorem 1, to approximate a multi-dimensional function)(XG given in
(1) on a discrete space U given in (2) can be done by two steps: firstly, use a simple
one-to-one mapping)(XMz = such as a linear function to transform the multi-
dimensional discrete input space U into a one dimension discrete space V . As

)(XMz = is a one-to-one mapping from U to V , then its inverse function
)(1 zMX −= exists (notice here (.)1−M is a vector value function rather than a normal

real value function). Then)(XG can be represented as
)]([)(1 zMGXG −=

 As)]([)(1 zMGzg −= is a one-dimensional function on a discrete space V , then
the original multi-dimensional function approximation problem becomes a one-
dimensional approximation problem and a one-dimensional standard NN can be used
to approximate)(zg to achieve any desired approximation accuracy due to the
universal approximation property of NNs. The following universal approximation
theorem for SNNs is obtained based on this idea, with the detailed proof of the
theorem given in the Appendix.

Theorem 2 (Universal Approximation Property of SNNs). Let)(XG be a function on
a discrete space nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈= },...,2,1 iNk =

),...,2,1(ni = . Then for any given 0>ε , there exists a SNN)(XSNN given in (4)
such that
 ε<−=−

∈∞ |)()(|max|||| XSNNXGSNNG
UX

 (20)

 Theorem 2 shows that SNNs can approximate any function on a discrete space to
any degree of accuracy. In other words, SNNs, despite their simplified formula,
preserve the universal approximation property of standard NNs and therefore are
generally applicable for function approximation on discrete spaces. In the following,
suppose that the available training data are given as },...,2,1|),{(NtyX tt = , then two
possible algorithms to find a SNN approximator for a given function are briefly
discussed:

Approximation Capabilities of Hierarchical 65

 The first algorithm is based on the proof of Theorem 2 which includes two steps:
the first step is to find a one-to-one linear mapping)(XL from U to R and then a one-
dimensional function)]([)(1 zLGzg −= or)()]([XGXLg = can be defined; the second
step is to use the available data },...,2,1|),{(NtyX tt = to get a set of training data for
function)(zg as },...,2,1),(|),{(NtXLzyz tttt == and then, for)(zg , apply the
learning algorithms of standard NN to find a one-dimensional NN approximator

)(1 zNN with the required approximation accuracy. Finally, the SNN approximator can
be obtained by)]([)(1 XLNNXSNN = . Theoretically speaking, this is a very simple
method as by using the one-to-one linear mapping)(XL , the original approximation
problem is transformed to a simple learning problem of a single variable NN. In the
case where the number of input variables and the possible values of each input
variables are small, then this is a good algorithm in practice due to its simplicity.
However, this method is not suitable for high dimensions (i.e., many input variables
or n is large) with each input variable having many possible values (i.e., jN is large).
The reason is as follows: as the total number of all possible values of input vector

),...,,(21 nxxxX = are ∏
=

n

i
iN

1

, the total number of the possible function values of a

one-to-one mapping)(XLz = is ∏
=

n

i
iN

1

. When n and iN),...,2,1(ni = are large, this

is impossible as all possible values are beyond the representation accuracy of float
numbers. Therefore, in the case when n and),...,2,1(niNi = are large, the
implementation of this algorithm, as explained in the last section, requires use of
ESNNs. More details about how to use ESNNs to handle such a situation are
discussed later.
 The second algorithm is to apply the gradient descent optimisation algorithms to
minimise

 []∑
=

−=
T

t
tt XSNNyE

1

2)(
2
1

where)(XSNN is given in (4) with the parameters },...,2,1|,,,,,{ 0 Nicc iii =βαβα to
be identified. In this algorithm, it is not required that βατ +== XXLz)(is a one-to-
one mapping (note that a one-to-one mapping is a sufficient but not a necessary
condition), rather parametersα and β are tuned by the learning algorithm to meet the
approximation requirement. This algorithm is more complicated than the first one but
should be able to handle the higher dimensional modeling situation. In order to realize
the potential of SNNs and apply them to applications, implementation and comparison
of these two methods is needed.
 The above discussion illustrates that the proposed SNN approximation scheme is
realizable and applicable. However, as the main focus of this paper is the analysis of
approximation capabilities rather than the development of algorithms to implement

66 Xiao-Jun Zeng et al

the proposed SNN approximation scheme, algorithm development is not discussed
further.
 The next step is to investigate the approximation capability of ESNNs. Similar to
the earlier analysis of SNNs, the basic idea is as follows:
 Based on Theorem 1, approximation of a n dimensional function)(XG in a
discrete space U by an ESNN can be achieved by two steps: firstly, use of several
one-to-one mappings)(jj XMz =),...,2,1(mj = such as one-to-one linear functions to

transform the n dimensional discrete input space
jG

m

ji

n

i
UUU

11 ==
×=×= [where

k

j

j i

n

kG UU
1=

×= (mj ,...,2,1=)] into m dimension discrete space j

m

j
VV

1=
×= . That is, each

)(jj XMz = is a one-to-one mapping from
jGU to),...,2,1(mjV j = . Then)(XG can

be represented as
)](),...,([)(1

1
1

1 mzMzMGXG m
−−=

 As)](),...,([),...,()(1

1
1

1 1 mm zMzMGzzgZg m
−−== is a m dimensional function on

a discrete space V , then a m dimensional standard NN can be used to approximate
)(Zg to achieve any desired approximation accuracy. Based on such an idea, the

following theorem about the approximation capability of ESNNs can be obtained.

Theorem 3 (Universal Approximation Property of ESNNs). Let)(XG be a function
on a discrete space nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈= },...,2,1 iNk =

),...,2,1(ni = . Then for any given 0>ε and for any disjoint grouping of the input
variables },...,,{ 21 nxxx into m groups jG),...,2,1(mj = satisfying (8)–(10), there
exists an ESNN)(XESNN given in (13) such that
 ε<−=−

∈∞ |)()(|max|||| XESNNXGESNNG
UX

 (21)

 The main advantage of the above theorem is that, for any disjoint grouping of the
input variables },...,,{ 21 nxxx (i.e., the user can choose the number of groups and
which input variables are in which group), an ESNN with such an input variable
grouping can be found to approximate the given function to any degree of accuracy.
This is a useful property in applications as it means that an ESNN can be designed
based on the required different impact of different groups of input variables on the
system output. In other words, the ESNN both allows the required approximation
accuracy and enables better understanding of system behavior.
 The two possible algorithms proposed for SNNs are also applicable here. The only
differences are as follows: in the first algorithm, m one-to-one linear mappings are
needed from the sub-input-spaces

jGU to),...,2,1(mjV j = rather than only one one-to-
one linear mapping needed, and the higher level sub-system to be trained is a m
dimensional NN rather than a one-dimensional NN. For function approximation in

Approximation Capabilities of Hierarchical 67

high dimensional input spaces, the whole input space can be divided into several
disjoint sub-spaces such that a one-to-one linear mapping on each sub-space is
possible within the representation accuracy of float numbers. In other words, high
dimensional function approximation and modeling can be handled by proper ESNNs.
Although the learning of the higher level sub-system is a more complicated m
dimensional NN, it can still be much simpler than training a standard NN with n
dimensions. Consider an example where 25=n . Assume we design 5 one-to-one
linear functions in which each linear function takes 5 variables (today’s computers are
likely to be able to represent a 5-dimension one-to-one mapping), then the training of
a 25-dimension standard NN in the existing NN learning methods can be transformed
into the training of a 5-dimension NN by using the proposed ESNN method. In other
words, ESNNs can handle the high dimensional modeling problem and can be much
simpler than standard NNs in many cases.
 Now the above results of SNNs and ESNNs are extended to SHNFSs and HNFSs.
Such an extension is possible because fuzzy systems can realize any linear and many
nonlinear functions [32]. That is, by choosing the commonly used triangle
membership functions and proper system parameters, fuzzy systems can exactly
represent any linear function. Based on Theorem 1, that there are one-to-one linear
mappings from a multi-dimensional discrete space to a one-dimensional discrete
space, it can be implied that there are fuzzy systems which can form one-to-one
mappings from a multi-dimensional discrete space to a one-dimensional discrete
space. Based on this and following the same idea as the approximation capability
analysis of SNNs, the following theorem related to the approximation capability of
SHNFSs can be proved as given in the Appendix.

Theorem 4 (Universal Approximation Property of SHNFSs). Let)(XG be a function
on discrete space nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈= },...,2,1 iNk =

),...,2,1(ni = . Then for any given 0>ε , there exists a SHNFS)(XSHNFS given in
(16) such that
 ε<−=−

∈∞ |)()(|max|||| XSHNFSXGSHNFSG
UX

 (22)

 Similarly, based on the fact mentioned above that there are one-to-one fuzzy
systems on a multi-dimensional discrete space and following the same idea as the
approximation capability analysis of ESNNs, the following theorem of the
approximation capability of HNFSs can be proved as given in the Appendix.

Theorem 5 (Universal Approximation Property of HNFSs). Let)(XG be a function
on discrete space nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈= },...,2,1 iNk =

),...,2,1(ni = . Then for any given 0>ε and for any disjoint grouping of the input
variables },...,,{ 21 nxxx into m groups jG),...,2,1(mj = satisfying (8)–(10), there
exists a HNFS)(XHNFS given in (19) such that
 ε<−=−

∈∞ |)()(|max|||| XHNFSXGHNFSG
UX

 (24)

68 Xiao-Jun Zeng et al

 The two algorithms proposed for SNNs and ESNNs can be extended to identify
SHNFSs and HNFSs. The main ideas are the same but there are several differences.
 In the first algorithm, the lower level one-to-one linear mapping(s) are now
replaced by the fuzzy system(s) as the lower level sub-system(s). As there are more
parameters available to construct the one-to-one mapping(s), then it is possible that
nonlinear one-to-one mappings can be constructed to allow the higher level
approximation problem to become simpler. In addition, human knowledge can be
utilized during the construction of the lower level fuzzy system(s).
 In the second algorithm, rather than use the linear function(s) with parameters to
be identified by the gradient descent optimisation algorithms, it is possible to
construct fuzzy systems by using available human knowledge which may lead to
faster convergence during the training phase.
 In addition to the above, a third possible algorithm which is especially suitable for
situations with high dimension and limited available data is as follows:
 Construct one or several lower one-to-one fuzzy systems based on human
knowledge to aggregate the impact of different input variable groups on the system
output into several aggregated group indexes [i.e., construct

),...,2,1()(mjXFz jjj == by only using available human knowledge, and jz is the
aggregated index variable of those input variables in group jG] .
 Use the constructed lower level fuzzy system(s) to transform the available input-
output data },...,2,1|),{(NtyX tt = into the index-output data as

,...,2,1),(),,...,(|),{(,,,,1 === jXFzzzZyZ tjjtjtmtttt },...,2,1, Ntm = .
 Use the index-output data),...,2,1|),{(NtyZ tt = to identify the higher level NN

)(ZNNy m= by using the NN learning algorithms.
 A simple example is given to illustrate the meaning of the above steps. Suppose
we wish to model how student performance in examinations is dependent on 9 study
factors as follows: time spent in study, lecture attendance, homework completion,
previous examination record, A-level scores, IQ score, lecture quality, lab facilities,
and lab availability, based on collected data of a small number of students, say 25
(collecting such private information from a large group is costly and time consuming,
and thus impractical). Suppose that the 9 factors are divided into 3 groups where
Group 1 is the effort factors (time spent in study, lecture attendance, homework
completion), Group 2 is the academic ability factor (previous examination record, A-
level scores, IQ score), and Group 3 is the study environment factors (lecture quality,
lab facilities, and lab availability). Then the above three steps can be applied as
follows:
 Firstly, use human knowledge to build the lower level fuzzy subsystems. For
example, the sub-system to aggregate the effort factors can be formed based on the
following human knowledge fuzzy rule: if time spent is long, lecture attendance is
regular, homework completion is good, then the effort is very good; such rules can
form the effort index fuzzy sub-system.
 Secondly, use the above lower level fuzzy systems to transform the input-output
data into index-output data. For example, an input-output pair in the available data is
{[time spent=long, lecture attendance=regular, homework completion=good, …, lab

Approximation Capabilities of Hierarchical 69

availability=always], exam performance=good}. Then use the lower level fuzzy sub-
systems to transform the input-output pair into the index-output pair as {[effort=very
good, ..., study condition=good], exam performance=good}. This step is to transform
all input-output data to index-output data;
 Thirdly, now the original modeling problem with 9 input variables and 25
available data has been transformed to a modeling problem with 3 input variables and
25 available data which is much easier to identify, thus a reasonable model is likely to
be obtained as the limited training data is reasonably rich for a 3-dimensional
modeling problem.
 In summary, by using human knowledge to form the lower level fuzzy sub-
systems and then transforming the available input-output data into index-output data,
the modeling problem of a SHNFS or HNFS with n input variables is transformed
into a modeling problem of a standard NN with m input variables. As the latter
problem is one with a lower or much lower dimension, then it can be identified by
using the existing learning algorithms based on the limited available data. In other
words, the above proposed algorithm shows that SHNFSs and HNFSs have the
potential to combine human (knowledge and experience) and machine intelligence
(learning from data) to model high dimensional complicated systems with limited
input-output data.

Conclusion
This paper has investigated function approximation on discrete input spaces using
neural networks and neural-fuzzy systems.
 Firstly, from a hierarchical systematic view, this paper has proposed four new and
simpler neural networks and hierarchical neural-fuzzy systems for function
approximation on discrete spaces: SNNs, ESSNs, SHNFSs and HNFSs. Compared to
standard NNs and fuzzy systems, the proposed approximation schemes have several
advantages including being simpler (fewer parameters), useful to overcome model
overfitting and underfitting, flexible, capable of utilizing both human (knowledge and
experience) and machine intelligence (learning from data) for a difficult modeling
situation (such as high dimensions and limited training data).
 Secondly, the paper has analyzed the approximation capabilities of the proposed
new approximation schemes. That is, whether the proposed approximation schemes
preserve the universal approximation property of standard NNs and fuzzy systems. A
positive answer to this question has been obtained, that is, all four proposed
approximation schemes have the universal approximation property. These results have
established a theoretical foundation and show the feasibility and general applicability
of the proposed approximation schemes to function approximation on discrete spaces.
 Thirdly, several possible algorithms have been proposed and analyzed to show
how the advantages of the proposed approximation schemes can be realized.
 Further work includes implementation and experimentation of the proposed
algorithms, a comparison of the results obtained by the proposed algorithms with
those obtained by standard NN learning algorithms, and applying these algorithms in
real life applications.

70 Xiao-Jun Zeng et al

Appendix
Proof of Theorem 1[35]. Given nUUUU ×××= ...21 and

},...,2,1,|{ ,, ikikii NkRuuU =∈=),...,2,1(ni = , Without loss of generality, it is
assumed that

iNiii uuu ,2,1, ... <<<),...,2,1(ni = . Now define

{ }

niuu

uu

iNiNi

kikiNki

ii
,...,1

min

,1,

,1,11 1

=Δ+=

−=Δ

+

+−≤≤

and a linear function in the following:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
==

++

+

1,1,

1,

1,21,2

1,22
2

1,11,1

1,11
1

...

)(

2

1

nNn

nn
n

N

N

uu
ux

w
uu

ux
w

uu
ux

wXMy

n

 (A.1)

in which the weighting factors iw),...,2,1(ni = are constructed recursively as follows:

 1,...,101
1,1,

11 −=
−

Δ
<<=

+
+ ni

uu
www

iNi

i
ii

i

 For the above construction of the weighting factors iw),...,2,1(ni = , it is implied
that, for any given ki, and l iNkni ,...,2,1,1,...,2,1(=−=),...,2,1 1+= iNl

i
iNi

iki
i

iNi

kiki
i

iNi

iki
i

i
iNi

iki
i

w
uu
uu

w

uu
uu

w
uu

uu
w

w
uu

uu
w

i

ii

i

≤
−

−
=

−

−
+

−

−
<

+
−

−

+

+

+

+

+

+
+

1,1,

1,1,

1,1,

,1,

1,1,

1,,

1
1,1,

1,,

 (A.2)

 Let 0X and '

0X be any two different elements inU , that is,
()

nknkk uuuX ,,2,10 ,...,,
21

= , ()''
2

'
1 ,,2,1

'
0 ,...,,

nknkk uuuX = , and '
00 XX ≠ . If '

11 ,1,1 kk uu ≠ , then,

without loss of generality, assume that '
11 ,1,1 kk uu < (this means '

11 ,11,1 kk uu ≤+). Now from

(A.1) and (A.2), it is implied that

Approximation Capabilities of Hierarchical 71

)2.(

)2.(

)2.(...

...

...

)(

1,11,1

1,11,1
1

2
1,11,1

1,1,1
1

1
1,21,2

1,2,2
2

1,21,2

1,2,2
2

1,11,1

1,1,1
1

1,11,1

1,1,1
1

1,21,2

1,2,2
2

1,11,1

1,1,1
1

1,1,

1,,

1,21,2

1,2,2
2

1,11,1

1,1,1
10

1

1

1

1

2

2

2

2

1

1

1

1

2

2

1

1

2

2

1

1

Aby
uu
uu

w

Abyw
uu

uu
w

Abyw
uu

uu
w

uu
uu

w
uu

uu
w

w
uu

uu
w

uu
uu

w
uu

uu
w

uu
uu

w

uu
uu

w
uu

uu
wXM

N

k

N

k

n
nNn

nkn
n

N

k

N

k

n
nNn

nkn
n

N

k

N

k

nNn

nkn
n

N

k

N

k

n

n

n

n

n

n

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
<

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
<

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
<

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
<

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

+

+

+

−
−+−

−−
−

++

−+−

−−
−

++

+

++

−

−

−

−

)(... '
0

1,1,

1,,

1,21,2

1,2,2
2

1,11,1

1,1,1
1

1,11,1

1,1,1
1

'

2

'
2

1

'
1

1

'
1

XM
uu

uu
w

uu

uu
w

uu

uu
w

uu

uu
w

nNn

nkn
n

N

k

N

k

N

k

n

n =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
≤

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
≤

+

++

+

 That is,)()('

00 XMXM ≠ . If '
11 ,1,1 kk uu = but 0i is the smallest i such that

'
0000 ,,

ii kiki uu ≠ , then similar to the above it can be proved that)()('
00 XMXM ≠ .

Therefore, if '
00 XX ≠ , then)()('

00 XMXM ≠ . That is, the linear function given in
(A.1) is a one-to-one mapping from U to R .

Proof of Theorem 2. For the given input space U , based on Theorem 1, there exists a
linear function

 ∑
=

+==
n

i
ii xwwXLz

1
0)((A.3)

which is a one-to-one mapping from U to R . For every

72 Xiao-Jun Zeng et al

 () i

n

iknkkkkk UUuuuX
nn 1,,2,1... ,...,,

2121 =
×=∈=

 nlNk ii ,...,2,1,...,2,1 ==

define
 ()

nn kkkkkk XLz 2121
=

 That is,

nkkkz ...21
is the function value of)(XL at

nkkkX ...21
and the set of all such

values is denoted as
 { }niNkyV ilkkk n

,...,2,1,,...,2,1...21
===

which is the output variable space of function)(XL . As)(XL is a one-to-one
mapping, then all elements of V are different. Therefore, for every Vz ∈ , there exists
only one element X in U such that)(XLz = . Further, as U is a discrete space with
finite elements, then V is a discrete space with finite elements.
 Now define function)(zg on V as follows: For every Uz ∈ , let X be the unique
element in U such that)(XLz = . Then define the value of g at z as follows:
)()(XGzg =

 For the function g defined in the above, it can be proved by the reverse process
that for all UX ∈
 [])()(XLgXG = (A.4)

 As)(zg is a function on finite discrete space V which is bounded, based on [27] it
can extended to be a continuous function)(ˆ Xg on],[ˆ zzV = (where

zzzz VzVz ∈∈ == max,min) in the sense that
)()(ˆ XgXg = Vz ∈ (A.5)

 As)(ˆ Xg is a continuous function on V̂ , then it is implied immediately from the
universal approximation property of standard NNs on continuous spaces that there
exists a NN)(1 zNN on Û such that
 ε<−=−

∈∞ |)()(ˆ|max||ˆ|| 1ˆ1 zNNzgNNg Vz (A.6)

 Now define a SNN as)]([)(1 XLNNXSNN = , then (A.4), (A.5) and (A.6) imply
that, for any UX ∈ ,

ε<−≤

−≤

−=−

∈

∈

|)()(ˆ|max
)()(max

|)]([)]([||)()(|

1ˆ

1

1

zNNzg
zNNzg

XLNNXLgXSNNXG

Vz

Vz

Approximation Capabilities of Hierarchical 73

which leads to (20) immediately and this completes the proof.

Proof of Theorem 3. For each mj ,...,2,1= , based on Theorem 1, there exists a linear

function defined on
k

j

j i

n

kG UU
1=

×= as follows

 ∑
=

+==
j

j
k

n

k
ikjjjjj xwwXLz

1
,0,)()((A.7)

which is a one-to-one mapping from

jGU to R . For every

 ()
jjnjn

jn

j Gkikiki
kkk

UuuuX ∈= ,,,
)...(

,...,,
2211

21

 jil nlNk
l

,...,2,1,...,2,1 ==

define
 ())...()...(2121 jnjn kkk

jj
kkk

j XLz =

 That is,

)...(21 jnkkk
jz is the function value of)(jj XL at)...(21 jn

j

kkkX and the set of all such
values is denoted as
 { }jil

kkk
jj nlNkzV

l

jn ,...,2,1,,...,2,1)...(21 ===

which is the output variable space of function)(jj XL . As)(jj XL is one-to-one
mapping, then all elements of jV are different. Therefore, for every jj Vz ∈ , there
exists only one element jX in

jGU such that)(jjj XLz = . Further, as
jGU is a discrete

space with finite elements, then jV is a discrete space with finite elements.

 Now define function),...,,()(21 mzzzgZg = on j

m

j
VV

1=
×= as follows: for any given

VzzZ m ∈=),...,(1 , as each jj Vz ∈),...,2,1(mj = , then there exists a unique element

jX in
jGU such that)(jjj XLz = . Further it can be implied from (8)-(10) that all sub-

vectors jX),...,2,1(mj = form a unique vector UxxX n ∈=),...,(1 . Now define the
value of g at the given VzzZ m ∈=),...,(1 as the value of G at its unique
corresponding point UxxX n ∈=),...,(1 . That is
)(),...,()(1 XGzzgZg m ==

 For the function)(Zg defined in the above, it can be proved by the reverse
process that for all UxxX n ∈=),...,(1 ,

 [])(),...,()(11 mm XLXLgXG = (A.8)

74 Xiao-Jun Zeng et al

 As)(Zg is a function on a finite discrete space V which is bounded, then, from
the fact that any function in a discrete space can be extended to be a continuous
function [27], it is implied that)(Zg can be extended to a continuous function)(ˆ Zg

on],[ˆ
1

jj

m

j
zzV

=
×= [where jVzj zz

jj∈
= min , jVzj zz

jj∈
= max),...,2,1(mj =] in the sense

that)()(ˆ ZgZg = for any j

m

j
VVZ

1=
×=∈ . As)(ˆ Zg is a continuous function on V̂ , then

it is implied immediately from the universal approximation property of standard NNs
on continuous spaces that there exists a NN)(ZNNm),...,(1 mm zzNN= on V̂ such that
 ε<−=−

∈∞ |)()(ˆ|max||ˆ|| ˆ ZNNZgNNg mVZm (A.9)

 Now define the ESNN as
)](),...,([)(11 mmm XLXLNNXESNN =

 This, together with (A.8) and (A.9), implies that, for any UX ∈ ,

ε<−≤

−=

−≤

−=
−

∈

∈

∈

|)()(ˆ|max
)()(max

),...,(),...,(max
|)](),...,([)](),...,([|

|)()(|

ˆ

11),...,(

1111

1

ZNNZg
ZNNZg

zzNNzzg
XLXLNNXLXLg

XESNNXG

mVz

mVZ

mmmVzz

mmmmm

m

which leads to (21) immediately and this completes the proof.

Proof of Theorem 4. For the given input spaceU , based on Theorem 1, there exists a
linear function

 ∑
=

+==
n

i
ii xwwXLz

1
0)((A.3)

which is a one-to-one mapping from U to R . For the given)(XL , based on Theorem
4 in [32], it can be implied that there exists a simplest fuzzy system)(XF [i.e., there
are only two memberships in each),...,2,1(niUi =] such that)()(XLXF = for all

UX ∈ . Then it is implied that, from the fact that)(XL is one-to-one mapping, the
fuzzy system)(XF is a one-to-one mapping from U to R .
 Based on this one-to-one fuzzy mapping)(XF , the rest of the proof is the same
as the proof of Theorem 2 except for replacing)(XFz = by)(XLz = and therefore
the details are omitted.

Proof of Theorem 5. From the proof of Theorem 4, it is obtained that, for any given
discrete space U as in (2), there exists a one-to-one fuzzy system from U to R .

Approximation Capabilities of Hierarchical 75

Applying this result to the input space of each group, i.e.,
k

j

j i

n

kG UU
1=

×=),...,2,1(mj = ,

we can obtain that, for each
jGU , there exists a fuzzy sub-systems)(jjj XFz = which

is a one-to-one mapping from
jGU to R . Based on this, the proof of the theorem is the

same as the proof of Theorem 3 except for replacing)(jjj XLz = by)(jjj XFz =
),...,2,1(mj = and so the details are omitted.

References

[1] A. R. Barron, “Universal approximation bounds for superpositions of a
sigmoidal function,” IEEE Trans. Inform. Theory, vol. 39, pp. 930–945, 1993.

[2] J.J. Buckley, ``Universal fuzzy controllers,'' Automatica, Vol. 28, pp. 1245-
1248, 1992.

[3] S. Carroll, and B. Dickinson, “Construction of neural networks
[4] using the Radon transform,” in IEEE International Conference on Neural

Networks, vol. 1. Washington, DC: IEEE, pp. 607–611, 1989.
[5] J.L. Castro, ``Fuzzy logic controllers are universal approximators,” IEEE

Trans. Syst., Man, Cybern., Vol. 25, pp. 629-635, 1995.
[6] G. Cybenko, “ Approximation by superpositions of a sigmoidal function,”

Mathematics of Control, Signals, and Systems, Vol. 3, pp. 303–314, 1989.
[7] B. Delyon, A. Juditsky, and A. Benveniste, “Accuracy analysis for wavelet

approximations,” IEEE Trans. Neural Networks, Vol. 6, pp. 332-348, 1995.
[8] G. Feng, “Controller Synthesis of Fuzzy Dynamic Systems Based on Piecewise

Lyapunov Functions”, IEEE Trans. Fuzzy Syst., vol. 11, pp. 605–612, 2003.
[9] S. Ferrari, M. Maggioni, and N. A. Borghese, “Multiscale approximation with

hierarchical radial basis functions networks,” IEEE Trans. Neural Networks,
Vol. 15, pp. 178-188, 2004

[10] B. Hammer and Kai Gersmann, “A Note on the universal approximation
capability of support vector machines,” Neural Processing Letters, Vol. 17, pp.
43–53, 2003.

[11] R. Hassine, F. Karray, A. M. Alimi, and M. Selmi, “Approximation properties
of fuzzy systems for smooth functions and their first-order derivative,” IEEE
Trans. Syst., Man, Cybern.-Part A, Vol. 33, pp. 160-168, 2003.

[12] R. Hecht-Nielsen, “Kolmogorov’s mapping neural network existence theorem,”
In IEEE International Conference on Neural Networks, vol. 3. Washington,
DC: IEEE, pp. 11–14, 1989.

[13] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators, Neural Networks,” Neural Networks, Vol. 2, pp.
359–366, 1989.

[14] K. Hornik, “Some results on neural network approximation,” Neural Networks,
Vol. 6, pp. 1069–1072, 1993.

76 Xiao-Jun Zeng et al

[15] B. Igelnik and N. Parikh, “Kolmogorov’s Spline Network,”, IEEE Trans.
Neural Networks, Vol. 14, pp. 725-733, 2003

[16] Y. Ito, “Approximation of functions on a compact set by finite sums of sigmoid
function without scaling,” Neural Networks, Vol. 4, pp. 817–826.

[17] B. Kosko, “Fuzzy systems as universal approximators,” in Proc. of IEEE int.
conf. on Fuzzy Systems, San Diego, CA, pp. 1153—1162, 1992..

[18] V. Kreinovich, “Arbitrary nonlinearity is sufficient to represent all functions by
neural networks: a theorem,” Neural Networks, Vol. 4, pp. 381–383, 1991.

[19] V. Kurkova, “Kolmogorov’s theorem and multilayer neural Networks,” Neural
Networks, Vol. 5, pp. 501–506, 1992.

[20] A. Mencattini, M. Salmeri, and A. Salsano, “Sufficient conditions to impose
derivative constraints on MISO Takagi–Sugeno fuzzy logic systems,” IEEE
Trans. Fuzzy Syst., vol. 13, pp. 454–467, Aug. 2005.

[21] T. Poggio and F. Girosi, “Networks for approximation and learning,” Proc. of
IEEE, Vol. 78, pp. 1481-1497, Sept. 1990.

[22] F. Scarselli and A. C. Tsoi, “Universal approximation using feedforward neural
networks: A survey of some existing methods and some new results,” Neural
Networks, vol. 11, pp. 15–37, 1998.

[23] V. Torra, “A Review of the construction of hierarchical fuzzy systems,” Int. J.
Intelligent Systems, Vol. 17, pp. 531-543, 2002.

[24] L. Vecci, F. Piazza, and A Uncini, “Learning and approximation capabilities of
adaptive spline activation function neural networks”, Neural Networks, vol. 11,
pp. 259–270, 1998.

[25] L.-X. Wang, “Fuzzy systems are universal approximators,” in Proc. of IEEE
int. conf. on Fuzzy Systems, San Diego, CA, pp. 1163-1170, 1992.

[26] L.-X. Wang, ``Universal approximation by hierarchical fuzzy systems,'' Fuzzy
Sets and Systems, Vol. 93, pp. 223-230, 1998.

[27] L.-X. Wang, ``Analysis and design of hierarchical fuzzy systems,'' IEEE Trans.
Fuzzy Systems, Vol.7, pp. 617-624, 1999.

[28] G. A. Watson, Approximation Theory and Numerical Methods, New York:John
Wiley and Sons, 1980.

[29] H. Ying, ``Sufficient conditions on general fuzzy systems as function
approximations,'' Automatica, Vol. 30, pp. 521-525, Mar. 1994.

[30] X.-J. Zeng and M.G. Singh, ``Approximation theory of fuzzy systems---SISO
case,’’ IEEE Trans. Fuzzy Systems, Vol. 2, pp. 162-176, May 1994.

[31] X.-J. Zeng and M.G. Singh, ``Approximation theory of fuzzy systems---MIMO
case,'' IEEE Trans. Fuzzy Systems, Vol. 3, pp. 219-235, May 1995.

[32] X.-J. Zeng and M.G. Singh, ``Approximation accuracy analysis of fuzzy
systems as function approximators,'' IEEE Trans. Fuzzy Systems, Vol. 4, pp.
44-63, Feb. 1996.

[33] X.-J. Zeng and M.G. Singh, ``Decomposition property of fuzzy systems and its
applications,'' IEEE Trans. Fuzzy Systems, Vol. 4, pp. 149-165, Apr. 1996.

[34] X.-J. Zeng and J.A. Keane, ``Approximation capabilities of hierarchical fuzzy
systems,'' IEEE Trans. Fuzzy Systems, to be published.

Approximation Capabilities of Hierarchical 77

[35] X.-J. Zeng and J.A. Keane, ``Approximation capabilities of hierarchical hybrid
systems,'' IEEE Trans. Syst., Man, Cybern.-Part A, to be published

[36] X.-J. Zeng and J.A. Keane, ``Hierarchical fuzzy systems for function
approximation on discrete input spaces ,'' submitted for publication.

Authors Biography

Xiao-Jun Zeng received the B.Sc. degree in mathematics and the M.Sc. degree in
computer and systems sciences from Xiamen University, Xiamen, China. He received
the Ph.D. degree in computation from the University of Manchester Institute of
Science and Technology (UMIST), Manchester, U.K.
 He is currently a lecturer in the School of Informatics, University of Manchester.
From 1996 to 2002, he was with the Knowledge Support Systems Ltd., Manchester,
U.K., where he was a scientific developer, senior scientific developer, and head of
research. From 1985 to 1992, he was with the Department of Computer and Systems
Sciences, Xiamen University, where he was a lecturer and an associate professor. His
current research interests include fuzzy systems, neural networks, decision support
systems, intelligent systems, and data mining.

Dr. Zeng is an Associate Editor of the IEEE Transactions on Fuzzy Systems and is a
member of the editorial board of the International Journal of Computational
Intelligence Research.

John Yannis Goulermas was born in Greece in 1970. He received the B.Sc. degree
(Hons, Class I) in computation from the University of Manchester (UMIST),
Manchester, U.K., in 1994. In 1996 and 2000, he received the M.Sc. degree by
research and the Ph.D. degree from the Control Systems Centre, Department of
Electrical Engineering and Electronics (EE&E) at UMIST working in the area of
Machine Vision.
 He has worked for two years in industry in the area of financial/pricing modelling
and optimization, and for three years in the Centre for Virtual Environments and the
Centre for Rehabilitation and Human Performance Research of the University of
Salford, as a Senior Research Fellow in the area of biomechanics and intelligent gait
analysis. He is currently a lecturer in the EE&E department at the University of
Liverpool, U.K. His main research interests include pattern recognition, neural
networks, data analysis, artificial intelligence, machine vision and optimization.

John A. Keane received the B.Sc. and MSc degrees in computation and computer
science respectively.
 He holds the M.G. Singh Chair in Computing Science in the School of Informatics
at the University of Manchester, UK, where he leads the Data and Decision
Engineering research group. He has worked in industry with the Trustees Savings
Bank, Philips Data Systems and ICL. His research activity is in the areas of data
intensive systems, data mining, and parallel systems.

78 Xiao-Jun Zeng et al

 Professor Keane is Deputy Director of the UK National Centre for Text Mining
which is led by the Universities of Manchester, Liverpool and Salford, and involves
internationally self-funded partners University College, Berkeley, University of
Geneva, University of Tokyo, and the San Diego Supercomputer Centre.
 Professor Keane is an Associate Editor of the IEEE Transactions on Systems, Man
and Cybernetics Part C, a member of the editorial board of Simulation Modelling, and
is a member of the EPSRC Peer Review College.

Panos Liatsis received the Dipl.Eng. degree (first-class hons.) in electrical
engineering from the University of Thrace, Thrace, Greece and the Ph.D. degree from
the Control Systems Centre, University of Manchester Institute of Science and
Technology (UMIST), Manchester, U.K.
 After working as a Lecturer in the Control Systems Centre, UMIST, he moved to
the School of Engineering and Mathematical Sciences at City University, London,
U.K., where he is currently a Senior Lecturer and Director of the Information and
Biomedical Engineering Centre (IBEC). His main research interests are neural
networks, genetic algorithms, computer vision and pattern recognition. He has worked
in the areas of intelligent automotive sensors for object tracking, collision warning,
lane support and traffic sign recognition, feature/area-based stereo matching using co-
evolutionary computing, polynomial neural networks architectures for predictive
image coding and time series forecasting, kernel-based discriminant analysis for
chemometrics in biomedical signal processing, among many others. He has published
over 80 scientific papers in international journals and conferences and edited two
international conference proceedings.
 Dr Liatsis is a member of the EPSRC Peer Review College, the IEE, the Technical
Chamber of Greece (TEE), and a European Engineer (Eur Ing).

