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Abstract 
 

This paper investigates function approximation on discrete input spaces by 
both neural networks and neural-fuzzy systems. Rather than use existing 
neural networks for function approximation on continuous input spaces, this 
paper proposes, based on a hierarchical systematic perspective, four simplified 
approximation schemes: simplified neural networks, extended simplified 
neural networks, simple hierarchical neural-fuzzy systems and hierarchical 
neural-fuzzy systems. Each scheme is proven to be a universal approximator 
(i.e., each can approximate any function on discrete input spaces to any degree 
of accuracy). The results provide both several new and simpler approximation 
schemes for function approximation on discrete spaces and show that there 
exist simpler and more effective methods for function approximation on 
discrete spaces compared with continuous spaces.  
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Index Terms: Neural Networks, Fuzzy Systems, Neural-Fuzzy Systems, 
Hierarchical systems.  

 
 
Introduction 
Aproximation or representation capabilities of neural networks and fuzzy systems 
have attracted considerable research in the last 15 years. In neural networks, following 
from the proof of their universal approximation property (Cybenko [5], Hecht-
Nielsen[11], and Carroll and Dickinson [3], Hornik, Stinchcombe, and White[12]), it 
has been proved that various neural networks are universal approximators and that the 
various results on approximation accuracy are also available (see, for example, [1], 
[13]-[15], [17], [18], [20], [21], and [23]). In fuzzy systems, the work on their 
approximation capabilities (Buckley [2], Kosko[16] and Wang [24]) has shown that 
fuzzy systems are also universal approximators. Since then, a number of results 
related to approximation capabilities and accuracy have been published (see, for 
example, [4], [10], [19], [28], and [29]-[31]); more recently these results have been 
extended to hierarchical and hybrid systems (see, for example, [8], [22], [25], [26], 
[33] and [34]. In addition to research on neural networks’ and fuzzy systems’ 
approximation capability, the approximation capabilities of wavelets and support 
vector machines (SVM) have been investigated (see, for example, [6] and [9]). 
However, almost all these available results focus on function approximation on 
continuous input spaces with few results available for function approximation on 
discrete spaces. This may be because function approximation on discrete input spaces 
can be viewed as a special case of function approximation on continuous spaces as 
any function on discrete spaces can be expanded to be a continuous function [27] that 
interpolates the given discrete function, and then the existing results in function 
approximation on continuous spaces imply that neural networks and fuzzy systems 
are universal approximators for functions defined on discrete spaces. Although such a 
view is both valid and correct, it ignores the difference between function 
approximation on continuous and discrete spaces, especially the potential to develop 
simpler approximation schemes based on neural networks and fuzzy systems for 
function approximation on discrete input spaces.  
 In this paper, motivated by this potential, the approximation capabilities of neural 
networks and neural-fuzzy systems for function approximation on discrete spaces are 
investigated by focusing on the distinguishing features of discrete input spaces. 
Several new simplified approximation schemes designed specially for function 
approximation on discrete spaces are proposed: 

• Simplified Neural Networks (SNNs) 
• Extended Simplified Neural Networks (ESNNs) 
• Simple Hierarchical Neural-Fuzzy Systems (SHNFSs) 
• Hierarchical Neural-Fuzzy Ssystems (HNFSs) 

 
 The universal approximation property (i.e., the capability to approximate any 
function on discrete input spaces to any degree of accuracy) of these approximation 
schemes are then proved. In other words, for function approximation on discrete input 
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spaces, the proposed approximation schemes are simpler and more effective whilst 
remaining as general as those approximation schemes in the literature for neural 
networks and fuzzy systems. 
 The paper is structured as follows: Section II proposes the four simplified 
approximation schemes for function approximation on discrete input spaces and 
analyzes their utility; Section III analyzes the approximation capabilities of the 
proposed approximation schemes and presents their universal approximation 
properties; finally conclusions are presented in Section IV, and the proofs of all 
theorems presented are given in the Appendix. 
 
 
Simplified Neural Networks and Hierarchical Neural-Fuzzy Systems 
Throughout the rest of the paper, it is assumed that the system or function to be 
modelled or approximated is a multi-input single-output (MISO) function defined on 
a discrete space. That is, suppose that the function is given as follows: 

 ),...,,()( 21 nxxxGXGy ==  (1) 
 
where RVy ⊂∈ is the output variable and ∈= ),...,,( 21 nxxxX

n
n RUUUU ⊂×××= ...21  is the input variable vector in which ii Ux ∈  and 

 },...,2,1,|{ ,, ikikii NkRuuU =∈=  (2) 
 
 In other words, input variable ix  takes discrete values. 
 In the following, simplified (feedforward) neural networks and hierarchical 
neural-fuzzy systems are proposed to approximate functions on discrete spaces, i.e., 
those functions given in (1) and (2).  
 
 
Simplified Neural Networks (SNNs) 
The standard and most commonly used (feedforward) neural networks (NN) can be 
represented as:  

 ∑
=

++==
N

i
iii cbXacXNNy

1
0)()( τσ  (3) 

 
where ),...,,( 21 nxxxX =  are input variables, UX ∈  n

n RUUU ⊂×××= ...21  which 
are input space, Ry ∈  is the output variable, τ is the vector transpose, (.)σ  is the 
activation function and the parameters Rc ∈0 , Rci ∈ , n

i Ra ∈ , and Rbi ∈  (
),...,2,1 Ni = . 

 Given the standard NN given in (3), the total number of parameters [i.e., Rci ∈ ,
n

i Ra ∈ , Rbi ∈ ( ),...,2,1 Ni =  and Rc ∈0 ] is 1)2( ++ Nn . For nonlinear complex 
function approximation, a large N is needed and often N will grow exponentially with 



58  Xiao-Jun Zeng et al 
 

 

the dimension of n [1]. As a result, a large number of parameters are needed in order 
to achieve good approximation accuracy.  
 To overcome this difficulty, a simplified neural network (SNN) is proposed for 
function approximation on discrete spaces as follows:  

   ∑
=

+++==
N

i
iii cXcXSNNy

1
0])([)( ββαασ τ   (4) 

 
where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β  ( ),...,2,1 Ni =  and nR∈α , R∈β .  
 Let 

  βα τ +== XXLz )(   (5) 
 
and  

  ∑
=

++==
N

i
iii czczNNy

1
01 )()( βασ   (6) 

 
 Then the proposed SFNN given in (4) can be rewritten as follows: 
  )]([)( 1 XLNNXSNNy ==   (7) 
 
 In other words, the proposed SNN can be presented as a composition of a linear 
function )(XL given in (5) and a one-dimensional standard NN )(1 zNN given in (6).  
 For the SNN given in (4), the total number of parameters is 23 ++ nN . Therefore, 
in many cases fewer parameters are needed for SNNs in comparison to the number 
needed for standard NNs. Another advantage of SNNs is that they are more effective 
in overcoming the model over-fitting which often happens in NN modeling. This is 
because: in the standard NNs, adding a new neuron [i.e., add an item )( iii bXac +τσ in 
(3)] means adding 2+n parameters. As a result, in NN modeling it often happens that 
adding one more neuron causes model overfitting whereas not adding such a new 
neuron may result in underfitting, especially in the case where n  is large but only 
limited training data is available. However, in SNNs, adding a new neuron means 
adding an item )( iii zc βασ +  which only adds three parameters. As a result, SNNs 
allow the addition of finer-grained parameters to overcome model overfiting and 
underfitting, especially in the high dimension (i.e., large n ) case. Another potential 
advantage is that simpler learning algorithms can be developed. For example, in some 
cases multi-dimensional NN learning problems can be transformed to a one-
dimensional NN learning problem and thus the corresponding learning algorithms can 
be much simpler (see Section III for more detailed discussion on this).  

 To approximate a function )(XG  given in (1) on discrete space ∏
=

=
n

i
iUU

1

given 

in (2), the basic idea in using the SNNs is that, firstly a linear function )(xL is 
constructed to transform n  dimensional variables ),...,,( 21 nxxxX = into a one-
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dimensional variable z  and then a one-dimensional standard NN )(1 zNN is 
constructed to form the final SNN )]([)( 1 XLNNXSNN =  to approximate the given 
function )(XG . A major focus of this paper is to prove that SNNs have the same 
universal approximation property (i.e., they are able to approximate any function to 
any degree of accuracy) as standard NNs, that is, to prove the feasibility and general 
applicability of SNNs as a new and simpler NNs for function approximation on 
discrete spaces.  
 There are two possible views on the SNN given in (4). Firstly, it can be viewed as 
a special case of the standard three layered feedforward NN given in (3) in which the 
parameters take the particular form of ααiia = and iiiib ββα +=  ),...,2,1( Ni = . 
Secondly, it can be viewed as a hierarchical hybrid NN system in which the lower 
level sub-system is a linear function given in (5) and the higher level sub-system is a 
one-dimensional NN given in (6) which takes the output variable of the lower sub-
system as its input variable. The combination of the two sub-systems forms the 
hierarchical hybrid system given in (7) which is the proposed SNN. Although both 
views produce the same SNNs given in (4) in this instance, the second view is more 
general and flexible. The extended SNNs and the hierarchical neural-fuzzy systems 
proposed later in the paper result from this view. It should be noted that hierarchical 
neural-fuzzy systems can only be obtained from the second hierarchical hybrid 
systems view as they are no longer a special case of standard NNs.  
 An extended SNN (ESNN) differs from a SNN in that, rather than using one linear 
function to transform n  dimensional variables ),...,,( 21 nxxxX = into a one-
dimensional variable z , it uses )( nm <  sub-linear functions as the lower level sub-
systems to transform n  dimensional variables ),...,,( 21 nxxxX =  into m  dimensional 
variables ),...,,( 21 mzzzZ =  and then use a m dimensional standard NN (which takes 
the output variables of the lower sub-systems as its input variables) as the higher level 
sub-system. The detailed mathematical formula of an ESNN is as follows:  
 Let jG ),...,2,1( mj = be a disjoint grouping of the input variables },...,,{ 21 nxxx  as 
follows:  

  mjxxxG j
jn

jj iiij ,...,2,1,...,, )()(
2

)(
1

=
⎭⎬
⎫

⎩⎨
⎧=   (8) 

 
where 
  ='jj GG I  ∅  mjjjj ,...,2,1',,' =≠   (9) 

  },...,,{.... 2121 nm xxxGGG =UUU   (10) 
 

and nn
m

j
j =∑

=1

. Let ),...,,( )()(
2

)(
1

j
jn

jj iiij xxxX =  denote the input variables of group jG

),...,2,1( mj = , and then the lower level sub-systems are linear functions given by 
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   jjjjjj XXLz ϕφτ +== )(  mj ,...,2,1=   (11) 

where jn
j R∈φ , Rj ∈ϕ  and j

k

j

j

n
i

n

kGj RUUX ⊂×=∈
=1

. Further the higher level sub-

system is a m  dimensional standard NN which takes the output variables of the lower 
level sub-systems as its input variables and is given by 

  
∑
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zzNNZNNy
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1
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),...,()(

βασ τ   (12) 

 
with Rc ∈0 , Rci ∈ , m

imiii R∈= ταααα ],...,,[ 21 , Ri ∈β  ( ),...,2,1 Ni = . Finally the 
ESNN is the following hierarchical system formed by combining the above sub-
systems as 

  

∑ ∑
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  (13) 

 
where the parameters Rc ∈0 , Rci ∈ , Ri ∈β , m

imiii R∈= ταααα ],...,,[ 21 , 

Ni ,...,2,1= , and jn
j R∈φ , Rj ∈ϕ , mj ,...,2,1= . As nn

m

j
j =∑

=1

, then the total number 

of parameters of the ESNN is 1)2()2(1
1

++++=++++ ∑
=

mnNmmnNm
m

j
j . As 

nm < , therefore, the ESNN can use fewer parameters in function approximation.  
 On the one hand, the ESNN given above can be viewed as a special case of the 

standard NN in which ],...,[ 11 mimiia φαφα=  and i

m

j
jijib βϕα += ∑

=1

 ( ni ,...,2,1= ). On 

the other hand, the SNN given in (4) can be viewed as the special case of the ESNN 
when m=1, and the standard NN given in (3) can be viewed as the special case of the 
ESNN when nm =  and 0,1 == jj ϕφ  ( nj ,...,2,1= ). In other words, ESNNs are very 
flexible with regard to model complexity, lying somewhere between SNNs and 
standard NNs respectively. 
 From an application viewpoint, the main reason to introduce ESNNs is their 
flexibility as the number of input variable groups and the input variables in each 
group can be chosen based on the need and desire of each application. For example, in 
applications of high dimensional complicated system modeling, it is often desired to 
classify the large number of input variables into different groups and then identify the 
impact of each input variable group on the system output. ESNNs can achieve this by 
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using each lower level sub-system to transform each group of input variable into its 
single output variable into the higher level sub-system and the impact of each group to 
the system output can be seen by the corresponding input-output relationship at the 
higher level sub-system. In addition, the representation accuracy of float numbers 
may make SNNs difficult to use in some high dimensional cases and then ESNNs are 
needed (see Section III for more detailed discussion about this point).  
 
 
Hierarchical Neural-Fuzzy Systems (HNFSs) 
Taking the hierarchical hybrid view of SNNs mentioned in the last subsection by 
replacing the linear function )(XL by a fuzzy system )(XF , a Simple Hierarchical 
Neural-Fuzzy system (SHNFS) can be obtained as follows:  
 The lower level sub-system is a fuzzy system )(XF whose rule base is given as:  
  lR :  IF lAisx ,11 and … and lnn Aisx , ,  
 
 THEN lCisz  
  Ll ,...,2,1=   (14) 
 
and its mathematical formula is represented by  

  l

L

l
l yXBXFz ∑

=

==
1

)()(   (15) 

 
where ly is the centroid of the output fuzzy set lC ,  

  
∑

=

= L

l
l

l
l

XA

XAXB

1
)(

)()(  

 
are fuzzy basis functions [32] (also called normalized membership functions [7]) and 

∏
=

=
n

i
ilil xAXA

1
, )()(  are the membership functions ),...,2,1( Ll = . 

 The higher level sub-system is a one-dimensional standard NN given in (6) and 
then the final SHNFS is given by  

  

∑ ∑

∑
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⎭
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XFNNXSHNFSy
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where Rc ∈0 , Rci ∈ , Ri ∈α , Ri ∈β  ( ),...,2,1 Ni = . 
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 Compared with SNNs introduced above, SHNFSs have several features which 
could be useful in applications. Firstly, as the lower level sub-system is a nonlinear 
fuzzy system, such SHNFSs have better representation power whilst still being 
relatively simple and transparent due to the rule representation and interpretability of 
fuzzy systems. This improved representation power in the lower level allows the 
higher level NN sub-system to be simpler which can lead to fewer parameters and less 
training data being needed in the higher level NN sub-system modeling. Secondly, it 
enables the combination of human (knowledge and experience) and machine 
intelligence (learning from data) in system modeling. That is, the fuzzy systems 
method can utilize human intelligence to form the lower level fuzzy sub-system and 
then the learning algorithms of neural networks can be applied to identify the higher 
level NN model from the available numerical training data. This is very useful in 
applications where there is only limited training data but relevant human knowledge is 
available.  
 As with the ESNN discussion, in applications of high dimensional complicated 
system modeling, it is often desired to classify the large number of input variables 
into different groups and then identify the impact of each input variable group on the 
system output. In addition, in the high dimensional situation, utilizing human 
knowledge by one single fuzzy system is often infeasible as it will result in a few 
thousands or more rules to collect human knowledge. For example, for the simplest 
fuzzy systems in which each input variable has only two possible fuzzy values, the 
total number of rules is n2  when there are n  input variables. As a result, for high 
dimensional function approximation or system modeling, a more feasible and flexible 
hierarchical structure is needed. The following general Hierarchical Neural-Fuzzy 
Systems (HNFS) is proposed to meet these requirements. 
 Firstly, divide the input variables },...,,{ 21 nxxx  into m  disjoint groups jG

),...,2,1( mj = as given in (8)–(10) and let ),...,,( )()(
2

)(
1

j
jn

jj iiij xxxX =  denote the input 

variables of group jG ),...,2,1( mj = . Then the lower level sub-systems of a HNFS are 
fuzzy systems ),...,2,1()( mjXF jj = whose rule base is given as:  

  j
lR :  IF )(

,1
)(

1

j
i l

j Aisx and … and )(
,)(
j

i ljnj
jn

Aisx ,  

  THEN )( j
l

Cisz   

  jLl ,...,2,1=    (17) 
 
and its mathematical formula is represented by  

   )(

1

)( )()( j
l

L

l
j

j
jjj yXBXFz

j

l∑
=

==    (18) 

 
where )( j

l
y is the centroid of the output fuzzy set )( j

l
C ,  
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are fuzzy basis functions, and ∏
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)()( )()( )(
,

 are the membership functions 

),...,2,1( jLl = . 
 The higher level sub-system is a m  dimensional standard NN given in (12) and 
then the final HNFS is given by:  
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where τ)](),...,([)( 1 XFXFXF m= , Rc ∈0 , Rci ∈ , Ri ∈β ,  

m
imiii R∈= ταααα ],...,,[ 21 , Ni ,...,2,1= . 

 
 
Approximation capabilities of SNNs and HNFSs 
In this section, the approximation capability of SNNs is analyzed first. As has been 
explained, SNNs require fewer parameters for function approximation than standard 
NNs. However, an important question is whether such SNNs are general enough to 
approximate any function on discrete spaces, that is, whether SNNs preserve the 
universal approximation capabilities of standard NNs. The approximation capability 
analysis presented in this section provides a positive answer to this question.  
 In order to analyze the approximation capabilities of SNNs, a theorem is 
introduced first.  
 
Theorem 1: Let nUUUU ×××= ...21 be a discrete space in which 

},...,2,1,|{ ,, ikikii NkRuuU =∈=  ),...,2,1( ni = .Then there exists a real value linear 
function ),...,,()( 21 nxxxLXLy ==  defined on U such that RUL →:  is a one-to-one 
mapping [i.e., if 'XX ≠ , then )'()( XLXL ≠ ].  
 Proof of this theorem first appeared in [35]. As this theorem is fundamentally 
important to the later analysis here, it is also included in the Appendix. 
 The above theorem shows that, for a discrete space )2( ≥⊂ nRU n as given in (2), 
there exist some simple functions such as linear functions which form one-to-one 
mappings from U to R . This is a property which holds only on discrete spaces but not 
on continuous spaces. This is because no one-to-one mapping from a multi-
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dimensional continuous space ],[
1 ii

n

i
U βα

=
×=  )2( ≥n to R  can be continuous [35]. As 

no continuous function can be found to form a one-to-one mapping from a multi-
dimensional continuous space to R , it is impossible to find a simple function which is 
a one-to-one mapping from a multi-dimensional continuous space U to R . In other 
words, multi-dimensional information on discrete spaces can be coded into one 
dimension by using simple functions such as linear functions without loss of 
information but this cannot be achieved on continuous space. This is the main reason 
why function approximation on discrete spaces can be achieved by simpler 
approximation schemes than for continuous spaces, and it forms the basis for the 
results in this paper. 
 Based on Theorem 1, to approximate a multi-dimensional function )(XG given in 
(1) on a discrete space U given in (2) can be done by two steps: firstly, use a simple 
one-to-one mapping )(XMz =  such as a linear function to transform the multi-
dimensional discrete input space U into a one dimension discrete space V . As 

)(XMz = is a one-to-one mapping from U to V , then its inverse function 
)(1 zMX −= exists (notice here (.)1−M is a vector value function rather than a normal 

real value function). Then )(XG can be represented as  
  )]([)( 1 zMGXG −=  
 
 As )]([)( 1 zMGzg −=  is a one-dimensional function on a discrete space V , then 
the original multi-dimensional function approximation problem becomes a one-
dimensional approximation problem and a one-dimensional standard NN can be used 
to approximate )(zg  to achieve any desired approximation accuracy due to the 
universal approximation property of NNs. The following universal approximation 
theorem for SNNs is obtained based on this idea, with the detailed proof of the 
theorem given in the Appendix. 
 
Theorem 2 (Universal Approximation Property of SNNs). Let )(XG  be a function on 
a discrete space nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=  },...,2,1 iNk =

),...,2,1( ni = . Then for any given 0>ε , there exists a SNN )(XSNN given in (4) 
such that 
   ε<−=−

∈∞ |)()(|max|||| XSNNXGSNNG
UX

  (20) 

 
 Theorem 2 shows that SNNs can approximate any function on a discrete space to 
any degree of accuracy. In other words, SNNs, despite their simplified formula, 
preserve the universal approximation property of standard NNs and therefore are 
generally applicable for function approximation on discrete spaces. In the following, 
suppose that the available training data are given as },...,2,1|),{( NtyX tt = , then two 
possible algorithms to find a SNN approximator for a given function are briefly 
discussed: 
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 The first algorithm is based on the proof of Theorem 2 which includes two steps: 
the first step is to find a one-to-one linear mapping )(XL from U to R and then a one-
dimensional function )]([)( 1 zLGzg −=  or )()]([ XGXLg = can be defined; the second 
step is to use the available data },...,2,1|),{( NtyX tt =  to get a set of training data for 
function )(zg  as },...,2,1),(|),{( NtXLzyz tttt == and then, for )(zg , apply the 
learning algorithms of standard NN to find a one-dimensional NN approximator

)(1 zNN with the required approximation accuracy. Finally, the SNN approximator can 
be obtained by )]([)( 1 XLNNXSNN = . Theoretically speaking, this is a very simple 
method as by using the one-to-one linear mapping )(XL , the original approximation 
problem is transformed to a simple learning problem of a single variable NN. In the 
case where the number of input variables and the possible values of each input 
variables are small, then this is a good algorithm in practice due to its simplicity. 
However, this method is not suitable for high dimensions (i.e., many input variables 
or n is large) with each input variable having many possible values (i.e., jN is large). 
The reason is as follows: as the total number of all possible values of input vector 

),...,,( 21 nxxxX = are ∏
=

n

i
iN

1

, the total number of the possible function values of a 

one-to-one mapping )(XLz = is ∏
=

n

i
iN

1

. When n  and iN  ),...,2,1( ni = are large, this 

is impossible as all possible values are beyond the representation accuracy of float 
numbers. Therefore, in the case when n  and ),...,2,1( niNi = are large, the 
implementation of this algorithm, as explained in the last section, requires use of 
ESNNs. More details about how to use ESNNs to handle such a situation are 
discussed later.  
 The second algorithm is to apply the gradient descent optimisation algorithms to 
minimise 

  [ ]∑
=

−=
T

t
tt XSNNyE

1

2)(
2
1  

 
where )(XSNN is given in (4) with the parameters },...,2,1|,,,,,{ 0 Nicc iii =βαβα to 
be identified. In this algorithm, it is not required that βατ +== XXLz )( is a one-to-
one mapping (note that a one-to-one mapping is a sufficient but not a necessary 
condition), rather parametersα and β are tuned by the learning algorithm to meet the 
approximation requirement. This algorithm is more complicated than the first one but 
should be able to handle the higher dimensional modeling situation. In order to realize 
the potential of SNNs and apply them to applications, implementation and comparison 
of these two methods is needed.  
 The above discussion illustrates that the proposed SNN approximation scheme is 
realizable and applicable. However, as the main focus of this paper is the analysis of 
approximation capabilities rather than the development of algorithms to implement 
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the proposed SNN approximation scheme, algorithm development is not discussed 
further. 
 The next step is to investigate the approximation capability of ESNNs. Similar to 
the earlier analysis of SNNs, the basic idea is as follows: 
 Based on Theorem 1, approximation of a n dimensional function )(XG in a 
discrete space U by an ESNN can be achieved by two steps: firstly, use of several 
one-to-one mappings )( jj XMz = ),...,2,1( mj = such as one-to-one linear functions to 

transform the n dimensional discrete input space 
jG

m

ji

n

i
UUU

11 ==
×=×=  [where 

k

j

j i

n

kG UU
1=

×=  ( mj ,...,2,1= ) ] into m  dimension discrete space j

m

j
VV

1=
×= . That is, each 

)( jj XMz = is a one-to-one mapping from 
jGU to ),...,2,1( mjV j = . Then )(XG can 

be represented as  
  )](),...,([)( 1

1
1

1 mzMzMGXG m
−−=   

 
 As )](),...,([),...,()( 1

1
1

1 1 mm zMzMGzzgZg m
−−==  is a m  dimensional function on 

a discrete space V , then a m dimensional standard NN can be used to approximate 
)(Zg  to achieve any desired approximation accuracy. Based on such an idea, the 

following theorem about the approximation capability of ESNNs can be obtained. 
 
Theorem 3 (Universal Approximation Property of ESNNs). Let )(XG  be a function 
on a discrete space nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=  },...,2,1 iNk =

),...,2,1( ni = . Then for any given 0>ε  and for any disjoint grouping of the input 
variables },...,,{ 21 nxxx  into m  groups jG  ),...,2,1( mj =  satisfying (8)–(10), there 
exists an ESNN )(XESNN given in (13) such that 
   ε<−=−

∈∞ |)()(|max|||| XESNNXGESNNG
UX

  (21) 

 
 The main advantage of the above theorem is that, for any disjoint grouping of the 
input variables },...,,{ 21 nxxx  (i.e., the user can choose the number of groups and 
which input variables are in which group), an ESNN with such an input variable 
grouping can be found to approximate the given function to any degree of accuracy. 
This is a useful property in applications as it means that an ESNN can be designed 
based on the required different impact of different groups of input variables on the 
system output. In other words, the ESNN both allows the required approximation 
accuracy and enables better understanding of system behavior.  
 The two possible algorithms proposed for SNNs are also applicable here. The only 
differences are as follows: in the first algorithm, m one-to-one linear mappings are 
needed from the sub-input-spaces 

jGU to ),...,2,1( mjV j = rather than only one one-to-
one linear mapping needed, and the higher level sub-system to be trained is a m
dimensional NN rather than a one-dimensional NN. For function approximation in 
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high dimensional input spaces, the whole input space can be divided into several 
disjoint sub-spaces such that a one-to-one linear mapping on each sub-space is 
possible within the representation accuracy of float numbers. In other words, high 
dimensional function approximation and modeling can be handled by proper ESNNs. 
Although the learning of the higher level sub-system is a more complicated m
dimensional NN, it can still be much simpler than training a standard NN with n
dimensions. Consider an example where 25=n . Assume we design 5 one-to-one 
linear functions in which each linear function takes 5 variables (today’s computers are 
likely to be able to represent a 5-dimension one-to-one mapping), then the training of 
a 25-dimension standard NN in the existing NN learning methods can be transformed 
into the training of a 5-dimension NN by using the proposed ESNN method. In other 
words, ESNNs can handle the high dimensional modeling problem and can be much 
simpler than standard NNs in many cases.  
 Now the above results of SNNs and ESNNs are extended to SHNFSs and HNFSs. 
Such an extension is possible because fuzzy systems can realize any linear and many 
nonlinear functions [32]. That is, by choosing the commonly used triangle 
membership functions and proper system parameters, fuzzy systems can exactly 
represent any linear function. Based on Theorem 1, that there are one-to-one linear 
mappings from a multi-dimensional discrete space to a one-dimensional discrete 
space, it can be implied that there are fuzzy systems which can form one-to-one 
mappings from a multi-dimensional discrete space to a one-dimensional discrete 
space. Based on this and following the same idea as the approximation capability 
analysis of SNNs, the following theorem related to the approximation capability of 
SHNFSs can be proved as given in the Appendix.  
 
Theorem 4 (Universal Approximation Property of SHNFSs). Let )(XG  be a function 
on discrete space nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=  },...,2,1 iNk =

),...,2,1( ni = . Then for any given 0>ε , there exists a SHNFS )(XSHNFS given in 
(16) such that 
  ε<−=−

∈∞ |)()(|max|||| XSHNFSXGSHNFSG
UX

  (22) 

 
 Similarly, based on the fact mentioned above that there are one-to-one fuzzy 
systems on a multi-dimensional discrete space and following the same idea as the 
approximation capability analysis of ESNNs, the following theorem of the 
approximation capability of HNFSs can be proved as given in the Appendix.  
 
Theorem 5 (Universal Approximation Property of HNFSs). Let )(XG  be a function 
on discrete space nUUUU ×××= ...21 in which ,|{ ,, RuuU kikii ∈=  },...,2,1 iNk =

),...,2,1( ni = . Then for any given 0>ε  and for any disjoint grouping of the input 
variables },...,,{ 21 nxxx  into m  groups jG  ),...,2,1( mj = satisfying (8)–(10), there 
exists a HNFS )(XHNFS given in (19) such that 
  ε<−=−

∈∞ |)()(|max|||| XHNFSXGHNFSG
UX

  (24) 
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 The two algorithms proposed for SNNs and ESNNs can be extended to identify 
SHNFSs and HNFSs. The main ideas are the same but there are several differences. 
 In the first algorithm, the lower level one-to-one linear mapping(s) are now 
replaced by the fuzzy system(s) as the lower level sub-system(s). As there are more 
parameters available to construct the one-to-one mapping(s), then it is possible that 
nonlinear one-to-one mappings can be constructed to allow the higher level 
approximation problem to become simpler. In addition, human knowledge can be 
utilized during the construction of the lower level fuzzy system(s).  
 In the second algorithm, rather than use the linear function(s) with parameters to 
be identified by the gradient descent optimisation algorithms, it is possible to 
construct fuzzy systems by using available human knowledge which may lead to 
faster convergence during the training phase.  
 In addition to the above, a third possible algorithm which is especially suitable for 
situations with high dimension and limited available data is as follows:  
 Construct one or several lower one-to-one fuzzy systems based on human 
knowledge to aggregate the impact of different input variable groups on the system 
output into several aggregated group indexes [i.e., construct 

),...,2,1()( mjXFz jjj ==  by only using available human knowledge, and jz  is the 
aggregated index variable of those input variables in group jG ] .  
 Use the constructed lower level fuzzy system(s) to transform the available input-
output data },...,2,1|),{( NtyX tt = into the index-output data as 

,...,2,1),(),,...,(|),{( ,,,,1 === jXFzzzZyZ tjjtjtmtttt  },...,2,1, Ntm = .  
 Use the index-output data ),...,2,1|),{( NtyZ tt =  to identify the higher level NN 

)(ZNNy m=  by using the NN learning algorithms.  
 A simple example is given to illustrate the meaning of the above steps. Suppose 
we wish to model how student performance in examinations is dependent on 9 study 
factors as follows: time spent in study, lecture attendance, homework completion, 
previous examination record, A-level scores, IQ score, lecture quality, lab facilities, 
and lab availability, based on collected data of a small number of students, say 25 
(collecting such private information from a large group is costly and time consuming, 
and thus impractical). Suppose that the 9 factors are divided into 3 groups where 
Group 1 is the effort factors (time spent in study, lecture attendance, homework 
completion), Group 2 is the academic ability factor (previous examination record, A-
level scores, IQ score), and Group 3 is the study environment factors (lecture quality, 
lab facilities, and lab availability). Then the above three steps can be applied as 
follows:  
 Firstly, use human knowledge to build the lower level fuzzy subsystems. For 
example, the sub-system to aggregate the effort factors can be formed based on the 
following human knowledge fuzzy rule: if time spent is long, lecture attendance is 
regular, homework completion is good, then the effort is very good; such rules can 
form the effort index fuzzy sub-system.  
 Secondly, use the above lower level fuzzy systems to transform the input-output 
data into index-output data. For example, an input-output pair in the available data is 
{[time spent=long, lecture attendance=regular, homework completion=good, …, lab 
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availability=always], exam performance=good}. Then use the lower level fuzzy sub-
systems to transform the input-output pair into the index-output pair as {[effort=very 
good, ..., study condition=good], exam performance=good}. This step is to transform 
all input-output data to index-output data; 
 Thirdly, now the original modeling problem with 9 input variables and 25 
available data has been transformed to a modeling problem with 3 input variables and 
25 available data which is much easier to identify, thus a reasonable model is likely to 
be obtained as the limited training data is reasonably rich for a 3-dimensional 
modeling problem. 
 In summary, by using human knowledge to form the lower level fuzzy sub-
systems and then transforming the available input-output data into index-output data, 
the modeling problem of a SHNFS or HNFS with n input variables is transformed 
into a modeling problem of a standard NN with m input variables. As the latter 
problem is one with a lower or much lower dimension, then it can be identified by 
using the existing learning algorithms based on the limited available data. In other 
words, the above proposed algorithm shows that SHNFSs and HNFSs have the 
potential to combine human (knowledge and experience) and machine intelligence 
(learning from data) to model high dimensional complicated systems with limited 
input-output data. 
 
 
Conclusion 
This paper has investigated function approximation on discrete input spaces using 
neural networks and neural-fuzzy systems. 
 Firstly, from a hierarchical systematic view, this paper has proposed four new and 
simpler neural networks and hierarchical neural-fuzzy systems for function 
approximation on discrete spaces: SNNs, ESSNs, SHNFSs and HNFSs. Compared to 
standard NNs and fuzzy systems, the proposed approximation schemes have several 
advantages including being simpler (fewer parameters), useful to overcome model 
overfitting and underfitting, flexible, capable of utilizing both human (knowledge and 
experience) and machine intelligence (learning from data) for a difficult modeling 
situation (such as high dimensions and limited training data).  
 Secondly, the paper has analyzed the approximation capabilities of the proposed 
new approximation schemes. That is, whether the proposed approximation schemes 
preserve the universal approximation property of standard NNs and fuzzy systems. A 
positive answer to this question has been obtained, that is, all four proposed 
approximation schemes have the universal approximation property. These results have 
established a theoretical foundation and show the feasibility and general applicability 
of the proposed approximation schemes to function approximation on discrete spaces. 
 Thirdly, several possible algorithms have been proposed and analyzed to show 
how the advantages of the proposed approximation schemes can be realized.  
 Further work includes implementation and experimentation of the proposed 
algorithms, a comparison of the results obtained by the proposed algorithms with 
those obtained by standard NN learning algorithms, and applying these algorithms in 
real life applications.  
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Appendix 
Proof of Theorem 1[35]. Given nUUUU ×××= ...21  and 

},...,2,1,|{ ,, ikikii NkRuuU =∈=  ),...,2,1( ni = , Without loss of generality, it is 
assumed that 

iNiii uuu ,2,1, ... <<< ),...,2,1( ni = . Now define  
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in which the weighting factors iw ),...,2,1( ni =  are constructed recursively as follows: 
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 For the above construction of the weighting factors iw ),...,2,1( ni = , it is implied 
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 Let 0X  and '

0X  be any two different elements inU , that is, 
( )

nknkk uuuX ,,2,10 ,...,,
21

= , ( )''
2

'
1 ,,2,1

'
0 ,...,,

nknkk uuuX = , and '
00 XX ≠ . If '

11 ,1,1 kk uu ≠ , then, 

without loss of generality, assume that '
11 ,1,1 kk uu < (this means '

11 ,11,1 kk uu ≤+ ). Now from 

(A.1) and (A.2), it is implied that 
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 That is, )()( '

00 XMXM ≠ . If '
11 ,1,1 kk uu = but 0i  is the smallest i such that 

'
0000 ,,

ii kiki uu ≠ , then similar to the above it can be proved that )()( '
00 XMXM ≠ . 

Therefore, if '
00 XX ≠ , then )()( '

00 XMXM ≠ . That is, the linear function given in 
(A.1) is a one-to-one mapping from U to R . 
 
Proof of Theorem 2. For the given input space U , based on Theorem 1, there exists a 
linear function  

  ∑
=

+==
n

i
ii xwwXLz

1
0)(  (A.3) 

 
which is a one-to-one mapping from U to R . For every  
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iknkkkkk UUuuuX
nn 1,,2,1... ,...,,
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×=∈=  

   nlNk ii ,...,2,1,...,2,1 ==  
 
define 
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nn kkkkkk XLz ...... 2121
=  

 
 That is, 

nkkkz ...21
is the function value of )(XL at 

nkkkX ...21
and the set of all such 

values is denoted as  
  { }niNkyV ilkkk n

,...,2,1,,...,2,1...21
===  

 
which is the output variable space of function )(XL . As )(XL is a one-to-one 
mapping, then all elements of V are different. Therefore, for every Vz ∈ , there exists 
only one element X  in U such that )(XLz = . Further, as U is a discrete space with 
finite elements, then V  is a discrete space with finite elements.  
 Now define function )(zg on V  as follows: For every Uz ∈ , let X  be the unique 
element in U such that )(XLz = . Then define the value of g at z as follows: 
  )()( XGzg =  
 
 For the function g defined in the above, it can be proved by the reverse process 
that for all UX ∈  
  [ ])()( XLgXG =  (A.4) 
 
 As )(zg is a function on finite discrete space V which is bounded, based on [27] it 
can extended to be a continuous function )(ˆ Xg  on ],[ˆ zzV =  (where 

zzzz VzVz ∈∈ == max,min ) in the sense that  
  )()(ˆ XgXg =  Vz ∈  (A.5) 
 
 As )(ˆ Xg is a continuous function on V̂ , then it is implied immediately from the 
universal approximation property of standard NNs on continuous spaces that there 
exists a NN )(1 zNN  on Û such that  
  ε<−=−

∈∞ |)()(ˆ|max||ˆ|| 1ˆ1 zNNzgNNg Vz   (A.6) 
 
 Now define a SNN as )]([)( 1 XLNNXSNN = , then (A.4), (A.5) and (A.6) imply 
that, for any UX ∈ ,  

  
ε<−≤

−≤

−=−

∈

∈

|)()(ˆ|max
)()(max

|)]([)]([||)()(|

1ˆ

1

1

zNNzg
zNNzg

XLNNXLgXSNNXG

Vz

Vz  



Approximation Capabilities of Hierarchical 73 
 

 

which leads to (20) immediately and this completes the proof.  
 
Proof of Theorem 3. For each mj ,...,2,1= , based on Theorem 1, there exists a linear 

function defined on 
k

j

j i

n

kG UU
1=

×= as follows 
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which is a one-to-one mapping from 

jGU to R . For every  
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which is the output variable space of function )( jj XL . As )( jj XL is one-to-one 
mapping, then all elements of jV are different. Therefore, for every jj Vz ∈ , there 
exists only one element jX  in 

jGU such that )( jjj XLz = . Further, as 
jGU is a discrete 

space with finite elements, then jV  is a discrete space with finite elements.  

 Now define function ),...,,()( 21 mzzzgZg = on j

m

j
VV

1=
×=  as follows: for any given

VzzZ m ∈= ),...,( 1 , as each jj Vz ∈ ),...,2,1( mj = , then there exists a unique element 

jX  in 
jGU such that )( jjj XLz = . Further it can be implied from (8)-(10) that all sub-

vectors jX ),...,2,1( mj =  form a unique vector UxxX n ∈= ),...,( 1 . Now define the 
value of g at the given VzzZ m ∈= ),...,( 1  as the value of G at its unique 
corresponding point UxxX n ∈= ),...,( 1 . That is 
  )(),...,()( 1 XGzzgZg m ==  
 
 For the function )(Zg defined in the above, it can be proved by the reverse 
process that for all UxxX n ∈= ),...,( 1 ,  

  [ ])(),...,()( 11 mm XLXLgXG =   (A.8) 
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 As )(Zg is a function on a finite discrete space V which is bounded, then, from 
the fact that any function in a discrete space can be extended to be a continuous 
function [27], it is implied that )(Zg can be extended to a continuous function )(ˆ Zg  

on ],[ˆ
1

jj

m

j
zzV

=
×=  [ where jVzj zz

jj∈
= min , jVzj zz

jj∈
= max ),...,2,1( mj = ] in the sense 

that )()(ˆ ZgZg =  for any j

m

j
VVZ

1=
×=∈ . As )(ˆ Zg is a continuous function on V̂ , then 

it is implied immediately from the universal approximation property of standard NNs 
on continuous spaces that there exists a NN )(ZNNm ),...,( 1 mm zzNN=  on V̂ such that  
  ε<−=−

∈∞ |)()(ˆ|max||ˆ|| ˆ ZNNZgNNg mVZm   (A.9) 
 
 Now define the ESNN as  
  )](),...,([)( 11 mmm XLXLNNXESNN =  
 
 This, together with (A.8) and (A.9), implies that, for any UX ∈ ,  
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which leads to (21) immediately and this completes the proof.  
 
Proof of Theorem 4. For the given input spaceU , based on Theorem 1, there exists a 
linear function  

  ∑
=

+==
n

i
ii xwwXLz

1
0)(  (A.3) 

 
which is a one-to-one mapping from U to R . For the given )(XL , based on Theorem 
4 in [32], it can be implied that there exists a simplest fuzzy system )(XF  [i.e., there 
are only two memberships in each ),...,2,1( niUi = ] such that )()( XLXF = for all 

UX ∈ . Then it is implied that, from the fact that )(XL is one-to-one mapping, the 
fuzzy system )(XF is a one-to-one mapping from U to R .  
 Based on this one-to-one fuzzy mapping )(XF , the rest of the proof is the same 
as the proof of Theorem 2 except for replacing )(XFz = by )(XLz = and therefore 
the details are omitted.  
 
Proof of Theorem 5. From the proof of Theorem 4, it is obtained that, for any given 
discrete space U as in (2), there exists a one-to-one fuzzy system from U to R . 
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Applying this result to the input space of each group, i.e., 
k

j

j i

n

kG UU
1=

×= ),...,2,1( mj = , 

we can obtain that, for each 
jGU , there exists a fuzzy sub-systems )( jjj XFz = which 

is a one-to-one mapping from 
jGU to R . Based on this, the proof of the theorem is the 

same as the proof of Theorem 3 except for replacing )( jjj XLz =  by )( jjj XFz =  
),...,2,1( mj = and so the details are omitted.  
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