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Abstract 

 
The objective of this paper is to test the performance of Repulsive Particle 
Swarm and Simulated Annealing on some test functions. Since Repulsive 
Particle Swarm Optimizations mimics the nature and SA(Simulated 
Annealing) follows the physical criteria, it will be interesting to see the 
performance of these two methods on the certain benchmark test functions. A 
brief idea of these functions are given in this section are as follows. These 
functions are also represented by graph to facilitate conceptualization of the 
nature of these functions by visual means. 
 
Keywords: Particle Swarm Optimization(PSO), SA, Global Optimization, 
Genetic Algorithm. 

 
Introduction 
Optimization is central to any problem involving decision making, whether in 
Mathematics, Engineering or in Economics. The area of optimization has received 
enormous attention in recent years, primarily because of the rapid progress in 
computer technology, including the development and availability of user-friendly 
software, high speed and parallel processors. The optimization toolbox of MATLAB 

and many other commercial software like this has given a new dimension to it. 
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Global optimization 
Optimization is essentially the art, science and mathematics of choosing the best 
among a given set of finite or infinite alternatives. The task of global optimization is 
to find a solution in the solution set for which the objective function obtaines its 
smallest value, the global minimum. Global optimization thus aims at determining not 
just "a local minimum" but "the smallest local minimum" with respect to the solution 
set[5]. 

Extending the class of functions to include multimodal functions makes the global 
optimization problem unsolvable in general. In order to be solvable some smoothness 
condition on the function in addition to continuity must be known. 

 
Methods available 
Many methods were developed in the late 1960s that performs well in optimization 
are 

• Genetic Programming (GP) is a related technique popularized by John 
Koza[8] in which computer programs, rather than function parameters, are 
optimized. Genetic programming often uses tree-based internal data-structure 
to represent the computer programs for adaptation instead of the list structures 
typical of genetic algorithms. 

• Interactive Genetic Algorithm (IGA) are genetic algorithms that use human 
evaluation. They are usually applied to domains where it is hard to design a 
computational fitness function, [1] for example, evolving images, music, 
artistic designs and forms to fit users' aesthetic preference. 

• Simulated Annealing (SA) is a related global optimization technique that 
traverses the search space by testing random mutations on an individual 
solution[9]. A mutation that increases fitness is always accepted. A mutation 
that lowers fitness is accepted probabilistically based on the difference in 
fitness and a decreasing temperature parameter. In SA parlance, one speaks of 
seeking the lowest energy instead of the maximum fitness. SA can also be 
used within a standard GA algorithm by starting with a relatively high rate of 
mutation and decreasing it over time along a given schedule. 

• Tabu Search (TS) is similar to Simulated Annealing in that both traverse the 
solution space by testing mutations of an individual solution. While simulated 
annealing generates only one mutated solution, tabu search generates many 
mutated solutions and moves to the solution with the lowest energy of those 
generated. In order to prevent cycling and encourage greater movement 
through the solution space, a tabu list is maintained of partial or complete 
solutions. It is forbidden to move to a solution that contains elements of the 
tabu list, which is updated as the solution traverses the solution space. 

• Ant Colony Optimization (ACO) uses many ants (or agents) to traverse the 
solution space and find locally productive areas[3]. While usually inferior to 
genetic algorithms and other forms of local search, it is able to produce results 
in problems where no global or up-to-date perspective can be obtained, and 
thus the other methods cannot be applied. 
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• Memetic Algorithm (MA) also called hybrid genetic algorithm among others, 
is a relatively new evolutionary method where local search is applied during 
the evolutionary cycle. The idea of memetic algorithms comes from memes, 
which–unlike genes–can adapt themselves. In some problem areas they are 
shown to be more efficient than traditional evolutionary algorithms. 

Through this paper we are going to compare the performance of Simulated 
Annealing and Particle Swarm Optimization on some bench mark test functions. 

 
Simulated annealing (SA) 
It is a generic probabilistic meta algorithm the global optimisation problem, namely 
locating a good approximation to the global optimum of a given function in a large 
search space. 

The name and inspiration come from annealing in metallergy, a technique 
involving heating and controlled cooling of a material to increase the size of its 
crystals and reduce their defects. The heat causes the atoms to become unstuck from 
their initial positions (a local minimum of the internal energy) and wander randomly 
through states of higher energy; the slow cooling gives them more chances of finding 
configurations with lower internal energy than the initial one. 

By analogy with this physical process, each step of the SA algorithm replaces the 
current solution by a random "nearby" solution, chosen with a probability that 
depends on the difference between the corresponding function values and on a global 
parameter T (called the temperature), that is gradually decreased during the process. 
The dependency is such that the current solution changes almost randomly when T is 
large, but increasingly "downhill" as T goes to zero. The allowance for "uphill" moves 
saves the method from becoming stuck at local minima which are the bane of greedier 
methods. 

 
Repulsive Particle Swarm in Global optimization: 
Particle swarm optimization' (PSO) is a form of swarm intelligence[4]. This is 
modelled by particles in multidimensional space that have a position and a velocity. 
These particles are flying through hyperspace and have two essential reasoning 
capabilities: their memory of their own best position and knowledge of the swarm's 
best. Members of a swarm communicate good positions to each other and adjust their 
own position and velocity based on these good positions. There are two main ways 
this communication is done: 

• a global best that is known to all 
• “neighborhood” bests where each particle only communicates with a subset of 

the swarm about best positions 
The repulsive particle swarm optimization is variant of Particle swarm 

optimization [5] and belongs to a stochastic evolutionary global optimizers. There are 
several different realizations of RPSO. Common to all these realization is the 
repulsion between the particles. This can prevent the swarm trapped in local minima, 
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which would cause a premature convergence and would lead the optimization 
algorithm to fail to find the global optimum. The other variants use a dynamic scheme 
In RPSO the future velocity vi+1 of a particle at position x with a recent velocity vi is 

calculated by 1 1 2 3

1 1

ˆ ˆ( ) ( )i i i i hi i
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ω α ωβ ωγ+
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where, 
• x is the position and v  is the velocity of the individual particle. The subscripts 

i  and 1i + stand for the recent and the next (future) iterations, respectively. 
• 1 2 3, ,r r r  are random numbers, ∈[0,1]; , ,α β γ  are constants 

• ω  is inertia weight, ∈[0.01,0.7]; z  is a random velocity vector 
• x̂  is the best position of a particle; hx  is best position of a randomly chosen 

other particle from within the swarm 

 
Test Functions 
The objective of this paper is to present a comparative study of the performance of the 
Repulsive Particle Swarm and Simulated Annealing method on the following 
functions. These functions are difficult in nature. We present these functions in 
details. A graphical presentation is also given. 
 
I Scaffer Function: In the search domian [ ]1 2, 100,100x x ∈ −  this function is defined 
as follows and has min (0,0) 0.f =   

2 2 2
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II Perm Function#1: : In the domain [ ]4,4x∈ − , the function has fmin =0 for 
x=(1,2,3,4). 

It is specified as 
2
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∑∑  The value of ( 50)β = introduces 

difficulty to optimization. Smaller values of β  raises difficulty further. 
 
III Power-Sum Function : Defined on four variables in the domain [ ]0,4x∈ , this 
function has min 0f =  for any permutation of x=(1,2,2,3). The function is defined as 
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∑ ∑  for k = (1,2,3,4) respectively. 
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IV Weiestrass Function: The Weierstrass function [in its original form, 

0
( ) cos( )k k

k
f x a b x

∞

=
=∑  while b is an odd integer, 0 1; (1 3 / 2)a ab π< < > + ] is one 

of the most notorious functions (with almost fractal surface) that changed the course 
of history of mathematics. Weierstrass proved that this function is throughout 
continuous but nowhere differentiable . In its altered form this function in m ( 1m ≥ ) 
variables with search domain [ 0.5 0.5]ix− ≤ ≤ ; ( 1,2,...,i m= ) and the minimum *( ) 0f x =  for 

* (0, 0,...,0);x = 0.5; 3; 20a b= = =k , is given as 
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V Zero-Sum Function (N#7) : Defined in the domain [ ]10,10x∈ −  this function (in 

2m ≥ ) has ( )f x =0 if 
1

0m

ii
x

=
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( ) 1 10000 m

ii
f x x

=
= + ∑ . This 

function has innumerably many minima but it is extremely difficult to obtain any of 
them. Large is the value of m (dimension), it becomes more difficult to optimize the 
function. 
 

I U(I) V(I) Y(I) 
1 .286 .645 4.284
2  .973 .585 4.149
3 .348 .310 3.877
4 .276 .058 .533 
5 .973 .455 2.211
 6 .543 .779 2.389
7 .957 .259 2.145
8 .948 .202 3.231
9 .543 .028 1.998
10 .793 .099 1.379
11 .936 .142 2.106
12 .889 .296 1.428
13 .006 .175 1.011
14 .828 .180 2.179
15 .399 .842 2.858
16 .617 .039 1.388
17 .939 .103 1.651
18 .784 .620 1.593
19 .072 .158 1.046
20 .889 .704 2.152

 
VI. Judge function: This is a multimodel function defined as 

2 2 2
1 2 2( ) ( sin ( ) cos( ) )i i if x x x u x v y= + + −  
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This function has two
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Conclusion 
Our program of Repulsive Particle Swarm has given a good result for the functions 
like Schafer function, Perm function#1, Power-Sum Function 4 where Simulated 
Annealing have failed in these functions. 

Whereas Simulated Annealing has performed better for Weiestrass function, Zero-
Sum function and Judge function then Repulsive Particle Swarm. 

 
Appendix 

 
Scaffer Function Perm function#1 

 
* Graphical presentations (of most of the functions) are creditable to Dr. AR Hedar, 
Dept. of Computer Science, Faculty of Computer & Information Sciences, Assiut 
University, Egypt. A few of the functions and their properties mentioned in different 
pages at the site (below) may, however, be taken with caution. 
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/go.htm 
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