
International Journal of Information & Computation Technology.
ISSN 0974-2239 Volume 2, Number 2 (2012), pp. 63-70
© International Research Publications House
http://www. ripublication.com

Materialized Views for Data Selection in Dataware
House

1P.R. Vishwanath, 2Dr. Rajylaxmi
and 3Dr. M. Sreedharreddy

1Assoc. Professor, R.I.T.S., , Hyderabad, A.P., India

2HOD IT, G.I.T..A.M., India
3HOD IT, G.I.T.S., Hyderabad, A.P., India

Introduction
A data warehouse (DW) is a repository of information retrieved from multiple,
possibly heterogeneous, autonomous, distributed database and other information
sources for the purpose of complex querying, analysis, and decision support. Data in
the DW are selectively collected from the sources, processed in order to resolve
inconsistencies, and integrated advance (at design time) before data loading. DW data
are usually organized multi-dimensionally to support on line analytical processing
(OLAP). A DW can be seen abstractly as a set of materialized views defined over the
source relations. During the initial design of a DW, the DW designer faces the
problem of deciding which views to materialize in the DW. This problem has been
addressed in the literature for different classes of queries and views, and with different
design goals.

Back Ground
Figure 1 shows a simplified DW architecture. The DW contains a set of materialized
views. The users address their queries to the DW. The materialized views are used
partially or completely for the evaluation of the user queries. This is achieved through
partial or complete rewritings of the queries using the materialized views.

64 P.R. Vishwanath et al

Data source
When the source relations change, the materialized views need to be updated. The
materialized views are usually maintained using an incremental strategy. In such a
strategy, the changes to the sources relations are propagated to the DW. The changes
to the materialized views are computed using the changes of the source relations and
are eventually applied to the materialized views. The expressions used to compute the
view changes involve the changes of the source relations and are called maintenance
expressions. Maintenance expressions are issued by the DW against the data sources,
and the answers are sent back to the DW. When the source relation changes affect
more than one materialized view, multiple maintenance expressions need to be
evaluated. The techniques of multi-query optimization can be used to detect common
sub expressions among maintenance expressions in order to derive an efficient global
evaluation plan for all the Maintenance expressions.

Main Thrust
When the selecting views to materialize in a DW, one attempts to satisfy one or more
design goals. A design goal is either the minimization of a cost function or a
constraint. A constraint can be classified as user-oriented or system oriented.
Attempting to satisfy the constraints can result in no feasible solution to the view

Materialized Views for Data Selection in Dataware House 65

selection problem. The design goals determine the design of the algorithms that select
views to materialize from the space of alternative view sets.

Minimization of Cost Functions
Most approaches comprise in their design goals the minimization of a cost function.

• Query Evaluation Cost : Often, the queries that the DW has to satisfy are
given as input to the view selection problem. The overall query evaluation…
cost is the sum of the cost evaluating each input query rewritten (partially or
completely) over the materialized views. This sum also can be weighted, each
weight indicating the frequency or importance of the corresponding query.
Several approaches aim at minimizing the query evaluation cost (Gupta &
Mumick, 1999; Harinarayan et al, 1996; Shukla et al, 1998)

• View Maintenance Cost : The view maintenance cost is the sum of the cost
of propagating each source relation change to the materialized views. This
sum can be weighted, each weight indicating the frequency of propagation of
the changes of the corresponding source relation. The maintenance
expressions can be evaluated more efficiently if they can be partially rewritten
over views already materialized at the DW; the evaluation of parts of the
maintenance expression is avoided since their materializations are present at
the DW. Moreover, access of the remote data sources and expensive data
transmissions are reduced. Materialized views that are added to the DW for
reducing the view maintenance cost are called auxiliary views (Ross et al.,
1996; Theodoratos & Sells, 1999). Obviously, maintaining the auxiliary views
incurs additional maintenance cost. However, if this cost is less than the
reduction to the maintenance cost of the initially materialized views, it is
worth keeping the auxiliary views in the DW. Ross, et al. (1996) derive
auxiliary views to materialize in order to minimize the view maintenance cost.

• Operational Cost: Minimizing the query evaluation cost and the view
maintenance cost are conflicting requirements. Low view maintenance cost
can be obtained by replicating source relations at the DW. In this case, though,
the query evaluation cost is high, since queries need to be computed from the
replicas of the source relations. Low query evaluation cost can be obtained by
materializing at the DW all the input queries. In this case, all the input queries
can be answered by a simple lookup, but the view maintenance cost is high,
since complex maintenance expressions over the source relations need to be
computed. The input queries may overlap; that is, they may share many
common subexpressions. By materializing common subexpressions and other
views over the source relations, it is possible, in general, to reduce the view
maintenance cost. These savings must be balanced against higher query
evaluation cost. For this reason, one can choose to minimize a linear
combination of the query evaluation an view maintenance cost, which is called
operational cost. Most approaches endeavor to minimize the operational cost
(Baralis et al, 1997; Gupta, 1997; Theodoratos & Sellis, 1999; Yang et al,
1997)

66 P.R. Vishwanath et al

System-Oriented Constraints
System-oriented constraints are dictated by the restrictions of the system and are
transparent to the users

• Space Constraint: Although the degradation of the cost of disk space allows
for massive storage of data, one cannot consider that the disk space is
unlimited. The space constraint restricts the space occupied by the selected
materialized views not to exceed the space allocated to the DW for this end.
Space constraints are adopted in many works (Gupta, 1997l Golfarelli &
Rizzi, 2000; Harinarayan et al, 1996, Theodoratos & Sellis, 1999).

• View Maintenance Cost Constraint: In many practical cases, the refraining
factor in materializing all the views in the DW is not the space constraint but
the view maintenance cost. Usually, DWs are updated periodically (e.g. at
nighttime) in a large batch update transaction. Therefore, the update windows
must be sufficiently short so that the DW is available for querying and
analysis during the daytime. The view maintenance cost constraint states that
the total view maintenance cost should be less than a give amount of view
maintenance time. Gupta and Mumick (1999), Golfareli and Rizzi (2000), and
Lee and Hammer (2001) consider a view maintenance cost constraint in
selecting materialized views.

• Self Maintainability: A materialized views is self maintainable if it can be
maintained for any instance of the source relations over which it is defined and
for all source relation changes, using only these changes, the view definition,
and the view materialization. The notion is extended to a set of views in a
straightforward manner. By adding auxiliary views to a set of materialized
views, one can make the whole view set self-maintainable. There are different
reasons for making a view set self-maintainable: (a) the remote source
relations need not be contacted in turn for evaluating maintenance expressions
during view updating ; (b) anomalies due to concurrent changes are
eliminated, and the view maintenance process is simplified; (c) the
materialized views can be maintained efficiently even if the sources are not
able to answer queries (e.g. legacy systems), or if they are temporarily
unavailable (e.g., in mobile systems) . By adding auxiliary views to a set of
materialized views, the whole view set can be made self-maintainable, Self-
maintainability can be trivially achieved by replicating at the DW all the
source relations used in the view definitions. Self maintainability viewed as a
constraint requires that the set of materialized views taken together is self
maintainable. Quass, et al., (1996), Akinde, et al., (1998), Liang, et al., (1999)
and Theodoratos (2000) aim at making the DW self-maintainable.

• Answering the Input Queries using Exclusively the Materialized Views:
This constraint requires the existence of a complete rewriting of the input
queries, initially defined over the source relations, over the materialized views.
Clearly, if this constraint is satisfied, the remote data sources need not be
contacted for evaluating queries. This way, expensive data transmissions from
the DW to the sources, and conversely, are avoided. Some approaches assume
a centralized DW environment, where the source relations are present at the

Materialized Views for Data Selection in Dataware House 67

DW site. In this case, the answerability of the queries also can be trivially
guaranteed by appropriately defining select-project views on the source
relations and replicating them at the DW. This approach assures also the self-
maintainability of the materialized views. Theodoratos and Sellis (1999) do
not assume a centralized DW environment or replication of part of the source
relations at the DW and explicitly impose this constraint in selecting views for
materialization.

User-Oriented Constraints
User-oriented constraints express requirements of the users.

• Answer Data Currency Constraints : An answer data currency constraint
sets an upper bound on the time elapsed between the point in time the most
recent changes of a source relation that are taken into account in the
computation of this answer are read (this time reflects the currency of answer
data). Currency constraints are associated with every source relation in the
definition of every input query. The upper bound in an answer data currency
constraint (minimal currency required) is set by the users according to their
needs. This formalization of data currency constraints allows stating currency
constraints at the query level and not at the materialized view level, as is the
case in some approaches. Therefore, currency constraints can be exploited by
DW view selection algorithms, where the queries are the input, while the
materialized views are the output (and, therefore, are not available).
Furthermore, it allows stating different currency constraints for different
relations in the same query.

• Query Response Time Constraints: A query response time constraint states
that the time needed to evaluate an input query using the views materialized at
the DW should not exceed a given bound. The bound for each query is given
by the users and reflects their needs for fast answers. For some queries, fast
answers may be required, while for others, the response time may not be
predominant.

Search Space and Algorithms
Solving the problem of selecting views for materialization involves addressing two
main tasks: (a) generating a search space of alternative view sets for materialization
and (b) designing optimization algorithms that select an optimal or near-optimal view
set from the search space. A DW is usually organized according to a star scheme
where a fact table is surrounded by a number of dimension tables. The dimension
tables the fact table and the aggregation levels. Typical OLAP queries involve star
joins (key/foreign key joins between the fact table and the dimension tables) and
grouping and aggregation at different levels of granularity. For queries of this type,
the search space can be formed in an elegant way as a multidimensional lattice
(Baralis et al., 1997l Hiarinarayan et al, 1996), Gupta (1997) states that the view
selection problem is NP-hard. Most of the approaches on view selection problems

68 P.R. Vishwanath et al

avoid exhaustive algorithms. The adopted algorithms fall into two categories;
deterministic and randomized. In the first category belong greedy algorithms with
performance guarantee (Gupta 1997; Harinarayan et al, 1996) 0-1 integer
programming algorithms (Yang et al., 1997), A * algorithms (Gupta & Mumick,
1999), and various other heuristic algorithms (Baralis et al., 1997; Ross et al., 1996;
Shukla et al., 1998; Theodoratos & Sellis, 1999). In the second category belong
simulated annealing algorithms (Kalnis et al., 2002; Theodorates et al, 2001),
iterative improvement algorithms (Kalnis et al, 2002) and genetic algorithms (Lee &
Hammer, 2001). Both categories of algorithms exploit the particularities of the
specific view selection problem and the restrictions of the class of queries considered.

Further Research
The view selection problem has been addressed for different types of queries.
Research has focused mainly on queries over star schemes. Newer applications (e.g.
XML or Web-based applications) require different types of queries. This topic has
only been partially investigated (Golfarelli et al, 2001; Labrindis & Roussopoulos,
2000). A relevant issue that needs further investigation is the construction of the
search space of alternative view sets for materialization. Even though the construction
of such a search for grouping and aggregation queries is straightforward (Harinarayan
et al., 1996), it becomes an intricate problem for general queries (Golfarelli & Rizzi,
2001). Indexes can be seen as special types of views. Gupta et al (1997) show that a
two-step process that divides the space available for materialization and picks views
first and then indexes can perform very poorly. More work needs to be done on the
problem of automating the selection of views and indexes together. DWs are dynamic
entities that evolve continuously over time. As time passes, new queries need to be
satisfied. A dynamic version of the view selection problem chooses additional views
for materialization and avoids the design of the DW from scractch (Theodoratos &
Sellis, 2000). A system that dynamically materializes views in the DW at multiple
levels of granularity in order to match the workload (Kotidis & Roussopoulos, 2001)
is a currnt trend in the design of a DW.

Conclusion
A DW can be seen as a set of materialized views. A central problem in the design of a
DW is the selection of views to materialize in it. Depending on the requirements of
the prospective users of the DW, the materialized view selection problem can be
formulated with various design goals that comprise the minimization of cost functions
and the satisfaction of user-and system-oriented constraints. Because of its
importance, different versions of it have been the focus of attention of many
researchers in recent years. Papers in the literature deal mainly with the issue of
determining a search space of alternative view sets for materialization and with the
issue of designing optimization algorithms that avoid examining exhaustively the
usually huge search space. Some results of this research have been used already in
commercial database management systems (Agrawal et al., 2000)

Materialized Views for Data Selection in Dataware House 69

References

[1] Agrawal, S., Chaudhuri, S., & Narasayya, V.R. (2000). Automated selection of
materialized views and indexes in SQL databases. International Conference on
Very Large Data Bases (VLDB), Cairo, Egypt.

[2] Akinde, M.O., Jensen, O.G. & Bohlen, H.M (1998). Minimizing detail data in
data warehouse. International Conference on Extending Database Technology
(EDBT), Valencia, Spain.

[3] Baralis, E., Paraboschi, S., & Teninente. E (1997). Materialized views selection
in a multidimensional database. International Conference on Very Large data
Bases, Athens Greece.

[4] Golfarelli, M., & Rizzi, S (2000). View materialization for neated GPSJ
queries. International Workship on Design and Management of data
Warehouses (DMDW), Stockholm, Sweden.

[5] Golfarelli, M., Rizzi, S., & Vrdoljak B. (2001). Data werehouse design from
XML sources, ACM International Workshop on Data Warehousing and OLAP
(DOLAP). Atlanta, Georgia.

[6] Gupta, H (1997), Selection of views to materialize in a data warehouse.
International Conference on Database Theory (ICDT), Delphi, Greece.

[7] Gupta, H., Harinarayan, V., Rajaraman, A., & Ullman, J.D. (1997), Index
selection for OLAP, m IEEE International Conference on Data Engineering,
Birmingham, UK

[8] Gupta., H., & Mumick, I.S (1999). Selection of views to materialized under a
maintenance cost constraint. International Conference on Database Theory
(ICDT). Jerusalem, Israel.

[9] Harinarayan, V., Rajaraman, A., & Ullman, J.D. (1996), Implementing data
cubes efficiently, ACM, SIGMOD International Conference on Management of
Data (SIGMOD), Montreal, Canada

[10] Kalnis, P., Mamoulis, N., & Papadias, D. (2002), View selection using
randomized search. Data & Knowledge Engineering, 42 (1), 89-111, Kotidis,
Y., & Roussopoulos, N (2001), A Case for dynamic. View Management . ACM
Transactions on Database Systems, 26(4), 388-423.

[11] Labrinidis, A., & Roussopoulos, N. (2000). Web View materialization. ACM
SIGMOD International Conference on Management of Data (SIGMOD),
Dallas, Texes.

[12] Lee, M. & Hammer, J. (2001). Speeding up materialized view selection in data
warehouses using a randomized algorithm. International Journal of
Cooperative Information system (IJCIS), 10(3), 327-353

[13] Liang, W (1999), Making multiple views self-maintainable in a data
warehouse. Data & Knowledge Engineering. 30(2), 121-134

[14] Quass, D., Gupta, A., Mumick, I.S., & Widom, J. (1996), Making views self-
maintainable for data warehousing. International Conference on Parallel and
Distributed Information Systems (PDIS), Florida.

[15] Ross, K., Srinivasa, D., & Sudarshan S (1996). Materialized view maintenance
and integrity constraint checking. Trading space for time. ACM SIGMOD

70 P.R. Vishwanath et al

International Conference on Management of Data (SIGMOD), Montreal,
Canada

[16] Shukla ., A – Deshpande, P., & Naughton, J (1998), Materialized view
selection for multidimensional datasets. International Conference on Very
Large Data Bases (VLDB), New York

[17] Theodoratos, D. (2000), Complex view selection for data warehouse self-
maintainability, International Conference on Cooperative Information Systems
(Coop IS), Eilat, Israel.

