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Abstract 
 

This paper deals with the effect of magnetic field on a developing flow and 
flow reversal in a vertical channel with asymmetric wall temperatures is 
considered under the influence of transverse magnetic field. In the developing 
region, the flow problem is described by means of parabolic partial differential 
equations and solutions are obtained by an implicit finite difference technique.  
Boundary conditions of uniform wall temperatures are considered.  The effect 
of magnetic field on velocity and temperature for fixed Prandtl number Pr and 
for the different values of the ratio Gr/Re  and the ratio of wall temperature rT 
is studied numerically. It is observed that the velocity decreases with the 
increase in magnetic field parameter M for fixed rT. It is noticed that the 
increase in magnetic field parameter M for fixed Gr/Re, centre line velocity 
decreases. A skewness in the velocity profile also appears as the fluid moves 
toward hot wall(Y=1) for fixed M. It is observed that the increasing M for 
fixed Gr/Re at rT=0.5 for different X values the temperature is decreases. 
 
Keywords: Mixed Convection, Flow Reversal, Asymmetric Wall 
Temperature & MHD. 

 
 
Introduction 
Recent technological implications have given rise to increased interest in mixed 
convection problems in vertical channels.  The physical situations involve both 
buoyancy-aided and opposed cases, for laminar and turbulent flows.  Consequently, 
the number of technical papers and technical sessions at professional society meetings 
that deal with combined free and forced convection is on the rise. 
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 Existing literature for the parallel-plate vertical channel deals mostly with the 
limiting case of free and forced convection, little information is available for mixed 
convection.  Consider the situation in which the channel walls are cooled by forced 
flow in the upward direction at a prescribed coolant flow rate at the duct entrance. 
Assume that the wall heating is sufficiently intense that free convection effects are 
significant.  Such a mixed convection problem has not been fully treated in the 
literature.  
 Aung and Worku [2] presented the numerical results for the effects of buoyancy 
on the hydrodynamic and thermal parameters in the laminar vertically upward flow of 
a viscous fluid in a parallel plate channel.  Mixed convection effects on fully 
developed flow (FDF) in a parallel plate vertical channel with asymmetric wall 
temperatures was studied by Aung and Worku [3].   
 One of the earliest study on laminar, fully developed mixed convection in a 
vertical channel with uniform wall temperature was by Tao [22].  Recently Cheng 
et.al. [11] and Hamadah and Wirtz [15] have studied the mixed convection in a 
vertical channel with symmetric and asymmetric heating of the walls.  These authors 
reported that the buoyancy force can cause flow reversal both for upward flow and for 
downward flow.  More recently Barletta [4] has studied the fully developed combined 
free and forced convection flow in a vertical channel with viscous dissipation.  An 
analytical solution is found by a perturbation method and in particular, forced 
convection flow with viscous heating is treated as the base heat transfer process while 
the effect of buoyancy is accounted for by expressing the fluid velocity and 
temperature as power series in the ratio between the Grashof number and Reynolds 
number.  Analysis of flow reversal for laminar mixed convection in a vertical 
rectangular duct with one or more isothermal walls is studied by Barletta [6].   
 The analysis of magneto-hydrodynamic flow through ducts has received 
considerable attention. This class of flow has many applications in the design of MHD 
generators, cross-field accelerators, shock tubes, pumps and flow meters. In many 
cases the flow in these devices will be accompanied by heat either that dissipated 
internally through viscous or Joule heating or that produced by electric currents in the 
walls. The use of electrically conducting fluids under the influence of magnetic fields 
in various industries has led to a renewed interest in investigating hydro-magnetic 
flow and heat transfer in different geometrics.  Sparrow and Cess [20] considered the 
effect of a magnetic field on the free convection heat transfer from a surface.  Chamka 
[10] studied on laminar hydro-magnetic mixed convection flow in a vertical channel 
with symmetric and asymmetric wall heating conditions. Umavathi and Malashetty 
[23] analyzed combined free and forced convective magneto- hydrodynamic flow in a 
vertical channel. The channel walls are maintained at equal or at different constant 
temperatures. Reddy [18] obtained the closed form solutions for the effect of 
magnetic field on a fully developed combined convection flows in a vertical channel. 
Fully developed MHD free convection flow of a viscous electrically conducting fluid 
in a vertical parallel plate channel was studied by Hughes and Young [16].   
 
 
Nomenclature 
A  Surface area  
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b Spacing between plates  
Cp Specific heat at constant pressure 
g Acceleration due to gravity 
Gr  Grashof number, g β(T2 –T0) b3 / υ2  
h   Heat transfer coefficient  
Ho  Applied magnetic field 
J  Current density vector 
k  Thermal conductivity 
M  Magnetic parameter 
Nu  Nusselt number 
p  Pressure difference,  p′ - p′′ 
p′   Static pressure 
p′′  Hydrostatic pressure 
p   Dimensionless pressure difference,  (p′ - p′′) / ρu2 
Pr  Prandtl number  
q    Velocity vector, (u, v, 0) 
rT   Ratio of wall temperature difference,  (T1 - T0) / (T2 – T0 ) 
Re    Reynolds number, u b / υ  
T   Temperature 
u   Axial velocity 
u0   Average fluid velocity 
v   Transverse velocity 
U    Dimensionless stream wise velocity, u / uo 
V  Dimensionless transverse velocity, v b / υ 
x   Stream wise distance from channel entrance 
y   Transverse coordinate (measured from cool wall) 
X   Dimensionless stream wise distance from Channel entrance, x/(b Re ) 
Y   Dimensionless transverse coordinate, y / b 
β  Thermal expansion coefficient 
μ  Dynamic viscosity 
μe   Magnetic permeability 
υ   Kinematic viscosity 
ρ   Density 
ρ0   Fluid density at ambient temperature 
σ   Electrical conductivity 
θ  Dimensionless temperature difference, (T – T0) / (T2 – T0)  
 
Subscripts 
0 Value at channel entrance (at x = 0) 
1 Cool wall (i.e. value at y = 0) 
2 Hot wall (i.e. value at y = b) 
b Bulk value 
c  Value at center line 
m   Mean value 
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where  
  M2 =  σ μ2e H02 b2 / μ  
 
 In equation  (2), use has been made of the Boussinisq  equation  of  state, ρ - ρ0 = 
-ρ β (T-T0),  and  of the  definition   p = p′ - p′′ ,  where  p′′  is the pressure at any 
stream-wise position if  the temperature were  T0  everywhere.  The latter definition 
gives dp′′/dx = - ρ0g.  Hence  

  ρ−−
dx

dp' )( 0TTg
dx

dp
g −+−= βρ   

 
 It is noted that the dimensionless pressure is P = (p′ - p′′ ) / ρ u0

2 , if the channel 
were horizontal, we would have P = p′ /ρ u0

2 , the convectional definition in pure 
forced flow.  
 
 The boundary conditions are  
  At  X = 0,  0 1≤≤ Y  :  U = 1, V = 0, θ = 0, P = 0 
  At  X > 0, Y = 0       :  U = 0, V = 0, θ = rT (5) 
  At   X >0, Y = 1       :  U = 0, V = 0, θ = 1   
 
 The above, dimensionless parameters have been depend as: 
  U = u / u0 , V = vb/υ, X = x / (b Re), Y = y / b 
  P = (p′ - p′′) /ρ u0

2 , Pr = μ Cp / k , Re = b u0 /υ   (6) 
  Gr = gβ (T2 – T0) b 3 /υ 2 , θ  = (T – T0) / (T2 – T0)   
 
 To obtain a solution of the mixed convection problem formulated above, an 
additional equation expressing the global conservation of mass at any cross section in 
the channel is also required. 
 This becomes   
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 To calculate V, the transverse component of velocity, the centerline value of the 
index is denoted (figure 2) jmid = (n+3)/2, where (n+2) is the total number of nodes 
along   Y and is an odd integer.   
 For     j < jmid, the continuity equation (1) can be written 
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 For  j>jmid , the above equation is modified and the following form is used: 
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 In principle, either equation (10a) or equation (10b) could be used to evaluate the 
centerline velocity V(i+1, jmid).  However, since both equations employ one-sided 
differences, a different value of V(i+1, jmid) could result depending on which equation 
is considered. Consequently, the transverse velocity at the centerline is calculated by 
fitting a third order polynomial through the values on the two immediate mesh points 
on both sides of the centerline.  
 By means of Simpson’s rule, we write equation (7) as  
  4U(i+1,1)+2U(i+1,2) + 4U(i+1, 3) +. . .+ 4U(i+1, n) = 3(n+1)  (11) 
 
 A set of finite-difference equations written about each mesh point in a column for 
the equation (8) as shown: 
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for k = 1,2… n 
 
 A set of finite-difference equations written about each mesh point in a column for 
the equation (9) as shown: 
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 The solutions of the difference equations are obtained by first selecting values for 
Pr, Gr/Re, M and rT and then by means of a marching procedure the variables U, V, θ 
and P for each row beginning at row (i+1) = 2 are obtained using the values at the 
previous row ‘i’. Thus, by applying equations  (8), (9) and  (11) to the points 1, 2, ...., 
n  on row i,  2n+1  algebraic equations with the 2n+1  unknowns  U(i+1,1),U(i+1,2), 
 , U(i+1,n), P(i+1), θ(i+1,1), θ(i+1,2), . . . . ,θ(i+1, n)  are obtained.  This system of 
equations is then solved by a matrix reduction technique.  Equations  (10) are then 
used to calculate V(i+1,1),V(i+1,2), . . . ., V(i+1,n). 
 
 
Results and Discussion 
In the present study, quantitative information on the effects of buoyancy and 
asymmetric heating have been obtained for pr= 0.72 at Gr/Re = 0, 50, 100, 250 and 
500 for different values of magnetic field parameter M. 
 The present results show that at small Gr/Re, the velocity profile, specified as U=1 
at the channel entrance, remains positive through out at all X for different values of 
magnetic parameter M.  At a sufficiently high value of Gr/Re for a fixed rT, the stream 
wise velocity is everywhere positive up to a certain  X, then a separation point (i.e., 

Y
U
∂

∂  = 0) develops on the cool wall when rT < 1 for fixed values of magnetic field 

parameter M.   
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 The present numerical approach yielded stable solution in one particular case 
involving reversed flow.  The calculation was carried out for Gr/Re = 250 and rT = 
0.5.  The results are reported in [18] to afford comparison with the analytical solution 
for FDF, and point to the need for additional clarification of the usefulness and 
limitations of the present approach for situation involving flow recirculation.  Also in 
need of further investigation is the concept of fully developed flow in the presence of 
by directional flow.   
 An additional discussion of flow reversal in the context of FDF is given in [18] 
where, for example it is shown that even in the presence of flow reversal, the centre 
line velocity is always positive at any rT and has a numerical value of 1.49, the same 
as when buoyancy is absent.  It should be recognized that flow separation as a 
fundamental fluid flow phenomena is still poorly understood, even in laminar flow.   
 For a channel with symmetric heating at UWT (rT=1), the stream wise variation of 
the centre line velocity is indicated in figures 3(a) to 3(d).  It can be seen that 
buoyancy effects are felt very close to the channel entrance (X=0).  Buoyancy causes 
increased mass flow close to the walls, and since the global mass is fixed, the fluid 
velocities near the center line decrease for fixed magnetic field parameter M.  At 
sufficiently high value of Gr/Re (larger than 100), the centre line velocity undergoes a 
minimum, then once again increases monotonically.  It is seen that increasing the 
magnetic field parameter M for fixed Gr/Re, centerline velocity decreases. 
 Since buoyancy leads to increased velocities near the walls, the velocity profile 
attains a concave shape near the centre and the concavity becomes more severe as 
Gr/Re increases. However, for rT=1 at all values are Gr/Re, the concavity eventually 
disappears and the profile develops in to the fully developed shape predicted by the 
fully developed flow theory given in [18].  This effect is illustrated in figures 5(a) to 
5(b). For asymmetric wall temperatures (rT < 1), the concavity never completely 
disappears, as the FDF theory also predicts [18].  A skeweness in the velocity profile 
also appears as the fluid moves toward hot wall (Y=1) for fixed M.  The smaller rT, 
the greater is the skeweness. The distortion of the profile is, however, reduced at 
increased X. On the other hand, increased buoyancy introduces a more severe 
distortion as illustrated in figure 4(a) to 4(d). 
 The development of the temperature field is exemplified by figures 7(a) to 7(d).  
The FDF temperature distribution is a function only of rT and not of Gr/Re.  The 
effect of the latter parameter is felt in the developing region, where the buoyancy 
deceases the temperature in the region adjacent to the hot wall while increasing the 
temperature else where in the flow.  The phenomenon is evident in figures 6(a) to 
6(d).  Thus, buoyancy tense to equalize the temperature in the fluid.  It is seen that 
increasing the magnetic parameter M for fixed Gr/Re at rT=0.5 for different X values 
the temperature is decreases. 
 Figures 8(a) to 8(b) shows the variation of the dimensionless pressure parameter P 
for rT=1.  The figures indicate the steam-wise variation of the parameter at different 
Gr/Re for fixed magnetic parameter M. At some point along the channel, for Gr/Re 
values of 50, 100, 250 and 500 the pressures attains a minimum (i.e., -P achieves a 
maximum) and starts increasing.  In the upper range of the Gr/Re values (Gr/re>250), 
the maximum pressure occurs at about the point where buoyancy effects begin to be 
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felt and the center line velocity starts to decrease, for fixed magnetic parameter M.  In 
the same range, it is also observed that P becomes positive when the center line 
velocity attains a value of less than that of the entry velocity, i.e., U=1. 
 The axial variation the bulk temperature for rT=1 at different Gr/Re for fixed 
magnetic parameter M is displayed in figures 11(a) to 11(d). The bulk temperature is 
defined as  

  
dYU

dYU

b

∫

∫
= 1

0

1

0

θ
θ  (12) 

 
 It may be noted that buoyancy effects are noticeable through a long segment of the 
channel, but not for small or large X.  At large X all the curves converge to the value 
1. The value of bulk temperature when rT < 1 is shown, in the asymptotic limit of 
large X to increase with buoyancy for fixed magnetic field parameter M. 

 

 
 

 

Fig. 3(a) : Centeriline axial velocity values for fixed rT=1 and M=0
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Fig. 3(b):   Centerline axial velocity values for fixed rT=1 and M =1
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Fig.3(c):  Centerline axial velocity values for fixed rT=1 and M =5
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Fig. 4(a):  Velocity value for fixed rT=0.5, X=0.04 and M=0
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Fig. 4(b):  Velocity value for fixed rT=0.5, X=0.04 and M=1
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Fig. 4(c) : Velocity value for fixed rT=0.5, X=0.04 and M=5
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Fig.5(a): Temperature value for fixed rT=0.5, X=0.04 and M =0
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Fig. 5(b): Temperature value for fixed rT=0.5, X=0.04 and M =1
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Fig.5(c):Temperature value for fixed rT=0.5, X=0.04 and M =5
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Fig. 6(a): Dimensionless temperature distribution at rT=0.5, Gr/Re=250 and M=0
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Fig.6(b): Dimensionless temperature distribution at rT=0.5, Gr/Re=250 and M=1
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Fig.6(c): Dimensionless temperature distribution at rT=0, Gr/Re=250 and M=5

0

0.25

0.5

0.75

1

0 0.2 0.4 0.6 0.8 1Y

Te
m

pe
ra

tu
re

X=0.005
X=0.05
X=0.10

Fig.7(a): Pressure values for fixed rT = 1.0 and M = 0
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Fig.7(b):  Pressure values for fixed rT = 1.0 and M=1

-2

-1

0

1

2

3

4

0 0.01 0.02 0.03 0.04X

Pr
es

su
re

Gr/Re=0 Gr/Re=50
Gr/Re=100 Gr/Re=250
Gr/Re=500



The Effect of Magnetic Field on a Developing Flow 85 
 

 

 
 

 
 

 

Fig.7(c): Pressure values for fixed rT = 1.0 and M=5
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Fig. 8(a) : Bulk Temperture  (θb) for fixed rT=0.5 and M=0
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Fig. 8(b): Bulk Temperture(θb) for fixed rT=0.5 and M=1
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Fig. 8(c) : Bulk Temperature (θb) for fixed rT=0.5 and M=5
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Fig. 9(a) : Bulk Temperature(θb) for fixed rT=1 and M=0
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Fig. 9(b) : Bulk Temperature (θb) for fixed rT=1 and M=1
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