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Abstract 
 

In multihop wireless networks, designing distributed scheduling algorithms to 
achieve the maximal throughput is a challenging problem because of the 
complex interference constraints among different links. Traditional maximal-
weight scheduling (MWS), although throughput-optimal, is difficult to 
implement in distributed networks. On the other hand, a distributed greedy 
protocol similar to IEEE 802.11 does not guarantee the maximal throughput. 
In this paper, we introduce an adaptive carrier sense multiple access (CSMA) 
scheduling algorithm that can achieve the maximal throughput distributively. 
Some of the major advantages of the algorithm are that it applies to a very 
general interference model and that it is simple, distributed, and asynchronous. 
Furthermore, the algorithm is combined with congestion control to achieve the 
optimal utility and fairness of competing flows. Simulations verify the 
effectiveness of the algorithm. Also, the adaptive CSMA scheduling is a 
modular MAC-layer algorithm that can be combined with various protocols in 
the transport layer and network layer. Finally, the paper explores some 
implementation issues in the setting of 802.11 networks.  

 
 
Introduction 
In Multihop wireless networks, it is important to efficiently utilize the network 
resources and provide fairness to competing data flows. These objectives require the 
cooperation of different network layers. The transport layer needs to inject the right 
amount of traffic into the network based on the congestion level, and the MAC layer 
needs to serve the traffic efficiently to achieve high throughput. Through a utility 
optimization framework [1], this problem can be naturally decomposed into 
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congestion control at the transport layer and scheduling at the MAC layer. It turns out 
that MAC-layer scheduling is the bottleneck of the problem [1]. In particular, it is not 
easy to achieve the maximal throughput through distributed scheduling, which in turn 
prevents full utilization of the wireless network. Scheduling is challenging since the 
conflicting relationships between different links can be complicated.  
 It is well known that maximal-weight scheduling (MWS) [22] is throughput-
optimal. That is, that scheduling can support any incoming rates within the capacity 
region. In MWS, time is assumed to be slotted. In each slot, a set of non conflicting 
links (called an “independent set,” or “IS”) that have the maximal weight are 
scheduled, where the “weight” of a set of links is the summation of their queue 
lengths. (This algorithm has also been applied to achieve 100% throughput in input-
queued switches [23].) However, finding such a maximal-weighted IS is NP-complete 
in general and is hard even for centralized algorithms. Therefore, its distributed 
implementation is not trivial in wireless networks.      
 A few recent works proposed throughput-optimal algorithms for certain 
interference models. For example, Eryilmaz et al. [3] proposed a polynomial-
complexity algorithm for the “two-hop interference model”.1 Modiano et al. [4] 
introduced a gossip algorithm for the “node-exclusive model”.2 The extensions to 
more general interference models, as discussed in [3] and [4], involve extra 
challenges. Sanghavi et al. [5] introduced an algorithm that can approach the 
throughput capacity (with increasing overhead) for the node-exclusive model.         
 On the other hand, a number of low-complexity but suboptimal scheduling 
algorithms have been proposed in the literature. By using a distributed greedy 
protocol similar to IEEE 802.11, [8] shows that only a fraction of the throughput 
region can be achieved (after ignoring collisions). The fraction depends on the 
network topology and interference relationships. The algorithm is related to Maximal 
Scheduling [9], which chooses a maximal schedule among the nonempty queues in 
each slot. Different from Maximal Scheduling, the Longest-Queue-First (LQF) 
algorithm [10]–[13] takes into account the queue lengths of the nonempty queues. It 
shows good throughput performance in simulations. In fact, LQF is proven to be 
throughput-optimal if the network topology satisfies a “local pooling” condition [10], 
[12] or if the network is small [13]. In general topologies, however, LQF is not 
throughput-optimal, and the achievable fraction of the capacity region can be 
characterized as in [11]. Reference [14] studied the impact of such imperfect 
scheduling on utility maximization in wireless networks. In [16], Proutiere et al. 
developed asynchronous random-access-based scheduling algorithms that can achieve 
throughput performance similar to that of the Maximum Size scheduling algorithm. 
 Our first contribution in this paper is to introduce a distributed adaptive carrier 
sense multiple access (CSMA) algorithm for a general interference model. It is 
inspired by CSMA, but may be applied to more general resource sharing problems 
(i.e., not limited to wireless networks). We show that if packet collisions are ignored 
(as in some of the mentioned references), the algorithm can achieve maximal 
throughput. The optimality in the presence of collisions is studied in [30] and [31] 
(and also in [35] with a different  algorithm). The algorithm may not be directly 
comparable to those throughput-optimal algorithms we have mentioned since it 
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utilizes the carrier-sensing capability. However, it does have a few distinct features: 
 
• Each node only uses its local information (e.g., its backlog). No explicit control 

messages are required among the nodes. 
• It is based on CSMA random access, which is similar to the IEEE 802.11 

protocol and is easy to implement. 
• Time is not divided into synchronous slots. Thus, no synchronization of 

transmissions is needed. 
 
 Our second contribution is to combine the proposed scheduling algorithm with 
congestion control using a novel technique to achieve fairness among competing 
flows as well as maximal throughput (Sections III and IV). The performance is 
evaluated by simulations (Section VI).We show that the proposed CSMA scheduling 
is a modular MAC-layer algorithm and demonstrate its combination with optimal 
routing, any cast, and multicast with network coding [40]. Finally, we considered 
some practical issues. 
 There is extensive research in joint MAC and transport-layer optimization, for 
example [6] and [7]. Their studies have assumed the slotted-Aloha random  access 
protocol in the MAC layer instead of the CSMA protocol we consider here. Slotted-
Aloha does not need to consume power in carrier sensing.  On the other hand, CSMA 
has a larger capacity region.(In this paper, we are primarily interested in the 
throughput performance.) Other related works assume physical-layer models which 
are quite different from ours. For example, [18] considered the CDMA interference 
model, and [19] focused on time-varying wireless channels. 
 
 
Adaptive CSMA for Maximal Throughput 
Interference Model 
First, we describe the general interference model we will consider in this paper. 
Assume there are  K links in the network, where each link is an (ordered) transmitter–
receiver pair. The network is associated with a conflict graph (or “CG”). G= {V, ε} 
where V is the set of vertices and ε is the set of edges. Two links cannot transmit at 
the same time (i.e., “conflict”) iff there is an edge between them. Note that this 
framework includes the “node-exclusive model” and “two-hop interference model” 
mentioned as two special cases. 
 
An Idealized CSMA Protocol and the Average Throughput 
There are two reasons for using this model in our context, although it makes the above 
simplifying assumptions about collisions and the HN problem: 1) The model is 
simple, tractable, and captures the essence of CSMA/CA. It is also an easier starting 
point before analyzing the case with collisions. Indeed, in [30], [31], we have 
developed a more general model that explicitly considers collisions in wireless 
network and extended the distributed algorithms in this paper to that case to achieve 
throughput-optimality. This will be further discussed in Section VII. 2) The 
algorithms we propose here were inspired by CSMA, but they can be applied to more 



128  K K S Harika et al 

 

general resource-sharing problems4 that does not have the issues of collisions and HN 
(i.e., not limited to wireless networks). 
 

 
 

Figure 1: Example A conflict graph and corresponding CSMA Markov chain (a) 
Conffict graph (b) CSMA Markov chain 
 
 
 Fig. 1 gives an example network whose CG is shown in (a). There are two links 
with an edge between them, which means that they cannot transmit together. Fig. 1(b) 
shows the corresponding CSMA Markov chain. State (0,0) means that no link is 
transmitting, state (1,0) means that only link 1 is transmitting, and (0,1) means that 
only link 2 is transmitting. The state (1,1) is not feasible. 
 
Lemma 1: ([25]–[27]) The stationary distribution of the CSMA Markov chain has the 
following product-form: 

  
 
 Where  
 

  
 
 Note that the summation is over all feasible states 
 
Proof: We verify that the distribution (1)  

  
 
 satisfies the detailed balance equations [24]. Consider 
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 Which is exactly the detailed balance equation between state  and  
Such relations hold for any two states that differ in only one element, which are the 
only pairs that correspond to nonzero transition rates. Thus, the distribution is 
invariant.   
 Since the detailed balance equations hold, the CSMA Markov chain is time-
reversible. In fact, the Markov chain is a reversible “spatial process,” and its 
stationary distribution (1) is a Markov random field 

 It follows from Lemma 1 that  , the probability that link transmits, is given 
by 

  
 
 Without loss of generality, assume that each link K has a capacity of 1. That is, if 
link K transmits data all the time (without contention from other links), then its 

service rate is 1 (unit of data per unit time). Then, is also the normalized 
throughput (or service rate) with respect to the link capacity. 
 Even if the waiting time and transmission time are not exponential distributed but 
have the same means and 1 (in fact, as long as the ratio of their means is), [27] shows 
that the stationary distribution (1) still holds. That is, the stationary distribution is 
insensitive. 
 
Convergence and Stability 
The intuition is that one can make change slowly (i.e., “quasi-static”) to allow the 
CSMA Markov chain to approach its stationary distribution (and thus obtaining good 
estimation of ). This allows the separation of time scales of the dynamics of and the 
CSMA Markov chain. The extended algorithm is  

  
 

 Where and the function  . If then algorithm 
(9) reduces to Algorithm 1. If , then algorithm (9) “pretends” to serve some arrival 
rates higher than the actual ones. In Appendix B, we state some results in [38] (which 
includes the detailed proofs). In summary: 1) with properly chosen decreasing step 
sizes and increasing update intervals 
 In a related work [21], Liu et al. carried out a convergence analysis, using a 
differential-equation method, of a utility maximization algorithm extended from [2] 
(see also Section IV for the algorithm),  although queueing stability was not 
considered in [21]. 
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The Primal-Dual Relationship 
In the previous section, we have described the adaptive CSMA algorithm to support 
any strictly feasible arrival rates. For joint scheduling and congestion control, 
however, directly using the expression of service rate (3) will lead to a  on convex 
problem. This section takes another look at the   problem and also helps to avoid the 
difficulty. 
 
Rewrite (4) as 

  
 

 For each  associate a dual variable to the constraint 
Write the vector of dual variables as . Then, it is not difficult to find 

the dual problem of (10) as follows. (The computation was given in [41], but is 
omitted here due to the limit of space.) 

  
 
where the objective function is the entropy of the distribution U, 

  
 
 Also, if for each K, we associate a dual variable to the constraint 

in problem (11), then one can compute that the dual problem of 
(11) is the original problem  (This is shown in Appendix A as a by-
product of the proof of Proposition 2.) This is not surprising since, in convex 
optimization, the dual problem of dual problem is often the original problem. 
 What is interesting is that both and have concrete physical meanings. We have 
seen that is the TA of link . Also, can be regarded as the probability of state. This 
observation will be useful in later sections. A convenient way to guess this is by 
observing the constraint. If is the probability of state , then the constraint simply 
means that the service rate of link , , is larger than the arrival rate. 
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Conclusion 
In this paper, we have proposed a distributed CSMA scheduling algorithm and 
showed that, under the idealized CSMA, it is throughput-optimal in wireless networks 
with a general interference model. We have utilized the product-form stationary 
distribution of CSMA networks in order to obtain the distributed algorithm and the 
maximal throughput. Furthermore, we have combined that algorithm with congestion 
control to approach the maximal utility and showed the connection with back-pressure 
scheduling. The algorithm is easy to implement, and the simulation results are 
encouraging. 
 The adaptive CSMA algorithm is a modular MAC-layer component that can work 
with other algorithms in the transport layer and network layer. In [40], for example, it 
is combined with optimal routing, any cast, and multicast with network coding. We 
also considered some practical issues when implementing the algorithm in an 802.11 
setting. Since collisions occur in actual 802.11 networks, we discussed a few recent 
algorithms that explicitly consider collisions and can still approach throughput 
optimality. Our current performance analysis of Algorithms 1–3 is based on a 
separation of time scales, i.e., the vector is adapted slowly to allow the CSMA 
Markov chain to closely track the stationary distribution. The simulations, however, 
indicate that such slow adaptations are not always necessary. In the future, we are 
interested to understand more about the case without time-scale separation. 
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