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Abstract  
Brain organizes this huge number of neurons (also referred as cells or units), each with weak 
computing power, into a massively parallel complex network, which these neurons interact with each 
other dynamically to produce a powerful information processor. Neurons are five to six orders of 
magnitude slower than current silicon gates. The modern computer easily outperforms the human in 
pre-programmable, repetitive computations. However, speech understanding and visual perception are 
still beyond the reach of serial digital computers even after allowing for an increase of speed by several 
orders of magnitude. Many of the tasks are difficult for the digital computers either because of 
computational load requires speed and storage not realizable with existing technology or because of 
possible inherent intractability of some problems including their complete and accurate symbolic 
descriptions. In comparison to digital computers, human beings as well as many other living creatures 
tackle the practical problems without much effort. These human capabilities motivate Artificial Neural 
Network (ANN) research. 
 
 
1 .INTRODUCTION 
Neural networks can be viewed as massively 
parallel computing systems consisting of an 
extremely large number of simple processors 
with many interconnections. Neural network 
models attempt to use some organizational 
principles (such as learning, generalization, 
adaptivity, fault tolerance and distributed 
representation, and computation) in a network of 
weighted directed graphs in which the nodes are 
artificial neurons and directed edges (with 
weights) are connections between neuron outputs 
and neuron inputs. The main characteristics of  
 
 
neural networks are that they have the ability to 
learn complex nonlinear input-output 
relationships, use sequential training procedures, 
and adapt themselves to the data. The most 
commonly used family of neural networks for 
pattern classification tasks [13] is the feed-
forward network, which includes multilayer 

perception and Radial-Basis Function (RBF) 
networks. These networks are organized into 
layers and have unidirectional connections 
between the layers. Another popular network is 
the Self-Organizing Map (SOM), or Kohonen-
Network [14], which is mainly used for data 
clustering and feature mapping. The learning 
process involves updating network architecture 
and connection weights so that a network can 
efficiently perform a specific 
classification/clustering task. The increasing 
popularity of neural network models to solve 
pattern recognition problems has been primarily 
due to their seemingly low dependence on 
domain-specific knowledge (relative to model-
based and rule-based approaches) and due to the 
availability of efficient learning algorithms for 
practitioners to use. 

     2 HUMAN BRAIN AS NEURAL NETWORK 
Human brain, made up of a vast network of 
computing elements called neurons, is coupled 
with sensory receptors (affecters) and effectors. A 
neuron is a special cell that conducts an electrical 
signal. There are about 10 billion neurons in the 
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human brain. Neurons interact through contacts 
called synapses. Each synapse spans a gap about a 
millionth of an inch wide. On an average each 
neuron receives signals via thousands of synapses. 
 
Brain organizes this huge number of neurons 
(also referred as cells or units), each with weak 
computing power, into a massively parallel 
complex network, which these neurons interact 
with each other dynamically to produce a 
powerful information processor. Neurons are five 
to six orders of magnitude slower than current 
silicon gates. The modern computer easily 
outperforms the human in pre-programmable, 
repetitive computations. However, speech 
understanding and visual perception are still 
beyond the reach of serial digital computers even 
after allowing for an increase of speed by several 
orders of magnitude. Many of the tasks are 
difficult for the digital computers either because 
of computational load requires speed and storage 
not realizable with existing technology or 
because of possible inherent intractability of 
some problems including their complete and 
accurate symbolic descriptions. In comparison to 
digital computers, human beings as well as many 
other living creatures tackle the practical 
problems without much effort. These human 
capabilities motivate Artificial Neural Network 
(ANN) research. Neurobiologists want to 
understand the stimulus-response characteristics 
of a single neuron and the interconnections of 
neurons that form either sub-regions of the brain 
or smaller subdivisions of the nervous system. 
Such lower-level models help us to understand 
the properties of neurons that are important for 
higher-level functions. Psychologists attempt to 
understand the brain functions from the 
behavioral and cognitive levels. 
 
2.3 HUMAN BRAIN AND NEURAL 
NETWORK: A COMPARISON 

 
Many studies suggest that humans may use less 
than 10 percent of their brains' potential power. 
While this anecdotal evidence has not been 
scientifically proven, it is one of the many 
mysteries of the human brain. Some scientists 
state that human memory cells are located in 
certain areas of the brain. Others state that 
memory is distributed throughout the brain and 

there is no specific memory location. Of course, 
nothing is clear. This article compares the 
similarities between human and neural networks. 
Our interest in this topic stems from our research 
on using neural networks to recognize 
fingerprints. 
Comparison 
Now the question remains, what is the difference 
between human and neural networks? Both can 
learn and become expert in an area and both are 
mortal. The main difference is, humans can forget 
but neural networks cannot. Once fully trained, a 
neural net will not forget. Whatever a neural 
network learns is hard-coded and becomes 
permanent. A human's knowledge is volatile and 
may not become permanent. There are several 
factors that cause our brain cells to die and if they 
do, the information that is stored in that part is lost 
and we start to forget.  
The other difference is accuracy. Once a 
particular application or process is automated 
through a neural network, the results are 
repeatable and accurate. Whether the process is 
replicated one thousand times or one million 
times, the results will be the same and will be as 
accurate as calculated the first time. Human 
beings are not like that. The first 10 processes 
may be accurate, but later we may start to make 
mistakes in the process. Another key difference 
is speed. Neural networks can be hardware or 
software. It is obvious that neural networks are 
much faster than humans in processing data and 
information. 
 
2.4 ARTIFICIAL NEURAL NETWORK  
We consider an ANN as a highly simplified 
model of the structure of the biological neural 
network. An ANN consists of the following: 
a. Processing Unit: This is the summing part 
of which receives n input values, weighs each 
value, and performs a weighted sum. The 
weighted sum is called activation value. The 
sign of weight may be negative (inhibitory 
input) or positive (excitatory input). The inputs 
could be discrete or continuous data values, and 
likewise the outputs also could be discrete or 
continuous. 

b. Interconnections: In an artificial neural 
network several processing units are 
interconnected according to some topology to 
accomplish a pattern recognition task. Therefore 
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the inputs to a processing unit may come from 
outputs of the other processing units, and/or from 
an external source. The output of each unit may 
be given to several units including it. The amount 
of the output of one unit received by another unit 
depends on the strength of the connection 
between the units, and it is reflected in the weight 
value associated with the connecting link. If 
there are N units in a given ANN then at any 
instant of time each unit will have a unique 
activation value and a unique output value. The 
set of the N activation value defines the 
activation state of the network at that instant. 
Likewise, the set of the N output values of the 
network defines the output state of the network 
at that instant. 
c. Operations: In operation, each unit of an 
ANN receives inputs from other connected units 
and /or from an external source. A weighted sum 
of the inputs is computed at a given instant of 
time. The resulting activation value determines 
the actual output from the output function unit 
i.e. the output state of the unit. The activation 
values of the units (activation state) of the 
network as a function of time are referred to as 
activation dynamics. The activation dynamics 
also determine the dynamics of the output state 
of the network. For a given network, defined by 
the units and their interconnections with 
appropriate weights, the activation state refers to 
the short term memory function of the network. 
Generally the activation dynamics is followed to 
recall a pattern stored in a network.  

d. Update: In implementation, there are several 
options available for both activation and synaptic 
dynamics. In particular, the updating of the 
output states of all units could be performed 
synchronously. In this case, the activation values 
of all units are computed at the same time 
assuming a given output state throughout. From 
these activation values the new output state of 
the network is derived. In an asynchronous 
update, on the other hand, each unit is updated 
sequentially, taking the current output state of the 
network into account each time. For each unit, 
the output state can be determined from the 
activation value either deterministically or 
stochastically.  
2.4  ARTIFICIAL NEURAL NETWORK 
TOPOLOGIES 

Artificial neural networks are useful only 
when the processing units are organized in a 
suitable manner to accomplish a given pattern 
recognition task. The arrangement of the 
processing units, connections, and pattern 
input/output is referred to as topology. In 
ANN these processing units are normally 
organized into layers. Connections are either 
interlayer (i.e. from units of one layer to units 
of another) or intralayer (i.e. from the units 
within the layer) or both. Further, the 
connections among the layers and among the 
units within a layer can be made either in 
feedforward manner or in feedback manner. In 
a feedback network the same processing unit 
may be visited more than once. 

Assuming two layers F1 and F2 with N and M 
processing units respectively, let us define few 
basic topologies. By providing connections to 
the jth unit in F2 from all the units in F1, as 
shown in figure 2.4a and 2.4b, we get two 
network structures- instar and outstar. The 
units in F1 layer are linear, so that for each unit 
I in this layer the input (ai) = activation (xi) = 
output signal (s). In instar, during learning, the 
weight vector wj (wj1, wj2…wjN) is adjusted so 
as to approach the given input vector a at F1 
layer. Therefore whenever the input is given to 
F1, then the jth unit of F2 will be activated to 
the maximum extent. Thus the operation of 
instar can be viewed as content addressing the 
memory. In the case of outstar, during learning, 
the weight vector for the connections from the 
jth unit in F2 approaches the activity pattern in 
F1 when input vector a is present at F1. During 
recall, whenever the unit j is activated, the 
signal pattern (sjw1j, sjw2j,…..sjwNj) will be 
transmitted to F1, which then produces the 
original activity pattern corresponding to the 
input vector a, although the point is absent. 
Thus the operation of outstar can be viewed as 
memory addressing the contents. 

 
When all the connections from units in F1 and F2 
are made as in figure 2.4c and d, then we obtain a 
heteroassociation network. This network can be 
viewed either as group of instars (figure 2.4c) or 
group of outstars (figure 2.4d). 
 
When the flow is bi-directional and the weight 
are symmetric (wij = wji), then we get a bi-
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directional associative memory (fig. 2.4e), 
where either of the layers can be used as 
input/output.  

If the two layers coincide, then we obtain an 
autoasociative memory in which each unit is 
connected to every other unit and to itself (figure 
2.4f). 

 
 
Figure 2.4:  Some basic topologies of ANN. (a) Instar (b) 
Outstar(c) group of instars 
(d)group of outstars(e) bi-directional associative memory  
(f)auto associative memory 
 
2.5  NEURONAL DYNAMICS  
Artificial Neural Networks can be considered as 
trainable nonlinear dynamical systems. For a 
network consisting of N processing units, the 
activation state of the network at any given instant 
corresponds to a point in the N dimensional state 
space. The dynamics of the neural network, after 
tracing a trajectory in the state space, ends at an 
equilibrium state of the system in the normal 
course. An equilibrium state is one at which small 
perturbations around it due to neuronal dynamics 
will not perturb the state. 

Neuronal dynamics consists of two parts: one 
corresponding to the dynamics of activation states 
and the other corresponding to the dynamics of 
synaptic weights. The activation dynamics 
determines the time evolution of the neuronal 
activations, and it is described by a system of first 
order differential equations which are first 
derivatives of the activation state i.e. dxi/dt. 
Likewise, synaptic dynamics determines the 
changes in the synaptic weights. The equations 
governing the dynamics are described in terms of 
the first derivatives of the synaptic weights, i.e. 

dwij/dt, where wij is the strength of the connecting 
link from the jth unit to the ith unit. 
 

Synaptic weights change gradually, whereas the 
neuronal activations fluctuate rapidly. Therefore, 
while computing the activation dynamics, the 
synaptic weights are assumed to be constant. The 
synaptic dynamics dictates the learning process. 
The short-term memory (STM) in neural networks 
is modeled by the activation state of the network. 
The long-term memory (LTM) corresponds to the 
encoded pattern information in the synaptic 
weights due to learning. 
 
2.6 LEARNING LAWS 

Synaptic dynamics, as discussed earlier, is 
described in terms of expressions for the first 
derivative of the weights. They are called learning 
equations. Typical learning involves adjustment 
of the weight vector such that 

wi(t) = g[wi(t),a(t),bi(t)]a(t)   (2.11) 
wi(t+1) = wi(t) + wi(t)             (2.12) 

   where  = learning rate parameter, 
wi= [wi1,wi2,…wiN]T weight vector with 
components wij, 
wij= weight connecting the jth input unit to the 
ith processing unit, 
a = input vector with components ai, i = 1, 2, 
…N, 
b= desired output vector with components bi, i = 
1, 2, …M. 
 
Input units are assumed linear. Hence a = x (unit 
activation) = s (unit output) 
Output units are in general non-linear. Hence si = 
f (wi

Ta). 
The function g may be viewed as a learning 
function that depends on the type of learning 
adopted. There are different methods for 
implementing the synaptic dynamics. These 
methods are called learning laws.  
 
Supervised Vs Unsupervised learning 

There are several learning laws in use, and 
new are being developed to suit a given 
application and architecture. There are some 
general categories that these laws fall into. 
Most common is out of those is supervised or 
unsupervised. In supervised learning the 
weight changes are determined by the 
difference between the desired output and the 
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actual output. Some of the supervised learning 
laws are: error correction learning or delta 
rule, stochastic learning, and hardwired 
learning [29]. Unsupervised learning discovers 
features in a given set of patterns and 
organizes the patterns accordingly. There is no 
externally specified desired output as in the 
case of supervised learning. Examples of this 
category include Hebbian learning, differential 
Hebbian learning, principle component 
learning and competitive learning [26]. 
Unsupervised learning uses mostly local 
information to update the weights. 

 
Figure 2.5: Classification of Learning algorithms 
 

Some of common discrete learning laws are 
discussed as follows:  

 
2.6.1 Hebb’s law: 
Here the change in the weight vector is given by 
 wi = f (wi

Ta) a        (2.13) 
Therefore, the jth component of wi is given by 
wij = f (wi

Ta) aj  = siaj,   
for j = 1,2,…,M                    (2.14) 
wheresi is the output signal of ith unit. This law 
requires weight initialization wi0 prior to 
learning and represent unsupervised learning. 
 
 
2.6.2 Perceptron learning law [13] : 
Here the change in the weight vector is given by 
wi = [bi – sgn (wi

Ta)]a         (2.15) 
Wheresgn(x) is sign of x. Therefore, we have 
wij = [bi – sgn(wi

Ta)] aj = (bi - si)aj for j 
= 1,2,…,M      (2.16) 

This rule is applicable for bipolar output 
functions. The weights can be initialized to any 
random value prior to learning. This law is a 
supervised learning law because it requires a 
desired output for each input. 
 
2.6.3 Delta learning law: 
Here the change in the weight vector is given by 
wi =  [bi-f (wi

Ta)] f (wi
Ta) a     (2.17) 

wheref(x) is the derivative with respect to x. 
Hence, 
wij =  [bi-f (wi

Ta)] f (wi
Ta) aj = [bi - si] f(xi)aj, 

for j = 1,2,…,M          (2.18) 
This law is valid only for a differentiable output 
function, as it depends on the derivative of the 
output function. It is a supervised learning law 
since the change in the weight is based on the 
error between the desired and the actual output 
values for the given input. The weights can be 
initialized to any random value in the beginning.  
 
2.6.4 Widrow- Hoff LMS learning law : 
Here the change in the weight vector is given by 
wi =  [bi-wi

Ta] a     ( 2.19) 
Hence 
wij =  [bi-wi

Ta] aj,  
for j = 1,2,…,M      (2.20) 
 
This is a supervised learning law and is a special 
case of the delta learning law, where the output 
function is assumed linear. The weights may be 
initialized to any values. 
 
2.6.5 Correlation learning law: 
Here the change in the weight vector is given by 
wi = bia       (2.21) 
Therefore, 
wij = biaj, for j = 1,2,…,M     (2.22) 
 
This is the special case of the Hebbian learning 
with the output signal (si) being replaced by the 
desired signal (bi). But the Hebbian learning is an 
unsupervised learning, whereas the correlation 
learning is a supervised learning, since it uses the 
desired output value to adjust the weights. The 
weights are initialized to zero prior to learning. 
 
 
 
2.6.6 Instar (winner-take-all) learning law: 
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This is relevant for a collection of neurons 
organized in an instar topology. 
Here,    
wmj = (aj –wmj),   
for j = 1,2…N                 (2.23) 
 
where wm

Ta = max (wi
Ta). Here the weights are 

initialized to random values prior to learning and 
their lengths are normalized during learning. 
 
2.7.7 Outstar learning law: 
This is relevant for a collection of neurons 
organized in an outstar topology. 
Here,    
wkj = (bk –wkj),   
for k = 1, 2…K        (2.24) 
Where b is the desired response from the layer of 
K neurons. The weights are initialized to zero 
before learning. 
 
2.8 TYPES OF ARTIFICIAL NEURAL 

NETWORKS 
 There are three types artificial neural networks. 
They are: 

 Feed-forward 
 Feedback 
 Combination of both 

 
The simplest networks of each of these types 
form the basic functional units. They are 
functional because they can perform by 
themselves some simple pattern recognition 
tasks. They are basic because they form building 
blocks for developing neural network 
architectures for complex pattern recognition 
tasks. 
 
In multi-layer feed forward networks, the 
processing elements are arranged in layers and 
only the elements in adjacent layers are 
connected with each other. It has a minimum of 
three layers of elements (i) the input layer (ii) the 
middle or hidden layer and (iii) the output layer. 
The information propagation is only in the 
forward direction and there no feedback loops. 
Even it does not have feedback connections, 
errors are propagated during training.  
If the connection among the layer is such that the 
layers may be visited more than once, the 
network is called feedback networks. 

 
3. CONCLUSION 
The present chapter carried us through the 
fundamentals of neural networks. These two 
approaches have been emerged following 
different paths but both are inspired by natural 
world. Substantial work is in progress to 
combine these two to evolve hybrid systems, 
which can be applied to solve different 
problems in more efficient manner. Since we are 
applying this approach to solve pattern 
recognition task (storage and recalling of 
patterns in specific). 
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