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Abstract 
 

The Protein structure prediction has been an active research area for the last 40 
years or so. The technical progress in computational Molecular Biology during 
the last decades has contributed significantly to the progress we see today. The 
major goal of predicting Protein structures underpins the correct assumption 
that three dimensional structures confer protein function. The linear Amino 
Acid sequences must transform to nonlinear Secondary Structures and then to 
Tertiary and Quaternary Structures that are responsible for biological 
functions. Biological functions may remain similar or change in the related 
organisms through the evolutionary process. By considering the importance of 
the prediction of secondary structure of protein a detailed literature study of 
the same using Radial Basis Function Neural Networks (RBFNN) AND 
Support Vector Machines (SVM) has been reviewed in this paper. 
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Machines, Secondary Structures, Tertiary Structure and Quaternary Structures 

 
 
1. INTRODUCTION 
Methods predicting Protein secondary structure have improved substantially in the 
90’s through using evolutionary information taken from the divergence of Proteins in 
the same structural family. Recently, the evolutionary information resulting from 
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improved searches and large databases has again boosted prediction accuracy by more 
than four percentage points to its current height around 76% of all residues predicted 
correctly in one of the three states Helix, Strand, other.  
 
 
2. REVIEW OF LITERATURE OF SECONDARY STRUCTURE 
PREDICTION USING VAROIUS METHODS  
David T. Jones, [1] proposed two-stage neural network to predict protein secondary 
structure on the basis of Position Specific Scoring Matrices (PSSM) generated by PSI-
BLAST. PSI-BLAST is a very powerful sequence searching method. This generates 
sequence profiles as part of the search process, and here the idea of intermediate PSI-
BLAST is explored, as a direct input to a secondary structure prediction method rather 
than extracting the sequences, and producing an explicit multiple sequence alignment 
as a separate step. BLAST Programs offer the following programs,  

 xblastn: Search a Nucleotide database with a Nucleotide query 
 blastp: Search Protein database with a Protein query 
 tblastn: Search a six-frame dynamic translation of a Nucleotide database with 

a protein query 
 blastx: Search a Protein database with a six-frame translation of a Nucleotide 

query sequence. 
 tblastx: Search a six-frame translation of a Nucleotide database with a six-

frame translation of a Nucleotide query sequence. 
 
 Wotton and Federhen [2] stated the iterative nature of the PSI-BLAST algorithm 
which increases the sensitivity of the data base by detecting homologous matches with 
relatively low sequence identity. In a PSI-BLAST search, a PSSM generates a scoring 
system that is specific to the group of matches detected using the initial query 
sequence. The subsequent PSI-BLAST iteration using a customized matrix extends to 
the result that allow the detection of more distantly related homology. 
 In order to maximize the effectiveness of PSI-BLAST, Stephen F. Altschul et al., 
Thomas L. Madden [3] deliberately have the idea that, BLAST programs are widely 
used tools for searching Protein and DNA databases for sequence similarities.  
 The original BLAST program seeks short word pairs whose aligned score is at 
least T. The consumption of the processing time is high for the default T value. A new 
‘two-hit’ method by two non-overlapping word pairs on the same diagonal, and 
within a distance of one another can be created. 
 In order to achieve comparable sensitivity, the threshold parameter T must be 
lowered. Then it generates gapped alignments, finally concludes by BLAST searches 
and may be iterated, with a PSSM generated from significant alignments. To compare 
the performance of the new gapped version of BLAST and its PSI-BLAST extension 
to that of the Smith-Waterman algorithm, it can be suggested that PSI-BLAST 
iteration still runs faster than the original BLAST, and 40 times faster than Smith–
Waterman, but in many cases seems to be more sensitive. But by multiple iterations it 
can yield better results. 
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 Leong Lee et al., [4] gave an approach on the basis of Protein Secondary Structure 
Prediction by Using Parallelized Rule Induction from Coverings.  
 The recent breakthrough in 3D structure prediction is to combine the multiple 
sequence alignment with artificial intelligence to predict the Protein structure 
Accuracy, Q3 which is a major factor of this method, here we have only 75%, but in 
previous analysis the accuracy Q3 was rated as 80.3% in RT-RICO (Relaxed 
Threshold Rule Induction from COvering).  
 In Parallelized RT-RICO Q3 ranges 74.6%, which is higher than the consensus 
prediction accuracy of 72.9. Rost [5] suggests that although protein 3D structure is not 
achieved fully, then also the study is continuing in the same area. It is found that 
Secondary structure prediction, have accuracy of 70% threshold for all residues of a 
protein. This is done by combining multiple sequence alignment information with 
artificial intelligence algorithms. 
 The new thought raised by W. Kabsh and C. Sander [6] who performed the test by 
some prediction methods using proteins that is not in use for the development of the 
algorithms, found the accuracy for most of those methods decreased by 7 to 27%. 
 Taner Z. Sen et al., [7] put fourth about GOR V web server for Protein secondary 
structure prediction. This algorithm combines information theory, Bayesian statistics 
and evolutionary information. Here the accuracy, Q3 rates 73.5%.  
 Garnier et al., [8] gave an intro for GOR (Garnier–Osguthorpe– Robson). It uses 
both information theory and Bayesian statistics for predicting the secondary structure 
of Proteins.  
 Sung-Joon Park [9] had a look on Fragment-Based Protein Structure Prediction: 
these computational methods are categorized into two steps, Template-Based 
Prediction methods, such as homology modeling or fold recognition method, which 
have fast and effective analysis of Protein structure and function.  
 Fragment Assembly (FA) acts as backbone for de novo Protein structure 
prediction. In contrast, GA has feasibility to consider two conformations as a target 
and a template. 
 Probabilistic Fragment Selection (PRO) [10] [11] cannot be fed in the prediction 
of new folds. This study employed the framework of GA.  
 W.R. Pearson and D.J. Lipman [12] proposed a Protein structure prediction by 
pair wise comparison. This method plays a vital role in the application of 
bioinformatics in the biological sciences, since they allow making predictions about a 
protein’s function, structure, and evolution.  
 HHsearch is a typical program for protein sequence searching that is free for non-
commercial usage. HHpred is a free server for protein structure prediction based on 
the HHsearch approach by Soding et al. [13]. HHpred/HHsearch technique is among 
the most popular methods for protein structure prediction and the detection of 
distantly related sequences, having been cited over 450 times.  
 HHpred/HHsearch denotes query and database proteins by profile Hidden Markov 
Models (HMMs), an extension of sequence profiles which also record position-
specific amino acid insertion and deletion frequencies.  
 The output of HHpred and HHsearch is a ranked list of database matches and the 
pairwise query-database sequence alignments. In the CASP7[14] blind protein 
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structure prediction experiment, HHpred5 was ranked 2nd out of 68 automatic 
structure prediction servers, while being more than 50 times faster than the best 20 
servers. 
 Rost and Wang [15] explore these problems and suggest some alternative 
measures of predictive success based on secondary structure segment overlap. 
 In Structural class prediction, if the structural class of a protein (alpha, beta, alpha 
/ beta, or alpha + beta) is known then the secondary structure prediction problem is 
simplified 
 Brocchieri L. Karlin S. [16] gave a new thought about Forces Controlling Protein 
Structure of Hydrogen Bonding Polypeptides contains numerous proton donors and 
acceptors both in their backbone and in the R-groups of the amino acids.  
 Daniel C. Berwick stated three methods for Protein prediction such as 1D, 2D and 
3D. 1D includes in secondary structure and it is solvent accessibility, which residues 
are exposed to water, which are buried and transmembrane helices. Prediction in 2D 
includes inter-residue/strand contacts. Then finally prediction in 3D, means homology 
modeling, fold recognition, molecular dynamics, fragment assembly and ab initio 
prediction. In 3D modeling technique, in homology modeling a query sequence Q, a 
database of protein structures find protein P such that structure of P has high sequence 
similar to Q and return P’s structure as an approximation to Q’s structure. 
 In fold recognition (threading) a query sequence Q, with a database of known 
folds which find fold F such that Q can be aligned with F in a highly compatible 
manner and return F as an approximation to Q’s structure. Next one is fragment 
assembly. Here also a query sequence Q is stated, a database of structure fragments 
continues to find a set of fragments that Q can be aligned with in a highly compatible 
manner and return fragment assembly as an approximation to Q’s structure and then 
finally molecular dynamics have a query sequence Q which use laws of Physics to 
simulate folding of Q. 
 Comparative modeling makes use of the fact that evolutionarily related proteins 
with similar sequences have similar structures. Sequence similarity is calculated by 
the percentage of identical residues at each position based on an optimal structural 
superposition. The structure similarity is very high in the so-called core regions, 
which characteristically consist of secondary structure elements such as α-helices and 
sheets. These secondary structures are connected by the Loop regions such as β turns.  
 Threading methods are very much similar to comparative modeling. Threading 
produces a list of scores by comparing a target sequence against a library of structural 
templates. The ab initio technique is a mixture of science and engineering. In most of 
the ab initio techniques, the two components are coupled together in such a way that a 
search function drives, and is driven by, the scoring function to find native-like 
structures. 
 K. Henrick in [17] discusses about the Quaternary Structure of Proteins. Many 
proteins contain 2 or more different polypeptide chains that are held in association by 
the same non-covalent forces that stabilize the tertiary structures of proteins.  
 Fischer et al [18] in 2001 gave a thought to blind and manual evaluation of 
structure prediction methods; mainly the plethora of protein prediction methods 
developed by different research groups all over the world is notified. The challenge is 
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to identify suitable methods that are truly superior in accurately predicting the protein 
structures of interest.  
 Protein structure prediction is wide-spread approach, and has been previously 
addressed using evolutionary algorithms, such as the Simple genetic algorithm (GA), 
messy GA (mga), fast messy GA (fmGA), and Linkage Learning GA (LLGA). 
However, past research used offs the shelf software such as GENOCOP, GENESIS, 
and mGA. Ruth Pachter in [19] reported the results of a modified fmGA, which is 
found to be “good” at finding semi-optimal solutions in a reasonable time.  
 
2.2.1 Survey on Prediction Techniques using RBFNN Approach 
Jing et al. in [20] putforth a technique for predicting the secondary structure of 
Proteins using Radial Basis Function Neural Networks (RBFNN). Their research 
proposed a new method based on RBFNNs for prediction of Protein secondary 
structure. In order to make their proposed algorithm comparable to other secondary 
structure prediction methods, they used the benchmark evaluation data set of 126 
protein chains in their approach. In addition, they also analyzed how to use 
evolutionary information to improve the prediction accuracy. 
 P.K. Dash et al. in [21] proposed that Radial basis functional neural networks 
(RBFNN) provide an outstanding possibility for generating rules for solving pattern 
classification problems. One of the most important factors in RBFNN is finding out 
the center and spread. The work examines rules extracted from RBF networks trained 
by Particle swarm Optimization (PSO). The selection of the RBFNN centers, spreads 
and the network weights can be viewed as a system identification problem. The 
Simulation results using Radial Basis Functional Neural Networks (RBFNN) was 
applied to the PAT, WBC and IRIS data sets as a classification problem to illustrate 
the new knowledge extraction technique. 
 A Radial Basis Functional neural network (RBFNN) is trained to perform a 
mapping from an m-dimensional input space to an n-dimensional output space. 
RBFNN’s can be used for discrete pattern classification, function approximation, 
signal processing, control, or any other application, which requires a mapping from an 
input space to an output space. Many recent developments of RBFNN and its 
applications can be found in Neuro computing special issues on RBFNN. 
 It is also demonstrated that the RBFNN network training is yet another fruitful 
application of Particle Swarm Optimization (PSO). The simulation is done using 
MATLAB v6.5 verifies that initialization of the centers through Particle Swarm 
Optimization provides better performance. Further research could focus on the 
application of Particle Swarm Optimization (PSO) training to RBFNN networks with 
alternative forms of the generator function. 
 Nicolaos B. Karayiannis [22] proposed an axiomatic approach for constructing 
radial basis function (RBF) neural networks. The approach results in a broad variety 
of admissible RBF models, including those employing Gaussian RBFs. The form of 
the RBFs is determined by a generator function. New RBF models can be developed 
according to the proposed approach by selecting generator functions other than 
exponential ones, which lead to Gaussian RBFs. 
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 The performance of an RBF network is based on the number and positions of the 
RBFs, their shape, and the method used for learning the input-output mapping. The 
existing learning strategies for RBF neural networks can be categorized as,  

 Strategies selecting the RBF centers randomly from the training data. 
 Strategies employing unsupervised procedures for selecting the RBF centers. 
 Strategies employing supervised procedures for selecting the RBF centers. 

 
 The success of a neural-network model depends rather strongly on its association 
with an attractive learning algorithm. For example, the popularity of feed forward 
neural networks with sigmoidal hidden units was to a larger extent due to the error in 
back propagation algorithm. On the other hand, the potential of RBF neural models 
for classification and function approximation was downgraded by the lack of effective 
and reliable learning algorithms for such models.  
 According to the axiomatic approach proposed for reformulating RBF neural 
networks, the development of admissible RBF models reduces to the selection of 
admissible generator functions that determine the form and properties of the RBF’s. 
The reformulated RBF networks developed by linear and exponential generator 
functions are trained by gradient descent and perform considerably better than 
conventional RBF networks. Moreover, training reformulated RBF neural networks 
by gradient descent is not necessarily slow. 
 Susan C. White [23] described a methodology used to construct forecasts for the 
subset of 11 time series in the NN3 competition with Radial Basis Function Networks. 
 Chris Bishop [24] proposed that an important feature of RBFNNs is the existence 
of a fast, linear learning algorithm in a network capable of representing complex 
nonlinear mappings. Reasonable generalization in these networks requires that the 
network mapping be satisfactorily smooth. 
 John Tait et al in [25] described that Radial basis neural (RBF) networks provide 
an excellent solution to many pattern recognition and classification problems. RBF 
networks are a localist representation technique that enables the easy conversion of 
the hidden units into symbolic rules. They examined the quality and 
comprehensibility of rules extracted from RBF networks. 
 Radial basis function networks are a localist type of learning technique. Local 
learning systems generally contain elements that are responsive to only a limited 
section of the input space. This is quite different from the distributed approach of 
multi-layer perceptron networks (MLP). The local nature of RBF net-works makes 
them an ideal platform for performing rule extraction. The ability of rule extraction 
algorithms is examined to extract meaningful rules that describe the overall 
performance of a particular network.  
 J. Park et al. in [26] proved that RBF networks having one hidden layer are 
capable of universal approximation. They emphasized on the typical RBF networks, 
and the results show that a certain class of RBF networks with the same smoothing 
factor in each kernel node is broad enough for universal approximation. 
 
2.2.2. Survey On Prediction Techniques Using SVM 
Prediction of Protein structure began in 1960s when the first protein crystal structures 
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were available for detailed study. Protrero (1966) reported certain amino acids could 
be used to predict helices in myoglobin and hemoglobin. Schiffer and Edmunson in 
(1967) developed the helical wheel both to predict helical and, if a helix is present, to 
indicate the presence of a hydrophobic region. 
 Prediction of Protein structure has been a successful technique in the data mining 
approach. Several researchers have exploited this prediction process using many 
techniques like radial basis function Jing. 
 Learning methods like SVMs are used for the prediction technique which is based 
on the SCOP, in which protein domains are classified based on known structures and 
the evolutionary relationships and the principles that govern their 3-D structure [27]. 
 Data mining concept is used in the prediction of Protein structure (Shi Liu et al.) 
which is constructed based on the rough set algorithms. 
 Bioinformatics techniques to Protein Secondary Structure (PSS) prediction is 
mainly based on the information available in amino acid sequences which uses the 
SVMs [28]. This shows higher accuracy of the prediction technique compared to 
other traditional methods. 
 Hu et al. in [29] proposed an approach of predicting the secondary structure of 
Proteins using SVM. The authors proposed the encoding scheme for training the SVM 
known as the PSSM. 
 A new approach for predicting the Protein structural class was proposed by 
Kurgan et al. in [30]. They proposed a new sequence representation, which is based 
on PSI-BLAST profile based collocation of AA pairs. 
 Kristin et al. in [31] projected an approach for Protein structure prediction. The 
protein energy landscape theory is used to achieve optimal energy functions for 
Protein structure prediction by means of simulated annealing. The analysis in this 
research takes advantage of a more complete statistical characterization of the Protein 
energy landscape and thereby improves on previous approximations. 
 Adam Krzyzak in [32] proposed a fast SVM training algorithm under the 
decomposition framework of SVM’s algorithm by successfully integrating kernel 
caching, digest and shrinking policies and stopping conditions. Experiments on 
MNIST handwritten digit database have been conducted and the results show that the 
proposed approach is much faster than Keerthi et al.’s improved SMO, about 9 times. 
The promising scalability of the proposed technique can make it possible to apply 
SVM to a wide variety of problems in engineering. 
 Protein secondary structure carries data regarding local structural arrangements. 
Most of successful methods for predicting the secondary structure are based on 
multiple sequence alignment. However, the multiple alignments fail to achieve 
significant results when a protein sequence is characterized by low homology. To 
overcome this, Chao Chen et al in [33] proposed a novel method for prediction of 
secondary structure content through comprehensive sequence representation. This 
approach is featured by employing a SVM regressing system and adopting a different 
pseudo amino acid composition (PseAAC), which can partially take into account the 
sequence-order effects to represent Protein samples. It was observed from both the 
self-consistency test and the independent-dataset test that the trained SVM has 
remarkable power in grasping the relationship between the PseAAC and the content 
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of Protein secondary structural elements, including α-helix, β-strand, bridge, turn, 
bend and the rest random coil. Results obtained indicate that the present method may 
at least serve as an alternative to the existing predictors in this area. 

Decoste et al. [34] found that the number of candidate support vectors during the 
early stage of training is much greater than that of final support vectors while many 
experimental results seem to show that SMO’s time complexity can be approximated 
to about O(L:N), where n is the size of training set and L is the average number of 
candidate support vectors during iterations. 

Effectively reducing L will have an important impact on the performance of SMO. 
Therefore, Decoste introduced “digest” idea to avoid this inefficiency and jump out of 
the full SMO iteration early as the candidate support vectors grow by a large number 
and switch SMO into “inbound” iteration to “digest” these candidate SV sets. The 
number of kernel re-evaluations is reduced by the heuristics. However, DeCoste et 
al.’s heuristics contain a lot of ad-hoc parameters and caching the entire rows of 
kernel matrix is still inefficient. 
 
 
3. CONCLUSION 
Problems remain with buried α-helices that comprise short runs of conserved 
hydrophobic amino acids. These often look like potential β-strands and can mislead 
both automatic and manual predictive methods, evolutionarily conserved residues and 
prediction. The improvements in the accuracy of secondary structure prediction that 
are seen when multiple alignments are used from the observation that positions in an 
alignment where the identity of the amino acid residue varies slowly during the course 
of evolution and are important to the stability of the fold or the protein function. 
Patterns of conservation can be discerned by eye, but ideally automatic protocols 
should be used to improve objectivity. 
 The earlier secondary structure prediction techniques use local information of a 
single sequence. These approaches suffered from the following drawbacks. 
 The three-state pre-residue accuracy (Q3) was about 65% which is very low. 
 Sheets were predicted at levels of 28-48% which is slightly better than random. 
 The predicted secondary structure segments were only half as long as the observed 
segments on average. Most of the available methods for prediction of the secondary 
structure are based on multiple sequence alignment. However, multiple alignments 
produce very low accurate results when a sequence comes from low homology. 
 Moreover, majority of the previous research have ignored the influence of residue 
conformational preference on structure prediction of Proteins. Furthermore, function 
of a Protein is determined by its three dimensional structure. Determination of protein 
structure required lab experiments which are time and cost unaffordable and 
complicated. At the same time as some experiments can take months or years to 
achieve and for some Proteins like membrane Proteins current experimental 
techniques are not proficient for structure determination. 
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