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Abstract 
 

A unifying philosophy for carrying out low level image processing called 
“local segmentation” is presented. Local segmentation provides a way to 
examine and understand existing algorithms, as well as a paradigm for 
creating new ones. Local segmentation may be applied to a range of important 
image processing tasks. Using a traditional segmentation technique in intensity 
thresholding and a simple model selection criterion, the new FUELS denoising 
algorithm is shown to be highly competitive with state-of-the-art algorithms 
on a range of images. In an effort to improve the local segmentation, the 
minimum message length information theoretic criterion for model selection 
(MML) is used to select between models having different structure and 
complexity. This leads to further improvements in denoising performance. 
Both FUELS and the MML variants thereof require no special user supplied 
parameters, but instead learn from the image itself. It is believed that image 
processing in general could benefit greatly from the application of the local 
segmentation methodology. 
 
Keywords: Computer, Information Technology, Digital Image Processing, 
Images, Digital Images, Image Acquisition, image sensing. 

 
 
1. Introduction 
The local segmentation principle may be used to develop a variety of low level image 
processing algorithms. In this research it will be applied to the specific problem of 
denoising greyscale images contaminated by additive noise. The best image denoising 
techniques attempt to preserve image structure as well as remove noise. This problem 
domain is well suited to demonstrating the utility of the local segmentation 
philosophy. 
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 A multilevel thresholding technique will be used to segment the local region 
encompassing each pixel. The number of segments will be determined automatically 
by ensuring that the segment intensities are well separated. The separation criterion 
will adapt to the level of additive noise, which may be supplied by the user or 
estimated automatically by the algorithm. The resulting segmentation provides a local 
approximation to the underlying pixel values, which may be used to denoise the 
image. The denoising algorithm presented is called FUELS, which stands for 
“filtering using explicit local segmentation”. FUELS differs from existing local 
denoising methods in various ways. The local segmentation process clearly decides 
which pixels belong together, and does so democratically, without using the centre 
pixel as a reference value. If the computed local approximation suggests changing a 
pixel's value by too much, the approximation is ignored, and the pixel is passed 
through unmodified. The fact that each local approximation overlaps with its 
neighbour means that there are multiple estimates for the true value of each pixel. By 
combining these overlapping estimates, denoising performance is further increased. 
 FUELS will be shown to outperform state-of-the-art algorithms on a variety of 
greyscale images contaminated by additive noise. FUELS' worst case error behaviour 
will be shown to be proportional to the noise level, suggesting that it is quite adept at 
identifying structure in the image. The denoised images produced by FUELS will be 
seen to preserve more image structure than algorithms such as SUSAN and GIWS. 
 
 
2. Global image models 
An image model is a mathematical description of the processes affecting the final 
pixel values in an image. These processes may include atmospheric effects in the 
scene, noise in the capture device, and quantization of pixel values. It may be possible 
to construct a model which accounts for all these steps, but it would probably consist 
of many difficult to determine parameters. Often a simpler model can incorporate the 
main factors and still achieve good results. 
 Modeling the steps from acquisition to a final digital image is sufficient, but not 
necessary, for successful image processing. In many cases the full acquisition history 
may not even be known. In any case, some assumptions or prior beliefs regarding the 
properties of the original scene are also required. The characteristics of the light 
source and the object surfaces will influence greatly how we expect the image pixel 
values to be distributed spatially and spectrally. The number, distance and size of 
objects in the scene will also affect the proportion, scale and sharpness of edges in the 
image. 
 For example, consider the artificial images in Figure 2.1 [1]. The first is 
greyscale light intensity image of a simple object. The second image is also of the 
same object, except that the intensity of each pixel represents the distance from the 
camera to each point in the scene. 
 This is an example of a range image, for which the “light source” is actually a 
distance measurement device. It has been shown that pixel intensities in a range image 
usually vary in a spatially linear manner, due to the polyhedral nature of most objects 
[2]. However this may not be an appropriate assumption to make when analyzing low 
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the expense of having needing three parameters to be estimated for them. If b and c 
are small enough, and we are concerned only with a small area within a larger planar 
facet, then a constant approximation may be sufficiently accurate. 
 
2.1.1   Generalizing the facet model 
The facet model is the basis for the more general segmentation-based approach to 
image modeling. The main difference is that the requirement for a polynomial 
approximation is relaxed. Instead, the interior of a segment may be modeled using any 
mathematical description which defines a homogeneity criterion for the segment. For 
example, texture is often modeled, not as a functional surface, but as a low order 
Markov model [4]. A first order Markov model is probability distribution over pairs 
of pixel values. This model is quite different from a polynomial one, but it can still be 
used to define a homogeneity criterion. An important attribute of any homogeneity 
criterion used in image segmentation is whether or not it takes spatial coherence into 
consideration. Techniques such as thresholding consider only pixel values, and not 
their relative spatial positions. This can produce unconnected segments, which may or 
may not be desirable. 
 
2.2   Image sampling 
Consider the simple undigitized monochrome scene in Figure 2.3(a). It consists of a 
square object of uniform high intensity on a dark background of uniform low 
intensity, and is perfectly piece-wise constant. Figure 2.3(b) illustrates the 
discretization of this scene into a 9 x 11 digital image. The intensity of each pixel in 
the final image, shown in Figure 2.3(c), is set to the average light intensity of the area 
each pixel covers in the original scene. The resulting image is also piece-wise 
constant, consisting of two distinct segments. This is because the boundary between 
object and background coincided with the alignment of the pixel grid. 
 Figure 2.4 shows what occurs when an object in a scene does not align exactly 
with the sampling grid. The sampling process has produced a range of pixel intensities 
in the digitized image. Each pixel on the object boundary has received an intensity 
which is a blend between the intensities of the two original segments. 

 

 
 

Figure 2.3: Discrete sampling of an object aligned to the pixel grid: (a) original 
scene; (b) superimposed sampling grid; (c) digitized image. 
 
 In fact, there are now seven unique pixel intensities compared to the original 
two. 
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 Edge profiles may be modeled by any mathematical function desired, but steps 
and ramps are by far the most commonly used. If a ramp transition occurs over a large 
number of pixels, it may be difficult to discriminate between it being an edge, or a 
planar facet. If pixels along the ramp are assigned to a particular segment, the values 
of those pixels may be dissimilar to the majority of pixels from inside the segment. 
 
2.3.1   A useful noise model 
Different types of noise may be introduced at each step of the image acquisition 
process. The general functional form for the noise component, n(x, y), at each pixel is 
given in Equation 2.1. Parameters x and y are the spatial position of the pixel in 
question, is a vector of fixed parameters determining some properties of the noise 
such as its intensity and spread, and f is the original image which may be required if 
the noise term is data dependent. This formulation has scope for a huge number of 
possible noise functions. 
 n (x, y : , f)       (2.1) 
 
 A simple, but still useful and versatile noise model is additive zero-mean 
Gaussian noise which is independently and identically distributed (i.i.d.) for each 
pixel. Under this model the noise adds to the original pixel value before digitization. 
The noise term may be written like Equation 2.2, where “~ N (µ, σ2)” denotes a 
random sample from a normal distribution of mean µ and variance σ2. Figure 2.6 plots 
the shape of this noise distribution when σ2 = 1. 
 N (x, y ; σ2) ~ N (0, σ2)       (2.2) 
 
 Because the noise is additive and symmetric about zero, it has the desirable 
effect, on average, of not altering the mean intensity of the image. It only has one 
parameter, the variance σ2, which determines the spread or strength of the noise. 
Although the work in this thesis assumes that the noise variance is constant 
throughout the image, it would be possible to vary it on a per pixel basis. 
 Consider a constant facet containing pixels with intensity z. After N(0, σ2) noise 
is added, it is expected that 99.7% of pixels will remain in the range z ± 3σ. This is 
called the 3σ confidence interval for z [5]. 
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Figure 2.7: The effect of different Gaussian noise levels: (a) no noise; (b) added 
noise σ = 10; (c) added noise σ = 40. 
 
 For piece-wise constant segments, the noise standard deviation defines a natural 
level of variation for the pixel values within that segment. The natural level of 
variation describes the amount by which pixel values may vary while still belonging 
in same segment. For the case of planar segments, the natural level of variation 
depends on both the noise level and the coefficients of the fitted plane. If a global 
planar segment only has a mild slope, then the variation due to the signal may be 
negligible for any local window onto that segment. The natural level of variation in 
the window will be dominated by the noise rather than the underlying image model. 
 
 
3. Test images 
In this section, different denoising algorithms will be compared. It is laborious to 
provide results for a large set of images at each stage of the discussion. For this 
reason, one or more images from the small set introduced here will be used 
consistently throughout this section. The use of a larger set of image test set will be 
deferred until the final results are considered. 
 
3.1   Square 
The square image in Figure 3.1 is an 8 bit per pixel greyscale image of resolution 11 x 
9. It consists of a 25 pixel square of intensity 200 atop a 74 pixel background of 
intensity 50. It will be often used for illustrative purposes, and for subjectively 
examining the effect of various techniques. 
 
3.2   Lenna 
The lenna image [6] in Figure 3.2 has become a de facto standard test image 
throughout the image processing and image compression literature. Its usefulness lies 
in the fact that it covers a wide range of image properties, such as flat regions, fine 
detail, varying edge profiles, occasional scanning errors, and the fact that so many 
authors produce results using it as a test image. One interesting feature is that the 
noise in lenna seems to be inversely proportional to the brightness, perhaps a legacy 
of having been scanned from a negative. 
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Figure 3.1: The 11 x 9 8 bpp square test image. 
 

    
 

Figure 3.2: (a) the 512 x 512 8 bpp lenna image; (b) histogram. 
 
3.3   Montage 
Figure 3.3 shows a greyscale test image called montage [7], and its histogram. It has 
resolution 512x512 and uses 8 bits per pixel. The image consists of four quadrants. 
The top left is the middle 256x256 section of a smoothed version of the lenna image. 
The bottom right is a right hand fragment of a German village street scene, which 
contains some small amounts of natural noise. The top right is a synthetically created 
image which is perfectly piece-wise constant. It covers a range of segment boundary 
shapes and intensity differences between adjacent segments. The bottom left is the 
same as the top right, except that the segments are piece-wise planar, covering a range 
of horizontal and vertical gradients. 

 

     
 

Figure 3.3: (a) the 512 x 512 8 bpp montage image; (b) histogram 
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 It is hoped that this image covers a wide range of image properties, while also 
being very low in noise. The low noise level is important for experiments in which 
synthetic noise will be added. The image has features such as constant, planar and 
textured regions, step and ramp-like edges, fine details, and homogeneous regions. 
The montage image is used for measuring objectively the RMSE performance of 
various techniques. 
 
 
4. Conclusions 
It has been shown that the principles of local segmentation can be used to develop 
effective denoising algorithms. After many analyses, the FUELS algorithm for 
denoising greyscale images contaminated by additive noise was presented. FUELS 
has an efficient implementation, and only requires one parameter, the level of noise in 
the image. This can be supplied by the user, or FUELS can determine it automatically. 
FUELS was shown to outperform existing methods, like SUSAN and GIWS, for a 
variety of images and noise levels. 
 Examination of images in terms of local segmentation has led to a better 
understanding of image processing on a small scale, particularly for the commonly 
used 3 x 3 configuration. At conversations and seminars, I have often heard the off-
hand comment that “only 10% to 20% of images are edges”. Analysis of the 
distribution of k values chosen for images in the research suggest that only around 50-
60% of pixels are locally homogeneous, 20-30% consist of two segments, and 10-
20% tend to be difficult to model well. Perhaps the speakers were confusing edges 
with those pixels which are difficult to predict or model. The success of FUELS 
suggests that attempts to model these difficult blocks does not significantly improve 
denoising performance. 
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